

Introduction

Thomas-Fermi-Maxwell model

Kohn-Sham model and scalings

Homogenized system high frequency regime

Homogenized systems low frequency regime

Dynamics of interacting electrons

Xu Yang Program in Applied and Computational Mathematics Princeton University, USA

In collaboration with

Prof. Weinan E (Princeton Univ.,USA) Dr. Jianfeng Lu (New York Univ.,USA)

Workshop in CSCAMM, Maryland

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Outline

Xu Yang

- Introduction
- Thomas-Fermi-Maxwell model
- Kohn-Sham model and scalings
- Homogenize system high frequency regime
- Homogenized systems low frequency regime

- Introduction to the governing equations
 - Thomas-Fermi-Maxwell model
- 3 Kohn-Sham model and scalings
- 4

2

- Homogenized system high frequency regime
- 5
 - Homogenized systems low frequency regime

Many-body Schrödinger equation

Xu Yang

Introduction

Thomas-Fermi-Maxwell model

- Kohn-Sham model and scalings
- Homogenize system high frequency regime

Homogenized systems low frequency regime

$$i\hbar \frac{\partial \Psi}{\partial t} = H\Psi = \left(-\frac{\hbar^2}{2m_e}\Delta + V\right)\Psi,$$
$$V = V_{ne} + V_{ee} + W.$$

 V_{ne} – the electron-nucleus attraction energy V_{ee} – the electron-electron repulsion energy W – the external potential

N electrons \implies dimensionality of equation 3N + 1

Conclusion:

nice equation but mission impossible to be directly solved

Hartree-Fock and TDDFT theory

Xu Yang

Introduction

Thomas-Fermi-Maxwell model

Kohn-Sham model and scalings

Homogenized system high frequency regime

Homogenized systems low frequency regime Hartree-Fock theory: Ψ has the form of determinant $\{\psi_k\}_{k=1}^N$ – Slater determinant

$$i\hbar \frac{\partial \psi_k}{\partial t} = -\frac{\hbar^2}{2m_e} \Delta \psi_k + V \psi_k,$$

$$V = V_H + V_F + W.$$

- V_H Hartree (Coulomb) potential
- V_F Fock (exchange) operator

TDDFT theory (Runge-Gross theorem, 1984): a unique map between the time-dependent external potential and time-dependent density.

 $V = V_{eff}(\rho), \rho = \sum_{k} |\psi_{k}|^{2} \Longrightarrow$ Thomas-Fermi system (orbital-free) and Kohn-Sham system (orbital-dependent).

Motivations

Xu Yang

Introduction

- Thomas-Fermi-Maxwell model
- Kohn-Sham model and scalings
- Homogenized system high frequency regime
- Homogenized systems low frequency regime

- Understand the electron interactions under the picture of Hartree-Fock or TDDFT;
- Derive effective equations in the background of crystals;
- Aim at possible applications in nano-optics and semiconductors.

colors by gold colloids

small spider on small semiconductor

Derivation of the Thomas-Fermi-Maxwell model

Xu Yang

Introduction

Thomas-Fermi-Maxwell model

Kohn-Sham model and scalings

Homogenize system high frequency regime

Homogenized systems low frequency regime Begin from the quantum many-body action

$$\mathcal{A} = \int \langle \Psi | i \partial_t - \mathcal{H} | \Psi \rangle \, \mathrm{d}t.$$

Take Ψ as the Slater determinant $\{\psi_k\}_{k=1}^N$ and assume $\psi_k = a_k \exp(iS) - \text{same phase function}$,

$$\mathcal{A} = \int \rho \left(-\partial_t S - \frac{1}{2} (A - \nabla S)^2 \right) - \langle \Psi | H_0 | \Psi \rangle \, \mathrm{d}t,$$

where $\rho = \sum_{k} |a_{k}|^{2}$ we have also considered the magnetic vector potential *A* in the Hamiltonian

$$H=rac{1}{2}\left(i
abla+A
ight)^2+V, \qquad H_0=-rac{1}{2}\Delta+V.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Euler-Lagrange equations

