Nonadiabatic Molecular Dynamics with Kohn-Sham DFT: Modeling Nanoscale Materials

Oleg Prezhdo

CSCAMM – Mar 11, 2010

Outline

Nonadiabatic MD with Kohn-Sham DFT

- Advantages & Validity
- Quantum Backreaction & Branching (Nuclear Dynamics)
- Decoherence & Zero-Point Energy

Carbon Nanotubes & Nanoribbons

- Luminescence Quenching
- Singlet-Triplet Transitions
- Structural Defects

Adiabatic vs. Nonadiabatic MD

<u>Nonadiabatic MD:</u> Coupling between potential surfaces opens channels for system to change electronic states.

electrons treated quantum-mechanically

nuclei treated classically

Time-Domain DFT for Nonadiabatic Molecular Dynamics

Electron density derives from Kohn-Sham orbitals $\rho(x) = \sum_{p} |\varphi_{p}(x)|^{2} \qquad |\Psi\rangle = |\varphi_{p}(x_{1},t)\varphi_{q}(x_{2},t)\dots\varphi_{v}(x_{N},t)\rangle_{SD}$ DFT functional *H* depends on nuclear evolution *R*(*t*) Variational principle gives $i\hbar \frac{\partial \varphi_p(x,t)}{\partial t} = H\varphi_p(x,t) \quad p = 1,2...$ Orbitals are expanded in adiabatic KS basis $\varphi_p(x,t) = \sum c_p^{\alpha}(t) \chi^{\alpha}(x)$ $H(x; R(t))\chi^{\alpha}(x; R(t)) = \varepsilon^{\alpha}(R(t))\chi^{\alpha}(x; R(t))$ $i\hbar c^{\alpha} = \sum_{\beta} c^{\beta} \left(\varepsilon^{\beta} \delta_{\alpha\beta} - i\hbar \left\langle \chi^{\alpha} \left| \vec{\nabla}_{R} \right| \chi^{\beta} \right\rangle \cdot \vec{R} \right)$

Time-Domain DFT in Many-Body Kohn-Sham Basis Craig, Duncan, Prezhdo *PRL* **95**, 163001 (2005)

 $|\varphi_a \varphi_b \cdots \varphi_p\rangle = \sum_{i \neq k \neq \dots \neq l}^{N_e} C_{j \cdots l}(t) |\tilde{\varphi}_j \tilde{\varphi}_k \cdots \tilde{\varphi}_l\rangle$ $i \neq k \neq \cdots \neq l$ $i\hbar\frac{\partial}{\partial t}C_{q\cdots v}(t) = \sum_{i=1}^{N_e} C_{a\cdots p}(t)[E_{q\cdots v}\delta_{aq}\cdots\delta_{pv}]$ $+ \mathbf{D}_{a\cdots p;q\cdots r} \cdot \mathbf{R}$]. $\mathbf{D}_{a\cdots p;q\cdots r}\cdot\dot{\mathbf{R}} = -i\hbar\langle\tilde{\varphi}_a\tilde{\varphi}_b\cdots\tilde{\varphi}_p|\frac{\partial}{\partial t}|\tilde{\varphi}_q\tilde{\varphi}_r\cdots\tilde{\varphi}_v\rangle$

non-zero only if different in one orbital

Open Theoretical Questions

 ✓ How to couple quantum and classical dynamics? quantum influence on classical trajectory

 Can one do better than classical mechanics for nuclear motion? zero-point motion, tunneling, branching, loss of coherence

Nuclear Evolution: Ehrenfest

"Interfacial ET" Stier, Prezhdo JPC B 106 8047 (2002)

Total energy of
electrons and nuclei
$$E_{tot} = \frac{MR^2}{2} + V(R(t)) + Tr_x \rho(x) H(x; R(t))$$

is conserved $\frac{dE_{tot}}{dt} = 0$

time-dependent Hellmann-Feynman theorem gives Newton equation

Nuclear Evolution: Surface Hopping

Trajectory branching: Tully, *JCP* **93**, 1061 (1990);

Velocity Rescaling: Tully, Hammes-Schiffer *JCP*. **101**, 4657 (1994). a.k.a., quantum-master equationwith time-dependent transition rates:non-perturbative

- correct short time dynamics

Detailed balance: Parahdekar, Tully *JCP* **122**, 094102 (2005)

