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outline

• Classical mechanics: Hamiltonian system, 

discontinuous Hamiltonian, transmission and 

reflection  (J-Wen)

• Quantum barriers: quantum-classical coupling, 

interference (J-Novak)

• Diffraction: use GTD (J-Yin)

• Surface hopping (J-Qi-Zhang)

• Gaussian beam method (J-Wu-Yang)

• conclusion



I: Classical Mechanics for singular Hamiltonians

• a Hamiltonian system:

dx/dt = r H             

d/dt = -rx H

H=H(x, ) is the Hamiltonian

Classical mechanics:  H=1/2 ||2+V(x)  (=> Newton‟s second law)

Geometrical optics:     H = c(x) ||

computational method based on solving the Hamiltonian system is referred to as the particle method, or a 
Lagrangian method

• Phase space representation:

ft + r H¢rx f - rx H ¢r f = 0

f(t,  x, ) is the density distribution of a classical particle at 

position x, time t, with momentum 

Computational methods based on solving the Liouville equation will be refereed to as the Eulerian method

The Liouville equation can be solved by method of characteristics if H is smooth



Lagrangian vs Eulerian

o Lagrangian:  simple, efficient in high 

dimension

particles (rays) may diverge: loss of 

accuracy, remeshing (increasing particles) 

is needed which may be complicated

o Eulerian: solving PDEs on a fixed mesh--

high order accuracy;  computational cost 

higher (reducing cost: moment closure, 

level set method)



A ray tracing result

• Rays or particles may 

diverge, so it becomes 

highly inaccurate to 

reconstruct quantities of 

interests: fields (electric 

or electromagnetic, Bohm 

potential, etc)

• Figure by O. Runborg



Discontinuous Hamiltonians

• H=1/2||2+V(x): V(x) is discontinuous- potential 
barrier, 

• H=c(x)||: c(x) is discontinuous-different index of 
refraction

• quantum tunneling effect, semiconductor device 
modeling, plasmas, geometric optics, interfaces 
between different materials, etc.

• Modern theory (KAM theory) and numerical 
methods (symplectic scheme) for Hamiltonian 
system all assume smooth Hamiltonian 



Analytic issues

ft + r H¢rx f - rx H ¢r f = 0

• The PDE does not make sense for discontinuous H.  
What is a weak solution?

dx/dt = r H             

d/dt = -rx H

• How to define a solution of systems of ODEs when the 
RHS is discontinuous or/and measure-valued? (DiPerna-
Lions-Ambrosio renormalized solution does not apply 
here—only work for BV RHS)



How do we extend the mathematical theory 

to  singular Hamiltonian system

Our approach: build in correct 
physics at the singularity:  
transmission, reflection, diffraction, 
quantum tunneling, surface 
hopping, …



Classical particles at 

barriers

Particles either transmit or reflect

Hamiltonian is conserved:

H+ = H-



Snell-Decartes Law of refraction

• When a plane wave hits the interface,  H=c|»|  is conserved:

the angles of incident and transmitted waves satisfy (n=c0/c)



Solution to Hamiltonian System with discontinuous 

Hamiltonians

R T

• Particles cross over or be reflected by the corresponding transmission or reflection 
coefficients (probability)

• Based on this definition we have also developed particle methods (both deterministic 
and Monte Carlo) methods



Eulerian picture: An interface condition

an interface condition for f should be used to connect

(the good) Liouville equations on both sides of the interface.

• T, R defined from the original “microscopic” problems

• This gives a mathematically well-posed problem that is physically relevant

• We can show the interface condition is equivalent to Snell‟s law in geometrical optics

• A new method of characteristics (bifurcate at interfaces)

f(x+, +)=Tf(x-,
-
)+R f(x+, -+)  for +>0

H(x+, +)=H(x-,-)
R:  reflection rate    T:  transmission rate

R+T=1



Curved interface



II. Quantum barrier: a multiscale approach 

(with K. Novak, MMS, JCP)



A quantum-classical coupling approach for thin barriers

• Barrier width in the order of De Broglie length, separated 

by order one distance

• Solve a time-independent Schrodinger equation for the 

local barrier/well to determine the scattering data 

• Solve the classical liouville equation elsewhere, using 

the scattering data at the interface



A step potential ( V(x)=1/2 H(x) )



Resonant tunnelling



Circular barrier (Schrodinger with =1/400)



Circular barrier (semiclassical model)



Circular barrier (classical model)



Entropy

• The semiclassical model is time-

irreversible.  