Xu Yang

Introduction

Kohn-Sham model and scalings

Homogenize system high frequency

Homogenized systems low frequency regime The Thomas-Fermi approximation of kinetic energy yields,

$$\mathcal{A} = \int \rho \left(-\partial_t S - \frac{1}{2} (\mathbf{A} - \nabla S)^2 \right) - C_{TF} \rho^{5/3} - \rho V_c - \epsilon_{xc}(\rho) \, \mathrm{d}t.$$

The Euler-Lagrange equations read as

$$\begin{split} \partial_t \rho + \nabla \cdot (\rho (\nabla S - A)) &= 0, \\ \partial_t S + \frac{1}{2} (\nabla S - A)^2 + \frac{\delta E_{TF}}{\delta \rho} &= 0, \\ E_{TF} &= C_{TF} \int \rho^{5/3} + \int \rho V_c + \int \epsilon_{xc}(\rho), \end{split}$$

coupled with the Maxwell system

$$\partial_t^2 A - \Delta A + \nabla(\partial_t V_c) = J = \rho(\nabla S - A),$$

 $-\Delta V_c = \rho - m, \quad m - \text{nuclei charge.}$

Linearized half space problem

(Ritchie, 1973, dispersion of surface plasmon)

Xu Yang

Introduction

Thomas-Fermi-Maxwell model

Kohn-Sham model and scalings

Homogenize system high frequency

regime

Homogenized systems low frequency

regime

G.S.
$$\rho_0(x, z) = \mathbf{1}_{z>0}, \quad A = 0, \quad V_c = 0, \quad \nabla S = 0,$$

Pert. $E = -\nabla \widetilde{V_c} - \frac{\partial \widetilde{A}}{\partial t}, \quad B = \nabla \times \widetilde{A},$
 $E = (E_1(z), 0, E_3(z)) e^{i(kx - \omega t)}, \quad B = (0, B_2(z), 0) e^{i(kx - \omega t)}.$

Interface condition: *E*, *B* are continuous.

・ロット (雪) (日) (日)

Dispersion relation $\omega \sim ?k$

Discussions on Thomas-Fermi-Maxwell model

Xu Yang

- Introduction
- Thomas-Fermi-Maxwell model
- Kohn-Sham model and scalings
- Homogenized system high frequency regime
- Homogenized systems low frequency regime

- Both Drude and Thomas-Fermi models lie in the linear regime when the wave number *k* is small (long waves).
- Out of the linear response regime, Drude model only performs well for a certain range of wave number; as k → ∞ (short waves), one needs to capture the many body effects, for example, by Thomas-Fermi model.
- The nonlinear Thomas-Fermi-Maxwell model could be used to study the optical response of surface plasmon polaritons. (W. Cai and his collaborators)

Kohn-Sham model

Xu Yang

Introduction

Thomas-Fermi-Maxwell model

Kohn-Sham model and scalings

Homogenized system high frequency regime

Homogenized systems low frequency regime

$$\begin{split} i \frac{\partial \psi_j}{\partial t} &= -\frac{1}{2} \Delta \psi_j + V_{eff} \psi_j, \\ V_{eff} &= V_c + W + V_{xc}(\rho), \\ -\Delta V_c &= \rho - m, \quad \rho = \sum_j |\psi_j|^2 \, (\text{spin degeneracy omitted}). \end{split}$$

 ψ_j - the wave function for the *j*-th independent electron;

 V_{eff} - the effective potential; W - the external potential;

 V_{xc} - the exchange-correlation potential (with adiabatic local density approximation).

N electrons \implies *N* one body Schrödinger equation.

Goal:

Effective equations modeling electron dynamics in crystals under macroscopic perturbations.

Nondimensionalization - rescalings

Xu Yang

Introduction

Thomas-Fermi-Maxwell model

Kohn-Sham model and scalings

Homogenized system high frequency regime

Homogenized systems low frequency regime We rescale the system according to the time and length scales of the external potential *W*.

