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OVERTURE: REDUNDANCY

What is redundancy?

How can we quantify redundancy?

Which elements may be removed?

What is the effect of removing/losing elements?

How can we recognize that a system is the union of finitely

many nonredundant systems?
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PRELUDE: GABOR SYSTEMS AND FRAMES

Goal

Music-like bases or frames for L2(R).

Model of a note at time α and frequency β:

e2πiβxg(x − α) = MβTαg(x)
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Gabor System

G(g, Λ) =
{

MβTαg
}

(α,β)∈Λ
=

{

e2πiβxg(x − α)
}

(α,β)∈Λ

If G(g, Λ) is a frame for L2(R) and g is nice, then frame expan-

sions extend to the entire family of modulation spaces.

Balian–Low Theorems G(g, αZ×βZ) =
{

e2πiβnxg(x−αk)
}

k,n∈Z

(a) Classical BLT [Balian/Low]: If G(g, αZ × βZ) is a Riesz

basis for L2(R), then

(
∫ ∞

−∞
|tg(t)|2 dt

) (
∫ ∞

−∞
|ωĝ(ω)|2 dω

)

= ∞.

(b) Amalgam BLT [H.]: If G(g, αZ × βZ) is a Riesz basis for

L2(R), then g, ĝ /∈ W (C0, `
1), where

W (C0, `
1) =

{

continuous f :

∞
∑

k=−∞
‖f · χ[k,k+1]‖∞ < ∞

}

.
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Nyquist Density Theorem for G(g, αZ × βZ)

(a) Frame =⇒ 0 < αβ ≤ 1.

(b) Riesz basis =⇒ αβ = 1.

(c) αβ > 1 =⇒ incomplete.

Techniques

Baggett, Rieffel: von Neumann algebra generated by Tα, Mβ

Daubechies: Zak Transform

Janssen: Wexler–Raz relations

All these tools are useless for general G(g, Λ).
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Beurling Densities of Λ

D−(Λ) = lim inf
r→∞

inf
z∈R2

#(Λ ∩ Qr(z))

r2
,

D+(Λ) = lim sup
r→∞

sup
z∈R2

#(Λ ∩ Qr(z))

r2
,

where Qr(z) is the square centered at z with side lengths r.

Example: D−(αZ × βZ) = D+(αZ × βZ) =
1

αβ

Nyquist Density for G(g, Λ) [Ramanathan/Steger]

(a) Frame =⇒ 1 ≤ D−(Λ) ≤ D+(Λ) < ∞.

(b) Riesz basis =⇒ D−(Λ) = D+(Λ) = 1.

Remarks

• Irregular Gabor systems can be complete (but not frames)

even if they are very sparse [Walnut/H.]

• ∃ (very) irregular Gabor ONB [Y. Wang]
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NOCTURNE: REDUNDANCY

Definitions/Facts

(a) A frame is redundant or overcomplete if it is not a basis.

(b) If a frame is a basis then it is a Riesz basis (the image of

an ONB under a continuous invertible map).

(c) A near-Riesz basis is a Riesz basis plus finitely many

elements.

(d) A frame F = {fn}n∈N
is bounded if inf ‖fn‖ > 0.

Q. Does every bounded frame contain a basis?

A. No [Casazza/Christensen, Seip].

Theorem [Duffin/Schaeffer]

If F is an overcomplete frame then at least finitely many ele-

ments can be removed yet still leave a frame.

Q. Aside from near-Riesz bases, can infinitely many elements

be removed yet leave a frame?

A. No [Balan/Casazza/H./Landau, with characterization].
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Examples

(a) G(χ[0,1),Z × Z) is an ONB.

(b) G(χ[0,1),
1
N

Z× Z) is the union of N ONBs.

(c) G(e−x2

, 1
N

Z × Z) is not the union of N ONBs, but is the

union of N minimal systems plus N more elements.

Q. Given a frame, how can you recognize that it is a union

of finitely many ON sequences? Or finitely many Riesz

sequences (Riesz bases for their closed spans)?

