Decoding by Linear Programming and other Perhaps (not so) Surprising Phenomena

1

Emmanuel Candès, California Institute of Technology

Workshop on Sparse Representations in Redundant Systems CSCAMM, University of Maryland, May 2005

Collaborators: Justin Romberg (Caltech), Terence Tao (UCLA)

The Error Correction Problem

- We wish to transmit a "plaintext" $f \in \mathbf{R}^n$ reliably
- Frequently discussed approach: encoding, e.g. generate a "ciphertext" Af, where $A \in \mathbb{R}^{m imes n}$ is a coding matrix
- Assume a fraction of the entries of Af are corrupted ightarrow y

- Corruption is arbitrary
- We do not know which entries are corrupted
- We do not know how the corrupted entries are affected
- Is it possible to recover the plaintext exactly from the corrupted ciphertext?

What is Possible?

- If the fraction of corrupted entries is too large, there iws no hope or reconstructing the plaintext.
- Example: $n \ll m$; consider two distinct vectors $f_1, f_2 \in {f R}^n$ and

$$y=egin{pmatrix} A_1f_1\ A_2f_2 \end{pmatrix} \qquad A=egin{pmatrix} A_1\ A_2 \end{pmatrix}$$

- $y = A_1 f_1$ with at most half of its entries corrupted
- $y = A_2 f_2$ with at most half of its entries corrupted

Cannot distinguish between f_1 and f_2 .

- Common assumption: fraction of corrupted entries is not too large
- Ultimate limit of performance: fraction is less than $\frac{1-r}{2}$, $r = \frac{n}{m}$.

Fundamental Questions

- For which fractions ρ is accurate decoding possible?
- Interested in practical algorithms

Decoding by Linear Programming

• ℓ_1 -norm

$$\|x\|_{\ell_1} := \sum_{i=1}^n |x_i|$$

• To recover f from corrupted data y = Af + e, simply solve the ℓ_1 -minimization problem

$$(P_1) \qquad \min_{g\in {\mathrm{R}}^n} \|y-Ag\|_{\ell_1}.$$

• Equivalent linear program:

$$\min\sum_{i=1}^m t_i, \quad ext{subject to} \quad -t \leq y - Ag \leq t$$

optimization variables: $t \in R^m, g \in \mathbf{R}^n$

Surprise!

 $(P_1) \qquad \min_{g\in \mathbf{R}^n} \|y-Ag\|_{\ell_1}.$

Under suitable conditions on the coding matrix A, the input f is the unique solution to (P_1) , provided that the fraction of corrupted entries is not too large, *i.e.* does not exceed some strictly positive constant $\rho^*(A)$

- Minimizing ℓ_1 recovers all signals regardless of the corruption pattern
- Size of corruption does not matter
- There is nothing a clever opponent can do to corrupt the ciphertext, and fool the LP decoder.

Peek at the Results

- Random Gaussian coding matrix A: A_{ij} i.i.d. N(0,1)
- With overwhelming probability, if the fraction of the corrupted entries does not exceed ρ^* , the solution to (P_1) is unique and equal to f.
- Universal: probability that A allows exact decoding of all plaintexts is at least $1 O(e^{-\alpha m})$
- See also very recent work of Vershynin and Rudelson (2005).

The Importance of ℓ_1

• Minimize instead the ℓ_2 -distance

$$\min_{g\in \mathbf{R}^n} \|y - Ag\|_{\ell_2}$$

• Solution given by least-squares

$$g^{\star} = (A^T A)^{-1} A^T y = f + (A^T A)^{-1} A^T e$$

- Error term:
 - No reason to vanish
 - Goes to infinity as $||e||_{\ell_2}$ goes to infinity.

Practical Performance, I

- A_{ij} i.i.d. N(0,1)
- $f \in \mathbf{R}^n$
- Corruption: flip the sign of randomly selected entries

n = 128, m = 4n

Practical Performance, II

- A_{ij} i.i.d. $\mathsf{P}(A_{ij}=\pm 1)=1/2$
- $f\in 0,1^n$
- Corruption: flip the sign of randomly selected entries
- Solve $\min_{g \in \mathbb{R}^n} \|y Ag\|_{\ell_1}$ subject to $0 \le g \le 1$, and round up.