The length scale $L \gg 1$, and we denote $\varepsilon = 1/L$;

The time scale T distinguishes two regimes

- High frequency: T = O(1).
- Low frequency: $T = O(1/\varepsilon)$;

The rescaled Schrödinger equations are given by

$$egin{aligned} &i\partial_t\psi_j^arepsilon &= -rac{1}{2}arepsilon^2\Delta\psi_j^arepsilon + V(x)\psi_j^arepsilon + W(x,t)\psi_j^arepsilon & ext{(High frequency);} \ &iarepsilon\partial_t\psi_j^arepsilon &= -rac{1}{2}arepsilon^2\Delta\psi_j^arepsilon + V(x)\psi_j^arepsilon + W(x,t)\psi_j^arepsilon & ext{(Low frequency),} \end{aligned}$$

where $V = V_c + V_{xc}$.

Crystals - periodicity assumptions

Xu Yang

Introduction

Thomas-Fermi-Maxwell model

Kohn-Sham model and scalings

Homogenizo system high frequency regime

Homogenized systems low frequency regime

- Assume the external potential *W* is 1-periodic in *x*.
- The unit cell is ε -periodic and contains *N* electron.

$-\varepsilon^{2}\Delta V_{c} = \varepsilon^{3}(\rho^{\varepsilon} - m^{\varepsilon}), \quad V_{xc} = \eta(\varepsilon^{3}\rho^{\varepsilon}),$

where

Then

$$ho^arepsilon = \sum_{j=1}^{Zarepsilon^{-3}} \left|\psi_j^arepsilon
ight|^2, \quad m^arepsilon = arepsilon^{-3} m(x/arepsilon).$$

High frequency regime - short time dynamics

Xu Yang

Introduction

Thomas-Fermi-Maxwell model

Kohn-Sham model and scalings

Homogenized system high frequency regime

Homogenized systems low frequency regime

$$\begin{cases} i\partial_t\psi_j^{\varepsilon} = -\frac{1}{2}\varepsilon^2\Delta\psi_j^{\varepsilon} + V(x,t)\psi_j^{\varepsilon} + W(x,t)\psi_j^{\varepsilon},\\ -\varepsilon^2\Delta V_c = \varepsilon^3(\rho^{\varepsilon} - m^{\varepsilon}), \quad V_{xc} = \eta(\varepsilon^3\rho). \end{cases}$$

Denote $V_{tot} = V + W$.

Remark that
$$ho^{arepsilon} = \sum^{Zarepsilon^{-3}} \left|\psi_j^{arepsilon}
ight|^2 \sim O(1/arepsilon^3).$$

Assume initially the system is at the ground state $\rho^{\varepsilon}(x,0) = \varepsilon^{-3}\rho_0(x/\varepsilon)$ of the unperturbed system (W = 0). Interested in: macroscopic response in V to W as $\varepsilon \to 0$.

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Band structure

Xu Yang

Introduction

Thomas-Fermi-Maxwell model

Kohn-Shan model and scalings

Homogenized system high frequency regime

Homogenized systems low frequency regime Denote the Hamiltonian for the unperturbed system (in a.u.)

$$H_0 = -\frac{1}{2}\Delta + V_{\text{per}}$$
 with $-\Delta V_{\text{per}} = \rho_0 - m$.

Bloch-Floquet theory shows

$$H_0 = \int_{\Gamma^*} H_{0,\boldsymbol{k}} \, \mathrm{d}\boldsymbol{k} = \int_{\Gamma^*} \sum_n E_n(\boldsymbol{k}) |\psi_{n,\boldsymbol{k}}\rangle \langle \psi_{n,\boldsymbol{k}} | \, \mathrm{d}\boldsymbol{k}.$$

 $\psi_{n,\mathbf{k}}$ and $E_n(\mathbf{k})$ are the eigenfunctions and eigenvalues (sorted in increasing order) of $H_{0,\mathbf{k}}$. $\psi_{n,\mathbf{k}} = u_{n,\mathbf{k}} \exp(i\mathbf{k} \cdot \mathbf{x})$.

