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Many-body Schrödinger equation

In the Born-Oppenheimer approximation,

i~
∂Ψ

∂t
= HΨ =

(
− ~2

2me
∆ + V

)
Ψ,

V = Vne + Vee + W .

Vne – the electron-nucleus attraction energy
Vee – the electron-electron repulsion energy
W – the external potential

N electrons =⇒ dimensionality of equation 3N + 1

Conclusion:
nice equation but mission impossible to be directly solved
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Hartree-Fock and TDDFT theory

Hartree-Fock theory: Ψ has the form of determinant {ψk}N
k=1

– Slater determinant

i~
∂ψk

∂t
= − ~2

2me
∆ψk + Vψk ,

V = VH + VF + W .

VH - Hartree (Coulomb) potential
VF - Fock (exchange) operator

TDDFT theory (Runge-Gross theorem, 1984): a unique map
between the time-dependent external potential and
time-dependent density.

V = Veff (ρ), ρ =
∑

k |ψk |2 =⇒ Thomas-Fermi system
(orbital-free) and Kohn-Sham system (orbital-dependent).
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Motivations

Understand the electron interactions under the picture of
Hartree-Fock or TDDFT;

Derive effective equations in the background of crystals;

Aim at possible applications in nano-optics and
semiconductors.
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Derivation of the Thomas-Fermi-Maxwell model

Begin from the quantum many-body action

A =

∫
< Ψ|i∂t − H|Ψ > dt .

Take Ψ as the Slater determinant {ψk}N
k=1 and assume

ψk = ak exp(iS) – same phase function,

A =

∫
ρ

(
−∂tS − 1

2
(A−∇S)2

)
− < Ψ|H0|Ψ > dt ,

where ρ =
∑

k |ak |2 we have also considered the magnetic
vector potential A in the Hamiltonian

H =
1
2

(i∇+ A)2 + V , H0 = −1
2
∆ + V .
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Euler-Lagrange equations

The Thomas-Fermi approximation of kinetic energy yields,

A =

∫
ρ

(
−∂tS − 1

2
(A−∇S)2

)
−CTFρ

5/3 − ρVc − εxc(ρ) dt .

The Euler-Lagrange equations read as

∂tρ+∇ · (ρ(∇S − A)) = 0,

∂tS +
1
2

(∇S − A)2 +
δETF

δρ
= 0,

ETF = CTF

∫
ρ5/3 +

∫
ρVc +

∫
εxc(ρ),

coupled with the Maxwell system

∂2
t A−∆A +∇(∂tVc) = J = ρ(∇S − A),

−∆Vc = ρ−m, m − nuclei charge.
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Linearized half space problem
(Ritchie, 1973, dispersion of surface plasmon)

G.S. ρ0(x , z) = 1z>0, A = 0, Vc = 0, ∇S = 0,

Pert. E = −∇Ṽc −
∂Ã
∂t
, B = ∇× Ã,

E =
(
E1(z),0,E3(z)

)
ei(kx−ωt), B =

(
0,B2(z),0

)
ei(kx−ωt).

Interface condition: E , B are continuous.
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Dispersion relation ω ∼?k
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Drude disperstion

TF dispersion

linear

Thomas−FermiDrudeLinear

In Drude model electron has classical dynamics
dp
dt

= −p
τ
− E , J = ρ0p.
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Discussions on Thomas-Fermi-Maxwell model

Both Drude and Thomas-Fermi models lie in the linear
regime when the wave number k is small (long waves).

Out of the linear response regime, Drude model only
performs well for a certain range of wave number; as
k →∞ (short waves), one needs to capture the many
body effects, for example, by Thomas-Fermi model.

The nonlinear Thomas-Fermi-Maxwell model could be
used to study the optical response of surface plasmon
polaritons. (W. Cai and his collaborators)
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Kohn-Sham model

i
∂ψj

∂t
= −1

2
∆ψj + Veffψj ,

Veff = Vc + W + Vxc(ρ),

−∆Vc = ρ−m, ρ =
∑

j

∣∣ψj
∣∣2 (spin degeneracy omitted).

ψj - the wave function for the j-th independent electron;
Veff - the effective potential; W - the external potential;
Vxc - the exchange-correlation potential (with adiabatic local
density approximation).