Within TDDFT: Craig, Duncan, Prezhdo *PRL* **95**, 163001 (2005)

Why Kohn-Sham Basis Works with Our Systems

- 1. KS excitations close to LR/TDDFT (in contrast to HF and CIS)
- 2. No bond-breaking, conformational changes, etc.
- 3. Many-electron systems, single excitation is a small perturbation
- 4. Averaging over many initial conditions and pathways

Electron Transfer Example:

Silicon Quantum Dot

Small Molecule With Isomerization

Tapavicza, Tavernelli, Rothlisberger *PRL* **98**, 023001(2007): LR/TDDFT

Schrodinger Cat and Decoherence

In Nanomaterials System - electrons, spins; Bath - phonons

Franck-Condon Factor and Decoherence

$$B_{0} > \underbrace{\sum_{\{B_{2}\}} \left| \left\langle B_{1} \right| B_{2} \right\rangle \right|^{2} \delta(E_{1} - E_{2})}_{= \int e^{i(E_{1} - E_{2})t/\hbar} \left\langle B_{1}(t) \right| B_{2}(t) \right\rangle dt}$$

$$B_0 \longrightarrow B_1 B_2$$

Bath (vibrational) wave functions diverge

This affects evolution of (electronic) system

Decoherence and Surface Hopping

Reduced density matrix: $\rho = \langle B | \rho^{S-B} | B \rangle$ $\left| \begin{array}{c} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{array} \right| \rightarrow \left| \begin{array}{c} \rho_{11} & \rho_{12} \langle B_2 | B_1 \rangle \\ \rho_{21} \langle B_1 | B_2 \rangle & \rho_{22} \end{array} \right|$ $\rho = \langle B | \rho^{S-B} | B \rangle$ $\rho_{12} \rightarrow 0$ on decoherence time scale

hopping probability $P_{12} \sim \rho_{12}$

Quantum Zeno Effect

 T_{12}

With decoherence: $P_{12} = |T_{12}|^2 + |T_{12}|^2 + ...$ Without decoherence $P_{12} = |T_{12} + T_{12} + ...|^2$

Decoherence makes transitions less likely $|0.1|^2 + |0.1|^2 < |0.1 + 0.1|^2$

Stochastic Mean-Field (SMF)

O. V. Prezhdo J. Chem. Phys. 111, 8366 (1999); Phys. Rev. Lett. 85, 4413 (2000)

Stochastic Schrodinger equation in place of regular SE in Ehrenfest

$$d\Psi \rangle = -iH |\Psi\rangle dt - \frac{\gamma}{2} L^{\dagger}L |\Psi\rangle dt + \sqrt{\gamma}L |\Psi\rangle dW$$

- L system-bath interaction γ decoherence rate

Advantages

- 1. Includes decoherence
- 2. Gives branching
- 3. Infinitesimal velocity rescalings

Decoherence Induced Surface Hopping (DISH)

Evolve in an adiabatic state. Hop when a decoherence event occurs. Rescale velocity as before in SH.

Advantages

- 1. Includes decoherence
- 2. Gives branching
- 3. Nuclear evolution in pure states

Quantized Hamilton Dynamics

O. V. Prezhdo, Y. V. Pereverzev J. Chem. Phys. 113, 6557 (2000)
O. V. Prezhdo Theor. Chem. Acc. 116, 206 (2006)

$$V = \frac{q^2}{2} + \frac{q^3}{3}$$

$$\frac{d < q^{2}}{dt} = < p >; \quad \frac{d }{dt} = - < q > - < q^{2} >$$
but $< q^{2} > \neq < q > < q >$ and
$$\frac{d < q^{2} >}{dt} = < pq + qp > \equiv 2 < pq >_{s}$$

$$\frac{d < pq >_{s}}{dt} = < p^{2} > - < q^{2} > - < q^{3} > q$$

the infinite hierarchy is terminated by a closure

$$< q^{3} > \approx 3 < q^{2} > < q > - 2 < q >^{3}$$

Harmonic Oscillator in Mapped QHD-2

QHD-2 takes care of zero-point-energy

Metastable Cubic Potential in Mapped QHD-2

Quantum-Classical Lie Bracket

O. V. Prezhdo, V. V. Kisil *Phys. Rev. A* 56 162 (1997)
O. V. Prezhdo *J. Chem. Phys.* 124 201104 (2006)

$$[A,B]_{qc} = -\frac{i}{\hbar}[A,B] + \frac{1}{2}(\{A,B\} - \{B,A\})$$

quantum commutator + classical Poisson bracket

starting point for many methods: Ehrenfest, multiconfiguration quantum-classical

problems with Jacobi identity:

 $[[A,B]_{qc},C]_{qc} + [[B,C]_{qc},A]_{qc} + [[C,A]_{qc},B]_{qc} = 0$

Alternative definition:

$$[A,B]_{qc} = -\frac{i}{\hbar}[A,B] - i \left. \frac{\partial[A,B]}{\partial\hbar} \right|_{\hbar=0}$$

Bohmian Quantum-Classical Mechanics

C. Brooksby, O. V. Prezhdo Phys. Rev. Lett. 86, 3215 (2001); 90, 118902 (2003)

 $\psi(r,t) = \sqrt{\rho(r,t)}e^{iS(r,t)/\hbar}$ gives Newton eq. $m\ddot{r} = -\nabla_r [V(r) + Q(r)]$ with non-local quantum potential $Q(r) = -\frac{\hbar^2}{2m} \frac{\nabla_r^2 \sqrt{\rho(r)}}{\sqrt{\rho}(r)}$

 $\begin{array}{ll} \underline{\text{Quantum } (r) - \text{Classical } (R)} & \underline{\text{Advantage}} \\ M\ddot{R} = -\nabla_R \Big[V_R(R) + V_{rR}(r,R) \Big] & \text{drop } \mathcal{Q}(R), \mathcal{Q}(r,R) & \text{Branching} \\ m\ddot{r} = -\nabla_r \Big[V_r(r) + V_{rR}(r,R) + \mathcal{Q}(r) \Big] \end{array}$

Example

C. Brooksby, O. V. Prezhdo Phys. Rev. Lett. 86, 3215 (2001); 90, 118902 (2003)

Highly simplified representation of O₂ interacting with Pt

J. Strömquist, S. Gao, J. Chem. Phys. 106, 5751 (1997); D.S. Sholl, J.C. Tully, J. Chem. Phys. 109, 7702 (1998)

2. Bohmian and MF err at short times due to ZPE

Summary for Kohn-Sham SH

- ✓ KS-SH works well with nanoscale materials, even small molecules
 - KS excitations are close to LR/TDDFT (in contrast to HF and CIS)
 - Usually no bond-breaking, conformational changes, etc.
 - Many-electron systems, single excitation is a small perturbation
 - Averaging over many initial conditions and pathways
- ✓ FSSH gives (approx.) detailed balance, essential in applications
- ✓ Decoherence effects are essential in many-atom systems
- Stochastic Mean-Field (SMF) and Decoherence Induced SH (DISH) "derive" a SH algorithm from decoherence
- Zero-point-energy, tunneling and decoherence are included in Quantized Hamilton Dynamics (QHD)
- Bohmian quantum-classical formulation naturally gives branching

2.76E < "The beauty of this is that it is only of theoretical importance, and there is no way it can be of any practical use whatsoever."

Carbon Nanotubes Electronic Structure

Energy (eV)

Electron-Phonon Relaxation and Phonon Modes

Ma, Valkunas, Dexheimer, Bachilo, Fleming PRL 94, 157402 (2005)

High frequency optical G-modes

Low frequency acoustic radial breathing modes (RBM)

* – graphite background

Luminescence Quenching and Ground State Recovery

Hertel et al. *Nano Lett.* **5**, 511 (2005)

Multiple luminescence quenching timescales in literature: ~20ps, 200ps and 10ns

Luminescence yields are generally low <1%, i.e. quenching is efficient

Stone-Wales defect bond rotation

transition density

7557 defect

C₂ inserts across hexagon

Defects and Density of States

Defect states both in the gap and inside bands

C₂ addition creates a distinct state

Decoherence Times & Fluorescence Linewidth

Tube	τ (fs)	A	$\omega \ ({\rm fs}^{-1})$	linewidth (meV)			
(6,4)	59.6	0.086	0.32	11.0			
(8,4)	51.2	0.061	0.30	12.8			
(7,0)	24.5	-	0	26.9			
7557	18.4	0.88	0.12	35.8			
SW	48.0	0.062	0.25	13.7			
50K	955	0.0056	0.30	0.69			
	$f(t) = exp(\frac{-t}{\tau})\frac{1 + Acos(\omega t)}{1 + A}$						