Band gap assumption:

The first Z bands are occupied with a gap from the others.

Main results

Xu Yang

Introduction

Thomas-Fermi-Maxwell model

Kohn-Sham model and scalings

Homogenized system high frequency regime

and

Homogenized systems low frequency regime

$$V_{tot}(t,x) = \left(V_{per}(x/\varepsilon) + U_0(t,x)\right) + \mathcal{O}(\varepsilon),$$

where U_0 satisfies,

$$-\Delta_{x}U_{0}(t,x)-\int_{0}^{t}G(t-\tau):\nabla_{x}^{2}U_{0}\,\mathrm{d}\tau=-\Delta_{x}W(t,x),$$

$$G(t) = rac{1}{2\pi}\int e^{-i\omega t}G(\omega)\,\mathrm{d}\omega.$$

A physically more clear form:

$$-\Delta_{x}\widehat{U_{0}}(\omega,x)-G(\omega):\nabla_{x}^{2}\widehat{U_{0}}(\omega,x)=-\Delta_{x}\widehat{W}(\omega,x).$$

<ロ> (四) (四) (三) (三) (三) (三)

Introduction

Thomas-Fermi-Maxwell model

Kohn-Sham model and scalings

Homogenized system high frequency regime

Homogenized systems low frequency regime

$G(\omega)$ is determined by the band structure

$$G_{\alpha\beta}(\omega) = \sum_{n \leq Z} \sum_{m > Z} \int_{\Gamma^*} \Re e^{\frac{\overline{\langle u_{n,\boldsymbol{k}} | i\partial_{\boldsymbol{k}_{\alpha}} | \boldsymbol{u}_{m,\boldsymbol{k}} \rangle}{\omega + \omega_{mn}(\boldsymbol{k})}} d\boldsymbol{k}} d\boldsymbol{k}$$
$$- \sum_{n \leq Z} \sum_{m > Z} \int_{\Gamma^*} \Re e^{\frac{\overline{\langle u_{n,\boldsymbol{k}} | i\partial_{\boldsymbol{k}_{\alpha}} | \boldsymbol{u}_{m,\boldsymbol{k}} \rangle}{\omega - \omega_{mn}(\boldsymbol{k})}} d\boldsymbol{k}$$
$$- \left\langle f_{\omega,\alpha}, \mathcal{V}(1 - \chi_{\omega} \mathcal{V})^{-1} f_{\omega,\beta} \right\rangle,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

$$\omega_{mn} = E_m(\mathbf{k}) - E_n(\mathbf{k}).$$

Introduction

Thomas-Fermi-Maxwell model

Kohn-Shan model and scalings

Homogenized system high frequency regime

Homogenized systems low frequency regime

$$f_{\omega,\alpha} = -\sum_{n \leq Z} \sum_{m > Z} \int_{\Gamma^*} \frac{u_{n,k} u_{m,k}^*}{\omega + \omega_{mn}(k)} \langle u_{n,k} | i \partial_{k_\alpha} | u_{m,k} \rangle \, \mathrm{d}k$$
$$+ \sum_{n \leq Z} \sum_{m > Z} \int_{\Gamma^*} \frac{u_{n,k}^* u_{m,k}}{\omega - \omega_{mn}(k)} \overline{\langle u_{n,k} | i \partial_{k_\alpha} | u_{m,k} \rangle} \, \mathrm{d}k,$$
$$\chi_{\omega} g = -\sum_{n \leq Z} \sum_{m > Z} \int_{\Gamma^*} \frac{u_{n,k} u_{m,k}^*}{\omega + \omega_{mn}(k)} \langle u_{n,k} | g | u_{m,k} \rangle \, \mathrm{d}k$$
$$+ \sum_{n \leq Z} \sum_{m > Z} \int_{\Gamma^*} \frac{u_{n,k}^* u_{m,k}}{\omega - \omega_{mn}(k)} \overline{\langle u_{n,k} | g | u_{m,k} \rangle} \, \mathrm{d}k.$$