N electrons =⇒ N one body Schrödinger equation.

Goal:
Effective equations modeling electron dynamics in

crystals under macroscopic perturbations.
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Nondimensionalization - rescalings

We rescale the system according to the time and length
scales of the external potential W .

The length scale L � 1, and we denote ε = 1/L;
The time scale T distinguishes two regimes

High frequency: T = O(1).
Low frequency: T = O(1/ε);

The rescaled Schrödinger equations are given by

i∂tψ
ε
j = −1

2ε
2∆ψε

j + V (x)ψε
j + W (x , t)ψε

j (High frequency);

iε∂tψ
ε
j = −1

2ε
2∆ψε

j + V (x)ψε
j + W (x , t)ψε

j (Low frequency),

where V = Vc + Vxc .
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Crystals - periodicity assumptions

Assume the external potential W is 1-periodic in x .
The unit cell is ε-periodic and contains N electron.

Then

−ε2∆Vc = ε3(ρε −mε), Vxc = η(ε3ρε),

where

ρε =
Zε−3∑
j=1

∣∣∣ψε
j

∣∣∣2 , mε = ε−3m(x/ε).
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High frequency regime - short time dynamics

{
i∂tψ

ε
j = −1

2ε
2∆ψε

j + V (x , t)ψε
j + W (x , t)ψε

j ,

−ε2∆Vc = ε3(ρε −mε), Vxc = η(ε3ρ).

Denote Vtot = V + W .

Remark that ρε =
∑Zε−3

∣∣∣ψε
j

∣∣∣2 ∼ O(1/ε3).

Assume initially the system is at the ground state
ρε(x ,0) = ε−3ρ0(x/ε) of the unperturbed system (W = 0).

Interested in: macroscopic response in V to W as ε→ 0.
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Band structure

Denote the Hamiltonian for the unperturbed system (in a.u.)

H0 = −1
2∆ + Vper with −∆Vper = ρ0 −m.

Bloch-Floquet theory shows

H0 =

∫
Γ∗

H0,k dk =

∫
Γ∗

∑
n

En(k)|ψn,k 〉〈ψn,k | dk .

ψn,k and En(k) are the eigenfunctions and eigenvalues
(sorted in increasing order) of H0,k . ψn,k = un,k exp(ik · x).

Band gap assumption:
The first Z bands are occupied with a gap from the others.
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Main results

Vtot(t , x) =
(
Vper (x/ε) + U0(t , x)

)
+O(ε),

where U0 satisfies,

−∆xU0(t , x)−
∫ t

0
G(t − τ) : ∇2

xU0 dτ = −∆xW (t , x),

and
G(t) =

1
2π

∫
e−iωtG(ω) dω.

A physically more clear form:

−∆x Û0(ω, x)−G(ω) : ∇2
x Û0(ω, x) = −∆xŴ (ω, x).
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G(ω) is determined by the band structure

Gαβ(ω) =
∑
n≤Z

∑
m>Z

∫
Γ∗

Re
〈un,k |i∂kα |um,k 〉〈un,k |i∂kβ

|um,k 〉
ω + ωmn(k)

dk

−
∑
n≤Z

∑
m>Z

∫
Γ∗

Re
〈un,k |i∂kα |um,k 〉〈un,k |i∂kβ

|um,k 〉
ω − ωmn(k)

dk

−
〈

fω,α,V(1− χωV)−1fω,β

〉
,

ωmn =Em(k)− En(k).



Xu Yang

Introduction

Thomas-
Fermi-
Maxwell
model

Kohn-Sham
model and
scalings

Homogenized
system -
high
frequency
regime

Homogenized
systems -
low
frequency
regime

The function f and operator χω from δV to δρ,

fω,α =−
∑
n≤Z

∑
m>Z

∫
Γ∗

un,k u∗m,k

ω + ωmn(k)
〈un,k |i∂kα |um,k 〉 dk

+
∑
n≤Z

∑
m>Z

∫
Γ∗

u∗n,k um,k

ω − ωmn(k)
〈un,k |i∂kα |um,k 〉 dk ,

χωg =−
∑
n≤Z

∑
m>Z

∫
Γ∗

un,k u∗m,k

ω + ωmn(k)
〈un,k |g|um,k 〉 dk

+
∑
n≤Z

∑
m>Z

∫
Γ∗

u∗n,k um,k

ω − ωmn(k)
〈un,k |g|um,k 〉 dk .