Understanding this Phenomenon

- Corrupted ciphertext: y = Af + e
- $(m-n) \times n$ matrix B which annihilates A on the left, i.e. such that BA = 0

$$\tilde{y} = By = B(Af + e) = Be$$

- Equivalent problem: recover e from $ilde{y}$
- Need to solve an *underdetermined system of linear equations*
- Useful equivalence: set g = f + h

$$egin{aligned} (P_1) & \min_{g\in \mathbf{R}^n} \|y-Ag\|_{\ell_1}, & \Leftrightarrow & \min_{h\in \mathbf{R}^n} \|e-Ah\|_{\ell_1}, \ & \Leftrightarrow & \min\|d\|_{\ell_1}, & d=e-Ah \end{aligned}$$

Observe that $d = e - Ah \Leftrightarrow Bd = Be$, i.e.

$$(P_1) \quad \Leftrightarrow \quad \min \|d\|_{\ell_1}, \qquad Bd = Be$$

Sparse Solutions to Underdetermined Systems

• Equivalent problem

$$(P_1) \quad \min \|d\|_{\ell_1}, \qquad Bd = Be$$

- Also known as *Basis Pursuit* (Chen, Donoho, Saunders, 1996)
- Ability to decode accurately ability to find sparse solutions to underdetermined systems

Agenda: Finding sparse solutions to underdetermined systems

- Error correction
- Signal recovery from incomplete measurements
- Uniform uncertainty principles
- Stability
- Implications for information/coding theory
- Numerical evidence

Model 1D Problem

 $f \in \mathbb{R}^N$ is a superposition of |T| spikes (|T| nonzero components)

$$f = \sum_{t \in T} f(t) \delta_t$$

 $(\delta_t \text{ is a spike at } t)$ and with Discrete Fourier Transform (DFT)

$$\hat{f}(\omega) = \sum_{t=0}^{N-1} f(t) e^{-i2\pi\omega t/N}$$

Observe $\widehat{f}(\omega)$ on $\Omega,\,K:=|\Omega|\ll N$

Sparse Spike Train

ℓ_1 Reconstruction

Reconstruct by solving

$$\min_{g} \|g\|_{\ell_1} := \sum_t |g(t)|$$
 s.t. $\hat{g}(\omega) = \hat{f}(\omega), \ \omega \in \Omega$

original

recovered from 30 Fourier samples

A First Recovery Theorem

$$(P_1) \qquad \min_{g\in \mathrm{R}^N} \|g\|_{\ell_1}, \qquad \hat{g}(\omega) = \hat{f}(\omega), \, \omega \in \Omega$$

Theorem 1 (C., Romberg, Tao) Suppose

- f supported on set T
- Observations selected at random with

 $|\Omega| \geq C \cdot |T| \log N.$

Minimizing ℓ_1 *reconstructs exactly with overwhelming probability.*

- Unimprovable
- In theory, Cpprox 20
- In practice, $C \log N \approx 2$
- (Very) hard stuff

Reconstructed perfectly from 30 Fourier samples

Nonlinear Sampling Theorem

- Switch roles of time and frequency:
 - \hat{f} supported on set Ω in freq domain
 - sample on set T in time domain
- Shannon sampling theorem:
 - Ω is a connected set of size B
 - we can reconstruct from *B* equally spaced time-domain samples
 - linear reconstruction by sinc interpolation
- Nonlinear sampling theorem:
 - Ω is an *arbitrary* set of size B
 - we can reconstruct from $\sim B \log N$ randomly placed samples
 - nonlinear reconstruction by convex programming

A Second Recovery Theorem

• Gaussian random matrix

$$F(k,t) = X_{k,t}, \qquad X_{k,t} \ i.i.d. \ N(0,1)$$

• This will be called the Gaussian ensemble

$$(P_1) \qquad \min_{g\in \mathbf{R}^N} \|g\|_{\ell_1} \qquad Fg = Ff.$$

Theorem 2 (C., Tao) Suppose

- f supported on set T
- K observations (random projection) with

$$K \ge C \cdot |T| \log N.$$

Minimizing ℓ_1 reconstructs exactly with overwhelming probability.