The function *f* and operator χ_{ω} from δV to $\delta \rho$,

The linear map from $\delta \rho$ to δV ,

$$\mathcal{V}h = \phi + \eta'(
ho_{per})h_{per}$$

 $-\Delta_z \phi = h.$

Discussions on short time dynamics

Xu Yang

- Introduction
- Thomas-Fermi-Maxwell model
- Kohn-Sham model and scalings
- Homogenized system high frequency regime
- Homogenized systems low frequency regime

- Microscopic justification of the effective Poisson equation in crystals (semiconductors or insulators).
- The external could be viewed as generated by free charge $-\Delta W$, then $\mathcal{E} = I + G$ gives the dielectric response (permittivity) tensor.
- The limit of $\omega \rightarrow 0$ recovers the static dielectric response (Baroni-Resta, 1986), recently rigorously studied by Cancés-Lewin (2010) in the linear response regime.

Asymptotics

$$\rho = \varepsilon^{-3}\rho_0(t, x, x/\varepsilon) + \varepsilon^{-2}\rho_1(t, x, x/\varepsilon) + \varepsilon^{-1}\rho_2(t, x, x/\varepsilon) + \cdots$$
$$V_{\text{tot}}(t, x) = V_0(t, x, x/\varepsilon) + \varepsilon V_1(t, x, x/\varepsilon) + \varepsilon^2 V_2(t, x, x/\varepsilon) + \cdots$$

Xu Yang

Thomas-Fermi-Maxwell model

Kohn-Sham model and scalings

Homogenized system high frequency regime

Homogenized systems low frequency regime

Two scaled Coulomb equation, $z = x/\varepsilon$,

$$-\Delta_z V_\ell - 2\nabla_x \cdot \nabla_z V_{\ell-1} - \Delta_x V_{\ell-2} = \rho_\ell - \delta_{0\ell} m.$$

Solvability condition:

$$\langle \rho_0 \rangle = \langle m \rangle \,, \quad \langle \rho_1 \rangle = 0 \,, \quad -\Delta_x \, \langle V_0 \rangle = \langle \rho_2 \rangle \,.$$

Heisenberg's picture:

Xu Yang

Introduction

Thomas-Fermi-Maxwell model

Kohn-Shan model and scalings

Homogenized system high frequency regime

Homogenized systems low frequency regime

$$\mathcal{P}_{t}^{\varepsilon} = \mathcal{T} \exp\left(-i \int_{0}^{t} H^{\varepsilon}(\tau)\right) \mathcal{P}_{0}^{\varepsilon} \left(\mathcal{T} \exp\left(-i \int_{0}^{t} H^{\varepsilon}(\tau)\right)\right)^{*},$$

$$\rho^{\varepsilon}(t, x) = \mathcal{P}_{t}^{\varepsilon}(x, x),$$

Key observation:

The domain of dependence and influence in the evolution is of scale of cell size $\mathcal{O}(\varepsilon)$.

Introduction

Thomas-Fermi-Maxwell model

Kohn-Shan model and scalings

Homogenized system high frequency regime

Homogenized systems low frequency regime

$$\begin{split} \mathcal{H}_{0}(t,x) &= -\frac{\varepsilon^{2}}{2} \Delta_{y} + V_{0}(t,x,y/\varepsilon), \\ \delta \mathcal{H}_{1}^{\varepsilon}(t,x) &= (y-x) \cdot \nabla_{x} V_{0}(t,x,y/\varepsilon) + \varepsilon V_{1}(t,x,y/\varepsilon), \\ \delta \mathcal{H}_{2}^{\varepsilon}(t,x) &= \frac{1}{2} ((y-x) \cdot \nabla_{x})^{2} V_{0}(t,x,y/\varepsilon) \\ &+ \varepsilon (y-x) \cdot \nabla_{x} V_{1}(t,x,y/\varepsilon) + \varepsilon^{2} V_{2}(t,x,y/\varepsilon). \end{split}$$