Q. Is frame (c) above a union of finitely many Riesz sequences?

A. Yes [B./C./H./L.]

Feichtinger Conjecture

Every bounded frame is a union of finitely many Riesz

sequences.
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Feichtinger Conjecture

Every bounded frame is a union of finitely many Riesz

sequences.

Kadison–Singer Conjecture (Paving Conjecture) [1959]

∀ ε > 0, ∃M such that ∀n, ∀n × n matrices S having zero

diagonal, ∃ partition {σj}M

j=1 of {1, . . . , n} such that

‖Pσj
SPσj

‖ ≤ ε ‖S‖, j = 1, . . . , M,

where PI is the orthogonal projection onto span{ei}i∈I .

Conjectured Generalization of Bourgain–Tzafriri R.I.T.

∀B, ∃M, A such that ∀n× n matrices T such that ‖Tei‖ = 1 and

‖T‖ ≤
√

B, ∃ partition {Ij}M

j=1 of {1, . . . , n} such that ∀ {ai}i∈Ij
,

∥

∥

∥

∥

∑

i∈Ij

aiTei

∥

∥

∥

∥

2

≥ A
∑

i∈Ij

|ai|2, j = 1, . . . , M.

Theorem [Casazza/Christensen/Lindner/Vershynin]

Kadison–Singer =⇒ Feichtinger ⇐⇒ Bourgain–Tzafriri
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Redundancy is not a “local” issue

A Gabor frame G(g, 1
N

Z × Z) seems to be “N times overcom-

plete.” Yet, every finite subset is (probably) independent.

The following conjecture is known to hold for many special

cases, but is open in the generality stated.

Conjecture (H./Ramanathan/Topiwala)

If g ∈ L2(R), g 6= 0, and Λ = {(αk, βk)}N
k=1 are distinct points in

R2, then G(g, Λ) = {e2πiβkxg(x − αk)}N

k=1 is linearly independent.

Open HRT Subconjectures

If g ∈ L2(R) is continuous and nonzero then the following sets

are independent:

(a) {g(x), g(x − 1), e2πixg(x), e2πi
√

2xg(x −
√

2)}

(b) {g(x), g(x − 1), g(x − π), e2πixg(x)}

Remarks

(a) This is the “Zero Divisor Conjecture” for the case of the

Heisenberg group.

(b) The analogous conjecture for the affine group is false.

Moreover, the construction of wavelet ONBs depends

crucially on linear dependence.
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Dual Frames

The dual frame of

G(g, αZ × βZ) =
{

MβnTαkg
}

k,n∈Z

has the form

G(g̃, αZ × βZ) =
{

MβnTαkg̃
}

k,n∈Z

because

SMβnTαk = MβnTαkS

Theorem [Gröchenig/Leinert, via C∗ algebras]

g ∈ M1 =⇒ g̃ ∈ M1

Fundamental Problem [Open until B./C./H./L.]

If Λ is not a lattice, what does the dual frame of

G(g, Λ) =
{

MβTαg
}

(α,β)∈Λ

look like??

12



WALTZ: LOCALIZED FRAMES

Definition: Localized Frames

Given F = {fi}i∈I , E = {ej}j∈G
, and a: I → G.

(a) (F , a, E) is `p-localized if ∃ r = (rk)k∈G ∈ `p(G) such that

|〈fi, ej〉| ≤ ra(i)−j

(b) (F , a, E) has `p-column decay if ∀ ε > 0, ∃Nε > 0 such that

∀ j ∈ G,
∑

i∈I\INε (j)

|〈fi, ej〉|p < ε

(c) (F , a, E) has `p-row decay if ∀ ε > 0, ∃Nε > 0 such that

∀ i ∈ I,
∑

j∈G\SNε (a(i))

|〈fi, ej〉|p < ε

Relations among localization and HAP properties

= l
2

 l
2

= l
2

Weak HAP Weak Dual HAP

Strong Dual HAP
Strong HAP

−column decay
−localized −row decay
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Theorem [B./C./H./L.]