Gaussian Random Measurements and Random Projections

 $y=Ff, \qquad y_k=\langle f,X
angle, \quad X_t \,\, i.i.d.\,\, N(0,1),$

Previous Work

- ℓ_1 reconstruction in widespread use
 - Santosa and Symes (1986), and others in Geophysics (Claerbout)
 - Donoho and Stark
- Sparse decompostions via Basis Pursuit
 - Chen, Donoho, Saunders (1996)
 - Donoho, Huo, Elad, Gribonval, Nielsen, Fuchs, Tropp (2001-2005)
- Novel sampling theorems
 - Bresler and Feng (2002)
 - Vetterli and others (2002-2004)
- Fast algorithms
 - Gilbert, Strauss, et al. (2002-2005)

Numerical Results

- Signal length N = 1024
- Randomly place |T| spikes, observe K random frequencies
- Measure % recovered perfectly
- white = always recovered, black = never recovered

Key to Recovery: Uncertainty Principles

Weyl-Heisenberg Uncertainty Principle

W. Heisenberg, 1901-1976

Weyl-Heisenberg

- f 'lives' on an interval of length Δt
- \hat{f} 'lives' on an interval of length $\Delta \omega$

$$\Delta t \cdot \Delta \omega \geq 1$$

Restricted Isometries

- Measurement matrix $F, F \in \mathbb{R}^{K \times N}$; F_T columns of F corresponding to $T, F_T \in \mathbb{R}^{K \times |T|}$.
- Restricted isometry constants δ_S

$$(1-\delta_S) \operatorname{Id} \leq F_T^* F_T \leq (1+\delta_S) \operatorname{Id}, \quad \quad \forall T, \ |T| \leq S.$$

- *F* obeys a *uniform uncertainty principle* for sets of size *F* if $\delta_S \leq 1/2$, say.
- Uniform because must hold for *all T*'s.

Why Do We Call This an Uncertainty Principle?

- F_{Ω} , rows of the DFT isometry (corresponding to Ω)
- $F_{\Omega T}$, columns of F_{Ω} (corresponding to T)
- UUP

$$(1-\delta_S) \, rac{|\Omega|}{N} \cdot \|f_T\|^2 \leq \|F_{\Omega T} f_T\|^2 \leq (1+\delta_S) \, rac{|\Omega|}{N} \cdot \|f_T\|^2$$

- Implications
 - f supported on T, $|T| \leq S$
 - If UUP holds, then

$$(1 - \delta_S) \frac{|\Omega|}{N} \le \|\hat{f} \cdot \mathbb{1}_{\Omega}\|^2 / \|\hat{f}\|^2 \le (1 + \delta_S) \frac{|\Omega|}{N}$$

Sparse/Compressible Signals

- Sparse signal: f is sparse if f is supported on a "small" set T
- In real life, signals of interest may not be sparse but compressible
- Compressible signal: *f* is compressible if it is well-approximated by a sparse signal.
- Frequently discussed model of compressible signals: rearrange the entries in decreasing order $|f_{(1)}| \ge |f_{(2)}| \ge \ldots \ge |f_{(N)}|$

$$|f|_{(k)} \leq C \cdot k^{-s}, \, orall k$$

- Implications: f_T truncated vector corresponding to the |T| largest entries of $f \in \mathbf{R}^N$

$$\|f - f_T\|_{\ell_2} \le C \cdot |T|^{-(s-1/2)}$$

• This is what makes transform coders work (sparse coding)

Compressible Signals I: Wavelets in 1D

Compressible Signals II: Wavelets in 2D

UUP and Signal Recovery from Undersampled Data

32

 $(P_1) \qquad \min_{g\in \mathbf{R}^N} \|g\|_{\ell_1}, \qquad Ag=Af.$

Theorem 3 (C., Tao, 2004) Assume $\delta_{3S} + 3\delta_{4S} < 2$ (UUP holds).

• If f supported on any set T, $|T| \leq S$, then the recovery is exact.

• For all
$$f \in \mathbb{R}^N$$

$$\|f - f^{\sharp}\|_{\ell_2} \le 8 \, rac{\|f - f_S\|_{\ell_1}}{\sqrt{S}}$$

This is a purely deterministic statement. Nothing is random here!