$$\begin{aligned} \mathcal{T} \exp(-i\int_0^t \mathcal{H}^{\varepsilon}(\tau)) \\ = &\mathcal{U}_{t,0}(x_0) - i\int_0^t \mathcal{U}_{t,\tau}(x_0)\delta\mathcal{H}^{\varepsilon}(\tau, x_0)\mathcal{U}_{\tau,0}(x_0) \,\mathrm{d}\tau \\ &- \int_0^t \int_0^{\tau_2} \mathcal{U}_{t,\tau_2}(x_0)\delta\mathcal{H}^{\varepsilon}(\tau_2, x_0)\mathcal{U}_{\tau_2,\tau_1}(x_0) \\ &\times \delta\mathcal{H}^{\varepsilon}(\tau_1, x_0)\mathcal{U}_{\tau_1,0}(x_0) \,\mathrm{d}\tau_1 \,\mathrm{d}\tau_2 + \cdots, \\ &\mathcal{U}_{t,s}(x_0) = \mathcal{T} \exp(-i\int_s^t \mathcal{H}_0(\tau, x_0) \,\mathrm{d}\tau). \end{aligned}$$

Low frequency regime - long time dynamics

Xu Yang

Introduction

Thomas-Fermi-Maxwell model

Kohn-Sham model and scalings

Homogenized system high frequency regime

Homogenized systems low frequency regime

$$\begin{cases} i\varepsilon\partial_t\psi_j^\varepsilon = -\frac{1}{2}\varepsilon^2\Delta\psi_j^\varepsilon + V(x)\psi_j^\varepsilon + W(x,t)\psi_j^\varepsilon, \\ -\varepsilon^2\Delta V = \varepsilon^3(\rho^\varepsilon - m^\varepsilon). \end{cases}$$

Simplifications:

- No exchange correlation potential;
- Assume we only have valance and conduction bands;
- initially the system is at the ground state of the unperturbed system (W = 0).

Interested in: derivation of mesoscopic transport equations.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Two species transport equations

Xu Yang

Introduction

Thomas-Fermi-Maxwell model

Kohn-Sham model and scalings

Homogenized system high frequency regime

Homogenized systems low frequency regime

Homogenized system:

$$\partial f_{1,k}^{\nu,c} + \nabla_k E_{\nu,c} \cdot \nabla_x f_{1,k}^{\nu,c} = \mathcal{K}^{\nu,c} : \nabla_x q_{1,k}^{\nu,c} + h^{\nu,c} (\nabla_x \nu_1), \\ \partial_t q_{1,k}^{\nu,c} + \nabla_k E_{\nu,c} \cdot \nabla_x q_{1,k}^{\nu,c} + \nabla_x (\nu_1 + \langle V_1 \rangle) = 0,$$

cell problem:

$$\left((-\Delta_{z}+\mathcal{R})v_{1}=\int_{\Gamma^{*}}(f_{1,k}^{v}|\chi_{v}|^{2}+f_{1,k}^{c}|\chi_{c}|^{2})+g^{v}+g^{c}\,\mathrm{d}k.\right.$$

Incompressibility condition: $\langle \rho_1 \rangle = \int f_{1,k}^{\nu} + f_{1,k}^{c} dk = 0.$

- For each species, we have equations for the density f^{ν,c}_{1,k} and current q^{ν,c}_{1,k}, interacted by K^{ν,c} (given later).
- The interaction of these two species is through the microscopic potential *v*₁.