The linear map from δρ to δV ,

Vh =φ+ η′(ρper )h,
−∆zφ =h.
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Discussions on short time dynamics

Microscopic justification of the effective Poisson
equation in crystals (semiconductors or insulators).

The external could be viewed as generated by free
charge −∆W , then E = I + G gives the dielectric
response (permittivity) tensor.

The limit of ω → 0 recovers the static dielectric response
(Baroni-Resta, 1986), recently rigorously studied by
Cancés-Lewin (2010) in the linear response regime.
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Asymptotics
ρ = ε−3ρ0(t , x , x/ε) + ε−2ρ1(t , x , x/ε) + ε−1ρ2(t , x , x/ε) + · · ·
Vtot(t , x) = V0(t , x , x/ε) + εV1(t , x , x/ε) + ε2V2(t , x , x/ε) + · · ·

V
0

V
1

V
2

ρ
0

ρ
1

ρ
2

V
0

V
1

V
2

Schrodinger Coulomb+XC

Solvability condition

Two scaled Coulomb equation, z = x/ε,

−∆zV` − 2∇x · ∇zV`−1 −∆xV`−2 = ρ` − δ0`m.

Solvability condition:

〈ρ0〉 = 〈m〉 , 〈ρ1〉 = 0, −∆x 〈V0〉 = 〈ρ2〉 .
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Heisenberg’s picture:

Pε
t = T exp

(
−i

∫ t

0
Hε(τ)

)
Pε

0

(
T exp

(
−i

∫ t

0
Hε(τ)

))∗
,

ρε(t , x) = Pε
t (x , x),

Key observation:
The domain of dependence and influence in the evolution is
of scale of cell size O(ε).
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H0(t , x) = −ε
2

2
∆y + V0(t , x , y/ε),

δHε
1(t , x) = (y − x) · ∇xV0(t , x , y/ε) + εV1(t , x , y/ε),

δHε
2(t , x) =

1
2
(
(y − x) · ∇x

)2V0(t , x , y/ε)

+ ε(y − x) · ∇xV1(t , x , y/ε) + ε2V2(t , x , y/ε).

T exp(−i
∫ t

0
Hε(τ))

=Ut ,0(x0)− i
∫ t

0
Ut ,τ (x0)δHε(τ, x0)Uτ,0(x0) dτ

−
∫ t

0

∫ τ2

0
Ut ,τ2(x0)δHε(τ2, x0)Uτ2,τ1(x0)

× δHε(τ1, x0)Uτ1,0(x0) dτ1 dτ2 + · · · ,

Ut ,s(x0) = T exp(−i
∫ t

s
H0(τ, x0) dτ).
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Low frequency regime - long time dynamics

{
iε∂tψ

ε
j = −1

2ε
2∆ψε

j + V (x)ψε
j + W (x , t)ψε

j ,

−ε2∆V = ε3(ρε −mε).

Simplifications:
No exchange correlation potential;
Assume we only have valance and conduction bands;
initially the system is at the ground state of the
unperturbed system (W = 0).

Interested in: derivation of mesoscopic transport equations.
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Two species transport equations



Homogenized system:
∂f v ,c

1,k +∇kEv ,c · ∇x f v ,c
1,k = Kv ,c : ∇xqv ,c

1,k + hv ,c(∇xv1),

∂tq
v ,c
1,k +∇kEv ,c · ∇xqv ,c

1,k +∇x(v1 + 〈V1〉) = 0,

cell problem:

(−∆z +R)v1 =

∫
Γ∗

(f v
1,k |χv |2 + f c

1,k |χc |2) + gv + gc dk .

Incompressibility condition: 〈ρ1〉 =

∫
f v
1,k + f c

1,k dk = 0.

For each species, we have equations for the density f v ,c
1,k

and current qv ,c
1,k , interacted by Kv ,c (given later).