- If f is sufficiently sparse, the recovery is exact
- If f is compressible

$$\|f - f^{\sharp}\|_{\ell_2} \le 8 \cdot S^{-(s-1/2)}$$

• Useful if S is large

Examples

• Gaussian ensemble A_{ij} i.i.d. N(0, 1/K) obeys UUP with

 $S \lesssim K/\log[N/K]$

• Binary ensemble A_{ij} i.i.d. $P(A_{ij}=\pm 1/\sqrt{K})=1/2$ obeys UUP with

 $S \lesssim K/\log[N/K]$

• Fourier ensemble (K random rows) obeys UUP with

$$S \lesssim K/(\log N)^6$$

Probably true with $\log^4 N$ (C., Tao and Vershynin and Rudelson)

All with overwhelming probability.

UUP for General Orthonormal Systems

• f is sparse in an orthogonal basis Ψ

$$f(t) = \sum_{m \in \mathcal{I}} lpha_m \psi_m(t)$$

• Measurements in different orthogonal basis Φ

$$y_k = \langle f, \phi_k
angle \ \ k \in \Omega \ \ \ y = \Phi_\Omega f.$$

• Recover via

$$\min \|lpha\|_{\ell_1} \qquad \Phi_\Omega \Psi^* lpha = y$$

• General orthogonal ensemble $\Phi\Psi^*$ (random rows) obeys UUP with

 $S \lesssim K/[\mu^2 (\log N)^6]$

• Incoherence $\mu = \sqrt{N} \max |\langle \phi_{\omega}, \psi_m \rangle|.$

Reconstruction of Piecewise Polynomials, I

- Randomly select a few jump discontinuities
- Randomly select cubic polynomial in between jumps
- Observe about 500 random coefficients
- Minimize ℓ_1 norm of wavelet coefficients

Reconstruction of Piecewise Polynomials,II

36

- Randomly select 8 jump discontinuities
- Randomly select cubic polynomial in between jumps
- Observe about 200 Fourier coefficients at random

Reconstruction of Piecewise Polynomials, III

About 200 Fourier coefficients only!

Recovery of Sparse/Compressible Signals

- How many measurements to recover f to within precision $\epsilon = K^{-(s-1/2)}?$
- Intuition: at least *K*, probably many more.

Where Are the Largest Coefficients?

Implications of Approximate Recovery

- Gaussian ensemble: $A_{i,j}$ i.i.d. N(0, 1/K)
- Random projection on a *K*-dimensional plane (y = Af)
- *f* compressible

$$\|f - f^{\sharp}\|_{\ell_2} \leq C \cdot (K/\log[N/K])^{-(s-1/2)}.$$

• See also recent work by D. Donoho (2004)

Another Surprise!

Want to know an object up to an error ϵ ; e.g. an object whose wavelet coefficients are sparse.

• *Strategy 1:* Oracle tells exactly (or you collect all *N* wavelet coefficients) which *K* coefficients are large and measure those

$$\|f - f_K\| \asymp \epsilon$$

• Strategy 2: Collect $K \log[N/K]$ random coefficients and reconstruct using ℓ_1 .

Surprising claim

- Same performance but with only $K \log[N/K]$ coefficients!
- Performance is achieved by solving an LP.

Optimality

- Can you do with fewer than $K \log[N/K]$ for accuracy $K^{-(s-1/2)}$?
- Simple answer: NO
- Connected with theory of Gelfand widths
- Connected with information theory (rate-distortion curve of compressible signals)

Stable Recovery?

- In real applications, data are corrupted
- Better model: y = Af + e, where e may be stochastic, deterministic.
- Recall most of the singular values of A are zero
- Hopeless?

UUP and Stable Recovery from Undersampled Data

 ℓ_1 -based regularization

 $\min \|g\|_{\ell_1} \qquad \|y - Ag\|_{\ell_2} \le \|e\|_{\ell_2}$

Theorem 4 (C., Romberg, Tao) Assume $\delta_{3S} + 3\delta_{4S} < 2$.

$$\|f - f^{\sharp}\|_{\ell_2} \leq 8 \cdot \left(rac{\|f - f_S\|_{\ell_1}}{\sqrt{S}} + \|e\|_{\ell_2}
ight)$$

- No blow up!
- Reconstruction within the noise level
- Nicely degrades as noise level increases

Geometric Intuition

- f feasible $\Rightarrow f^{\sharp}$ inside the diamond
- f^{\sharp} obeys the constraint $\Rightarrow f^{\sharp}$ inside the slab (tube)

Reconstruction from 100 Random Coefficients

Reconstruction from Random Coefficients

Minimize TV subject to random coefficients + ℓ_1 -norm of wavelet coefficients.