Discussions on long time dynamics

Xu Yang

- Introduction
- Thomas-Fermi-Maxwell model
- Kohn-Sham model and scalings
- Homogenized system high frequency
- Homogenized systems low frequency regime

- $\langle V_1 \rangle$ serves as the Lagrangian multiplier.
- The closure strategy is different from the short time dynamics. The response macroscopic potential serves as the Lagrange multiplier.
- Why interested in the first order system? The number density is of order ε^{-2} . If we try to recover the physical system and take $\varepsilon = 10^{-10}$, then the total charge density is roughly of $\mathcal{O}(1)$.
- If the initial conditions are zero, the system has (trivial) solutions (zero). This is consistent with the fact that a pure insulator does not conduct electricity. To make a semiconductor, we need to disturb the system so that the initial conditions of the first order system are nonzero. For example, p-n junction.

Introduction

Thomas-Fermi-Maxwell model

Kohn-Shan model and scalings

Homogenized system high frequency

Homogenized systems low frequency regime

$$\begin{split} \psi_{k} &= \varepsilon^{-3/2} \psi_{0,k}(t, x, x/\varepsilon) + \varepsilon^{-1/2} \psi_{1,k}(t, x, x/\varepsilon) \\ &+ \varepsilon^{1/2} \psi_{2,k}(t, x, x/\varepsilon) + \cdots \\ V(t, x) &= V_{0}(t, x, x/\varepsilon) + \varepsilon V_{1}(t, x, x/\varepsilon) \\ &+ \varepsilon^{2} V_{2}(t, x, x/\varepsilon) + \cdots \end{split}$$

Two scaled Coulomb equation, $z = x/\varepsilon$,

$$-\Delta_z V_{\ell} - 2\nabla_x \cdot \nabla_z V_{\ell-1} - \Delta_x V_{\ell-2} = \rho_{\ell} - \delta_{0\ell} m.$$

Constraints:

$$\langle \rho_0 \rangle = \langle m \rangle, \quad \langle \rho_1 \rangle = 0, \quad -\Delta_x \langle V_0 \rangle = \langle \rho_2 \rangle.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

WKB analysis

Xu Yang

Introduction

Thomas-Fermi-Maxwell model

Kohn-Sham model and scalings

Homogenize system high frequency regime

Homogenized systems low frequency regime

$$\psi_{0,k}(t,x,z) = \varphi_{0,k}(t,x,z) \exp(iS_k(t,x)/\varepsilon).$$

Adiabatic approx.
$$\varphi_{0,k}(t,x,z) = a_{0,k}(t,x)\chi_n(\nabla_x S_k,z).$$

$$\mathcal{H}\chi_n = \left(\frac{1}{2}(-i\nabla_z + p)^2 + V_{per}(z)\right)\chi_n(p, z) = E_n(p)\chi_n(p, z).$$

Valence band: $a_{0,k}^{\nu}(t,x) = 1$, $S_k^{\nu}(0,x) = kx$ (full band) Conduction band: $a_{0,k}^{c}(t,x) = 0$, $S_k^{c}(0,x) = kx$ (empty band)

To the leading order, one gets eikonal-transport equations,

Xu Yang

Introduction

Thomas-Fermi-Maxwell model

Kohn-Sham model and scalings

Homogenize system high frequency regime

Homogenized systems low frequency regime

$$\begin{split} \partial_{t} S_{k}^{\nu,c} + E_{\nu,c} (\nabla_{x} S_{k}^{\nu,c}) &= 0 \quad (\Rightarrow) \quad S_{k}^{\nu,c}(t,x) = kx - E_{\nu,c}(k)t, \\ \partial_{t} a_{0,k}^{\nu,c} + \nabla_{k} E_{\nu,c}(k) \cdot \nabla_{x} a_{0,k}^{\nu,c} + i a_{0,k}^{\nu,c}(\nu_{1} + \langle V_{1} \rangle) &= 0, \\ \left| a_{0,k}^{\nu} \right|^{2} &= 1, \quad \left| a_{0,k}^{c} \right|^{2} &= 0, \\ \langle \rho_{0} \rangle &= \int \left| a_{0,k}^{\nu} \right|^{2} + \left| a_{0,k}^{c} \right|^{2} dk = \langle m \rangle. \end{split}$$