If

(a) F = {fi}i∈I and E = {ej}j∈G
are frame sequences,

(b) D+(I) < ∞, and

(c) (F , a, E) has both `2-column and row decay,

then

D(I) · ME(F) = MF (E)

where

ME(F) =

{

Limits of averages of diagonal

elements of
[

〈PEfi, f̃j〉
]

i,j∈I

and

MF (E) =

{

Limits of averages of diagonal

elements of
[

〈PFei, ẽj〉
]

i,j∈G

Remark

“Limits” include Beurling-type upper and lower limits as well

as ultrafilter limits.

Example

If F is a frame and E is a Riesz basis then MF (E) = M(E) = 1.
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WALTZ: IMPLICATIONS FOR GABOR FRAMES

Approximate Definition

M1 ≈
{

f ∈ L2 : f, f̂ ∈ L1
}

Theorem

(a) If g ∈ L2 and ϕ ∈ M1 then

(

G(g, Λ), a, G(ϕ, αZ × βZ)
)

is `2-localized.

(b) If g ∈ M1 and ϕ ∈ M1 then

(

G(g, Λ), a, G(ϕ, αZ × βZ)
)

is `1-localized.

Here a(λ) = closest point in αZ × βZ
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Application 1: Necessary Density Conditions

Let G(g, Λ) =
{

MβTαg
}

(α,β)∈Λ
be Gabor frame for L2(R). Then:

(a) D±(Λ) =
1

M∓(G(g, Λ))
.

(b) D−(Λ) ≥ 1.

(c) Riesz basis =⇒ D−(Λ) = D+(Λ) = 1.

Application 2: Relations between Density and Frame Bounds

Let G(g, Λ) =
{

MβTαg
}

(α,β)∈Λ
be Gabor frame for L2(R) with

frame bounds A, B. Then:

(a) A ≤ ‖g‖2
2 D−(Λ) ≤ ‖g‖2

2 D+(Λ) ≤ B.

(b) Tight frame (A = B) =⇒ D−(Λ) = D+(Λ).

Application 3: Quantifying Excess; Feichtinger Conjecture

Let G(g, Λ) =
{

MβTαg
}

(α,β)∈Λ
be Gabor frame for L2(R) with

g ∈ M1. Then:

(a) If D−(Λ) > 1, then there exists J ⊂ Λ with D−(J) =

D+(J) > 0 such that G(g, Λ \ J) is a frame for L2(R).

(b) G(g, Λ) can be written as a finite union of Riesz sequences.
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Application 4: Structure of the Dual Frame

Let G(g, Λ) =
{

MβTαg
}

(α,β)∈Λ
be Gabor frame for L2(R) with

g ∈ M1. Then:

(a) The dual frame G̃ = {g̃α,β}(α,β)∈Λ is also contained in M1.

(Gröchenig/Leinert is for Λ = lattice only.)

(b) The dual frame G̃ = {g̃α,β}(α,β)∈Λ is a set of Gabor molecules,

i.e., ∃F ∈ L1(R2) such that

|Vϕ(g̃α,β)(x, ω)| ≤ F (x − α, ω − β).

Compare:

|Vϕ(MβTαg)(x, ω)| = |Vϕg(x − α, ω − β)|.

Remarks

(a) Applications 1–4 continue to hold (with minor changes)

if the Gabor frame G(g, Λ) is replaced by a frame of Gabor

molecules {gα,β}(α,β)∈Λ.

(b) Applications 1–4 are only special cases of results for gen-

eral localized frames.
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FINALE: CONCLUSIONS AND RELATED TOPICS

a. Localization is a powerful tool for dealing with frames which

possess modest amounts of structure but are largely “irregu-

lar.”

b. Insights into relations among density, redundancy, frame

properties, the structure of the dual frame, . . .

c. Extensions to families of associated spaces.

d. Insights and contrasts with wavelets.

18