Reconstruction from Random Coefficients

original, 65k pixels

wavelet 7207-term approx

↓ zoom

recovery from 20k proj

 \Downarrow zoom

original

 $\Omega \approx 29\%$ of samples

backprojection

↓ zoom

$\min \mathsf{TV}$

↓ zoom

Naive Reconstruction

51

Other Phantoms

Classical Reconstruction

Total Variation Reconstruction

Error Correction: Epilogue

- Gaussian coding matrix $A \in \mathrm{R}^{m imes n}$, A_{ij} i.i.d. N(0,1)
- Corrupted entries y = Af + e.
- Annihilator: BA = 0, B random projection on a plane of co-dimension n
- Can think of the entries of $B \in \mathbf{R}^{(m-n) \times m}$ i.i.d. N(0,1).
- Decoding by LP is exact if e is the unique solution to

$$\min \|d\|_{\ell_1}, \qquad Bd = Be$$

ullet Need $\delta_{3S}+3\delta_{4S}<2$

Theorem 5 (C., Tao, 2004) Exact decoding occurs for all corruption patterns and all plaintexts (with overwhelming probability) if the fraction ρ of error obeys

$$ho \lesssim rac{1}{\log(rac{m}{m-n})} \lesssim rac{1}{\log(rac{1}{1-n/m})} =
ho^*$$

For finite values of n/m (rate), the constant also matters! See Donoho (2004, 2005).

Summary

- Possible to reconstruct a sparse/compressible signal from very few measurements
- Need to solve an LP (or SOCP)
- Tied to new uncertainty principles
- Many applications
 - Finding sparse decompositions in overcomplete dictionaries
 - Decoding of linear codes
 - Biomedical imagery
- Extraordinary opportunities
 - New A/D devices
 - New paradigms for sensor networks

Connections with Information Theory (Mostly Speculative)

Universal Codes

Want to compress sparse signals

- *Encoder*. To encode a discrete signal f, the encoder simply calculates the coefficients $y_k = \langle f, X_k \rangle$ and quantizes the vector y.
- *Decoder*. The decoder then receives the quantized values and reconstructs a signal by solving the linear program (P_1) .

Claim: Asymptotically nearly achieves the information theoretic limit.

Information Theoretic Limit: Example

- Want to encode the unit- ℓ_1 ball: $f \in \mathbf{R}^N : \sum_t |f(t)| \leq 1$.
- Want to achieve distortion D

$$\|f - f^{\sharp}\|^2 \leq D$$

• How many bits? Lower bounded by entropy of the unit- ℓ_1 ball:

bits
$$\geq C \cdot D \cdot (\log(N/D) + 1)$$

• How many bits does the universal encoder need? Up to possibly a $\log(1/D)$ factor

bits
$$\sim D \cdot (\log(N/D) + 1)$$

- Same as the number of measurements
- Robustness vis a vis quantization

Robustness

• Say with *K* coefficients

$$\|f-f^{\sharp}\|^2 symp 1/K$$

• Say we loose half of the bits (packet loss). How bad is the reconstruction?

$$\|f-f_{50\%}^{\sharp}\|^2 symp 2/K$$

• Democratic!

Why Does This Work? Geometric Viewpoint Suppose $f \in \mathbb{R}^2$, f = (0, 1).

Exact

Miss

Higher Dimensions

Equivalence

• Combinatorial optimization problem

$$(P_0) \qquad \min_g \|g\|_{\ell_0} := \#\{t, g(t) \neq 0\}, \qquad Fg = Ff$$

• Convex optimization problem (LP)

$$(P_1) \qquad \min_g \|g\|_{\ell_1}, \qquad Fg = Ff$$

• Equivalence:

For $K \simeq |T| \log N$, the solutions to (P_0) and (P_1) are unique and are the same!