Loss of the phase information

cannot deal with inteference



decoherence

V(x)  = (x) + x2/2

Quantum

semiclassical



A Coherent Semiclassical Model

Initialization: 

• Divide barrier into several thin barriers 

• Solve stationary Schrödinger equation
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A coherent model
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• Solve Liouville equation
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Interference



The coherent model

• V(x)  = (x) + x2/2

Quantum

semiclassical



multiple delta barrier (Kronig-Penney)

decoherent model vs Schrodinger



multiple delta barrier (Kronig-Penney)

coherent model vs Schrodinger



multiple delta barrier (Kronig-Penney)

average soln of coherent model vs Schrodinger



III. Computation of diffraction (with Dongsheng Yin)



Transmissions, reflections and diffractions 

(Type A interface)



Type B interface



Hamiltonian preserving+Geometric Theory of 

Diffraction

• We uncorporate Keller‟s GTD theory into the interface condition:





A type A interface



Another type B interface



Half plane



Corner diffraction

Illustrative figure GTD vs full wave simulation



VI: surface hopping (J-Qi-Zhang)

• Born-Oppenheimer (adiabatic) approximation

high ratio between the nuclear and  electronic 

masses;

electronic Schrodinger equation is first solved, 

given electronic energy states that serve as the 

potential functions for the nuclear Schrodinger 

equation;

when energies of different electronic states are 

close ,  transitions between different energy 

states occur and the BO breaksdown  



Transition between electronic states

Conical crossing Avoided crossing



The Landau-Zener formula

• gives the probability of a diabatic transition 

between the two energy states



The surface hopping method (Tully „71)

• Particles follow the classical trajectory 

determined by the classical Hamiltonian; 

at avoided crossing region they “hop” with 

transition probability to different energy 

level (Hamiltonian system for different 

potential surfaces)

• A Monte-Carlo procedure; or particle 

splitting 



An Eulerian Surface Hopping method

• For two-energy level system we use two Liouville 

equations, corresponding to two Hamiltonians, with an 

interface condition for Landau-Zener transition



Numerical Examples

Linear isotropic potential John-Teller potential



Advantage of Eulerian method

• No Monte-Carlo procedure

• High order accuracy

• Easily adopted to any number of energy states—

number of Liouville equations fixed

• Arise naturally from semiclassical limit of 

systems of Schrodinger equation via the Wigner 

transform (Spohn, Teufel, Hagedorn, Lasser, 

Schutte, etc.) 



V. An Eulerian Gaussian-Beam Method (J-Wu-Yang)

• Geometric optics or semiclassical limit blows up density 

at caustics. Gaussian beam is more accurate at 

caustics and preserves the Maslov-Keller phase shift



Lagrangian formulation (Popov, Hill,  Heller) 



The Lagrangian beam summation



The Eulrian formulation

L f = t f +  ¢ry f - ryV ¢r f 

• For velocity or phase:

Solve L  = 0     2 Cn       

with (0,y,)= -i y+ (-ry S0)

(note Re()=0 at =u=ry S)

• For Hessian:  M=-ry  (r )-1

• For amplitude:  Solves L =0,  2 R

with (0, y, )=|A0|
2

then A(t, x)= (det (r )-1) )1/2 (principle value)

The complexity is comparable to geometric optics or semiclassical limit; 
only now that  2 Cn rather than Rn



A numerical example (=10-4)

• Density • Velocity



Error comparison



Summary

Liouville equation based Eulerian computational  methods 

for quantum dynamics:

• Partial transmissions and reflections, diffractions, and 

quantum barriers

• Surface hopping

• Gaussian beam methods as an improvement of the 

classical solver

• Computational cost is classical, yet certain important 

quantum information are captured

• can use local level set method to further reduce the cost



Future projects

• Gaussian beam for interface and quantum 

barriers

• Coherant semiclassical models for multi-D  

quantum barriers

• Gaussian beam or coherent quantum-

classical coupling for surface hopping



Computational cost (=10-6)

• Full simulation of original problem for 

 x »  t » O()=O(10-6)

Dimension     total cost

2d, O(1018)
3d O(1024)

• Liouville based solver for diffraction    

 x »  t » O(1/3) = O(10-2)  

Dimension     total cost

2d, O(1010)
3d O(1014)

Can be much less with local mesh refinement