Experiment 10 meV (suspended) 25 meV (surfactant)

Defects create stronger electron-phonon coupling and can be detected by broader lines

Active Phonon Modes

Fluorescence Decay (FSSH)

Defects notably decrease lifetime, explain multiple decay components

No T-dependence: cancellation of changes in NA coupling and decoherence

Comparison of FSSH with DISH

FSSH and DISH give similar results DISH uses decoh. as SH algorithm Poisson and fixed coh. times similar

Triplets & Phosphorescence Decay

Jablonsky diagram

on the same order as NA coupling, but SO coupling fluctuates less

Triplets & Phosphorescence Decay

Transition	Gap~(eV)	Coupling (meV)	ISC Time (ps)
	0.35	1.0	362
S_1 - T_1		1.6	139
		2.4	62.2
	1.05	1.0	$1,\!082$
		1.6	430
TS		2.4	189
11-20	1.30	1.0	$1,\!392$
		1.6	548
		2.4	238

Triplets decay ~5 times more slowly than singlets

Decay rate is proportional to square of SO coupling and inverse energy gap

Larger tubes – weaker coupling (due to smaller curvature), but also smaller energy gaps

Transition Densities

Stone-Wales defect bond rotation

7557 defect C_2 inserts across hexagon

Phonon Modes

Opposite to tubes: weaker electron-phonon coupling in defects compared to ideal ribbon

Decoherence Time & Fluorescence Linewidth

Ribbon	τ (fs)		$\omega ~({\rm fs}^{-1})$	A	$\Gamma \ ({\rm meV})$
(16, 16)	$23.5_{/}$	25.8	0.259/0.257	0.024/0.069	28.0/25.5
Defect	τ_e (fs)		τ_g (fs)	В	$\Gamma \ (meV)$
7557	41.8	'48.9	39.9/35.7	0.38/0.30	16.1/16.5
SW	69.8	(57.3)	42.3/46.0	0.54/0.44	11.5/12.9

Opposite to tubes: wider lines in ideal ribbon than in defects

Fluorescence Decay (FSSH)

Defects speed up relaxation, same as in tubes

Ribbons decay more slowly than tubes due to smaller electronic overlaps

Comparison of FSSH with DISH

FSSH and DISH give similar results DISH uses decoh. as SH algorithm Poisson and fixed coh. times similar

Apparent Paradoxes

$$k_{1 \to 2}^{qm} = \frac{2\pi}{\hbar} \left\langle \left| \sum_{n} -\frac{i\hbar}{M_{n}} \left(1 |\nabla_{n}| 2 \right) \left\langle \hat{p}_{n} \right\rangle \right|^{2} \right\rangle \\ \times \prod_{m} \left| \left\langle i_{m} |f_{m} \right\rangle |^{2} \delta(E_{1i} - E_{2f}) \right\rangle_{T}$$

Tubes vs. Ribbons

Ideal ribbons show wider lines, i.e. faster dephasing, but slower relaxation than ideal tubes ??

Ideal vs. Defects

Defects accelerate relaxation in both tubes and ribbons; C. However, defects make lines broader in tubes and narrower in ribbons ??

ALL OF - HATSHE

Summary for Carbon Tubes/Ribbons

- Luminescence quenching 3 timescales, as in experiment Tubes: 150ps ideal, 50ps defects, 700ps triplet channel Ribbons: 300ps ideal, 100ps defects
- Phonons: C-C stretch in ideal systems low frequency modes with defects
- ✓ No T-dependence by decoherence correction
- ✓ DISH and FSSH results are similar, DISH is "more justified"

Phys. Rev. Lett. 96 187401 (2006); Phys. Rev. Lett. 98 189901 (2007); Nano Lett. 7 3260 (2007); Phys. Rev. Lett., 100 197402 (2008);
Nature Nanotech. 4 190 (2008); Pure & Appl. Chem. 80 1433 (2008); Nano Lett. 8 2126 (2008); Nano Lett. 8 2510 (2008);
J. Phys. Chem. C, 113, 14067 (2009); Nano Lett., 9, 12 (2009).