The interaction of these two species is through the
microscopic potential v1.
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Discussions on long time dynamics

〈V1〉 serves as the Lagrangian multiplier.
The closure strategy is different from the short time
dynamics. The response macroscopic potential serves
as the Lagrange multiplier.
Why interested in the first order system? The number
density is of order ε−2. If we try to recover the physical
system and take ε = 10−10, then the total charge density
is roughly of O(1).
If the initial conditions are zero, the system has (trivial)
solutions (zero). This is consistent with the fact that a
pure insulator does not conduct electricity. To make a
semiconductor, we need to disturb the system so that
the initial conditions of the first order system are
nonzero. For example, p-n junction.
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ψk = ε−3/2ψ0,k (t , x , x/ε) + ε−1/2ψ1,k (t , x , x/ε)

+ ε1/2ψ2,k (t , x , x/ε) + · · ·
V (t , x) = V0(t , x , x/ε) + εV1(t , x , x/ε)

+ ε2V2(t , x , x/ε) + · · ·

Two scaled Coulomb equation, z = x/ε,

−∆zV` − 2∇x · ∇zV`−1 −∆xV`−2 = ρ` − δ0`m.

Constraints:

〈ρ0〉 = 〈m〉 , 〈ρ1〉 = 0, −∆x 〈V0〉 = 〈ρ2〉.
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WKB analysis

ψ0,k (t , x , z) = ϕ0,k (t , x , z) exp(iSk (t , x)/ε).

Adiabatic approx. ϕ0,k (t , x , z) = a0,k (t , x)χn(∇xSk , z).

Hχn =

(
1
2
(
−i∇z + p

)2
+ Vper (z)

)
χn(p, z) = En(p)χn(p, z).

Valence band: av
0,k (t , x) = 1,Sv

k (0, x) = kx (full band)

Conduction band: ac
0,k (t , x) = 0,Sc

k (0, x) = kx (empty band)
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To the leading order, one gets eikonal-transport equations,

∂tS
v ,c
k + Ev ,c(∇xSv ,c

k ) = 0 (⇒) Sv ,c
k (t , x) = kx − Ev ,c(k)t ,

∂ta
v ,c
0,k +∇kEv ,c(k) · ∇xav ,c

0,k + iav ,c
0,k (v1 + 〈V1〉) = 0,∣∣av

0,k
∣∣2 = 1,

∣∣∣ac
0,k

∣∣∣2 = 0,

〈ρ0〉 =

∫ ∣∣av
0,k

∣∣2 +
∣∣∣ac

0,k

∣∣∣2 dk = 〈m〉 .

This fulfills the behavior of insulator: although each electron
has classical dynamics

dx
dt

= ∇kEv ,c ,

it does not conduct electricity. It proposes a constraint

〈V0〉+ W = 0, 〈ρ2〉 = ∆xW
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The first order correction. Assume

ψv ,c
1,k (t , x , z) = av ,c

1,kχv ,c(k , z) +
(
ϕv ,c

1,k

)⊥
.

Define

f v ,c
1,k = 2Re

〈(
ψv ,c

0,k

)∗
ψv ,c

1,k

〉
, qv ,c

1,k = Im
〈(
ψv ,c

0,k

)∗∇xψ
v ,c
0,k

〉
.

then

Kv ,c
αβ = 2Re〈∂zαχv ,c ,L−1

v ,c(I − Pv ,c)∂zβ
χv ,c〉 − δαβ ,

Lv ,c = H− Ev ,c ,

hv ,c(∇xv1) = −2Im〈∇zχv ,c ,L−1
v ,c(I − Pv ,c)(∇xv1χv ,c)〉,

Rv1 = 2
∫

Re
(
χ∗v ,cL−1

v ,c(v1χv ,c)
)
,

gv ,c = −2
∫

Γ∗
Im

(
χ∗v ,cL−1

v ,c(I − Pv ,c)∇zχv ,c
)
· qv ,c

1,k dk .
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Conclusions:

We derive the Thomas-Fermi-Maxwell model and study
the half space problem.
Effective dielectric response equation is derived in the
high frequency regime of the Kohn-Sham model.
Effective transport equations are derived in the low
frequency regime of the Kohn-Sham model.

Future work:

More realistic models in surface plasmon and
semiconductor.For example, the grating surface and p-n
junction.
Electron dynamics in the presence of magnetic field.
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Thank You!

Questions?
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