This fulfills the behavior of insulator: although each electron has classical dynamics

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \nabla_k E_{\mathbf{v},\mathbf{c}},$$

it does not conduct electricity. It proposes a constraint

$$\langle V_0
angle + W = 0, \quad \langle \rho_2
angle = \Delta_x W$$

The first order correction. Assume

Xu Yang

Introduction

Thomas-Fermi-Maxwell model

Kohn-Sham model and scalings

Homogenized system high frequency regime

Homogenized systems low frequency regime

$$\psi_{1,k}^{\boldsymbol{v},\boldsymbol{c}}(t,\boldsymbol{x},\boldsymbol{z}) = \boldsymbol{a}_{1,k}^{\boldsymbol{v},\boldsymbol{c}}\chi_{\boldsymbol{v},\boldsymbol{c}}(k,\boldsymbol{z}) + \left(\varphi_{1,k}^{\boldsymbol{v},\boldsymbol{c}}\right)^{\perp}$$

$f_{1,k}^{\boldsymbol{v},\boldsymbol{c}} = 2\mathfrak{Re}\left\langle \left(\psi_{0,k}^{\boldsymbol{v},\boldsymbol{c}}\right)^* \psi_{1,k}^{\boldsymbol{v},\boldsymbol{c}} \right\rangle, \quad q_{1,k}^{\boldsymbol{v},\boldsymbol{c}} = \mathfrak{Im}\left\langle \left(\psi_{0,k}^{\boldsymbol{v},\boldsymbol{c}}\right)^* \nabla_x \psi_{0,k}^{\boldsymbol{v},\boldsymbol{c}} \right\rangle.$

then

Define

$$\begin{split} \mathcal{K}_{\alpha\beta}^{\nu,c} &= 2\mathfrak{Re}\langle \partial_{z_{\alpha}}\chi_{\nu,c}, \mathcal{L}_{\nu,c}^{-1}(I-\mathcal{P}^{\nu,c})\partial_{z_{\beta}}\chi_{\nu,c}\rangle - \delta_{\alpha\beta}, \\ \mathcal{L}_{\nu,c} &= \mathcal{H} - \mathcal{E}_{\nu,c}, \\ h^{\nu,c}(\nabla_{x}\nu_{1}) &= -2\mathfrak{Im}\langle \nabla_{z}\chi_{\nu,c}, \mathcal{L}_{\nu,c}^{-1}(I-\mathcal{P}^{\nu,c})(\nabla_{x}\nu_{1}\chi_{\nu,c})\rangle, \\ \mathcal{R}\nu_{1} &= 2\int \mathfrak{Re}\big(\chi_{\nu,c}^{*}\mathcal{L}_{\nu,c}^{-1}(\nu_{1}\chi_{\nu,c})\big), \\ g^{\nu,c} &= -2\int_{\Gamma^{*}}\mathfrak{Im}\big(\chi_{\nu,c}^{*}\mathcal{L}_{\nu,c}^{-1}(I-\mathcal{P}^{\nu,c})\nabla_{z}\chi_{\nu,c}\big) \cdot q_{1,k}^{\nu,c}\,\mathrm{d}k. \end{split}$$

- Introduction
- Thomas-Fermi-Maxwell model
- Kohn-Sham model and scalings
- Homogenized system high frequency regime
- Homogenized systems low frequency regime

Conclusions:

- We derive the Thomas-Fermi-Maxwell model and study the half space problem.
- Effective dielectric response equation is derived in the high frequency regime of the Kohn-Sham model.
- Effective transport equations are derived in the low frequency regime of the Kohn-Sham model.

Future work:

- More realistic models in surface plasmon and semiconductor.For example, the grating surface and p-n junction.
 - Electron dynamics in the presence of magnetic field.

Introduction

Thomas-Fermi-Maxwell model

Kohn-Shan model and scalings

Homogenized system high frequency regime

Homogenized systems low frequency regime

Thank You!

Questions?

・ロト・西ト・山下・山下・山下・