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Wavelet and framelet constructions
History bits

I Pre-MRA: ad-hoc constructions (Meyer,
Daubechies-Grossman-Meyer). (< 87)

I The big bang: Mallat’s MRA and Daubechies’ on systems.
(86-88)

I Important variations: CDF’s biorthogonal, CW’s spline
wavelets, BL’s frames. (91-94)

I Framelet theory. Tight frames and the UEP, R-Shen.
(95-98)

I Important variations. DHRS’ and CHS’ OEP. (<2003).

The common feature of all these innovations:

They do not
scale with the dimension
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Outline

The CAP methodologies

How local is “extremely local”?

L-CAMP: the algorithms
Decomposition
Reconstruction
Complexity
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Wavelet-based characterizations of Besov spaces
The key components in the L-CAMP performance analysis
The performance chart
An example: the mother of all local MR representations



L-CAMP: Extremely local MR constructions
Bird’s view of the CAP methodologies

I CAP: universal construction of wavelets from any
pair/triplet of lowpass filters.
Complete performance analysis.

I CAMP: a variant of CAP. Available whenever one of the two
lowpass filters is interpolatory.
Performance: like CAP.
Advantage: very local.

I L-CAMP: a variant of CAMP. Available whenever the
interpolatory filter in CAMP is tensor-product.
Performance: like CAMP.
Advantage: extremely local.

ftp://ftp.cs.wisc.edu/Approx/huron.pdf
ftp://ftp.cs.wisc.edu/Approx/pcf.pdf
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L-CAMP: Extremely local MR constructions
The key elements of all these theories:

I CAP, CAMP, L-CAMP are computed by fast algorithms with
linear complexity.

I There is no “construction”. Choose your filters, and you are
set to go.

I Highpass filters are nowhere to be found in the algorithms.
They appear only in the theoretical analysis.

I Dual filters are nowhere to be found in the algorithms.
They, however, star in the performance analysis.

Take Home Message #1:
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Extremely local=?

How local is “extremely local”?

Test problem. Build an “extremely local” system that analyses
correctly and completely C1-functions in high dimension.

Quantifying “local”: the number of linear functionals whose
support contain a given generic point x ∈ IRn.
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Extremely local, first try
Ave, Caesar! Morituri ti Salutamus!

Goal : analyse C1-functions in IR10.

Answer: Use some simple mainstream wavelet representation
Suitable system: The tensor biorthogonal 5/3 (barely makes it)
Are we local? There are 1023 mother wavelets,
each supported in a box of volume.... 275000

The bare, colorless, straight-in-the-face truth:
In order to answer the question “what’s going on at some
x ∈ IR10”, this wavelet system visits x 300 million times
Hint for the confused: that is not local at all!!!
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Extremely local, a second try
Antonio Vivaldi, The Four Seasons: Spring

Goal : analyse C1-functions in IR10.

Answer: Splines... (short applause, please!)
A suitable system: the 11-direction box spline (barely makes it)
Are we local? There is 1 spline,
supported in a parallelepiped of volume.... 11

The color ful revelation:
In order to answer the question “what’s going on at some
x ∈ IR10”, this spline visits x 11 times
Hint for the confused: that is the purest notion of being local!!!

Meaning:

What takes 3/5 wavelets 50 years,
is a one-minute job for splines
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Extremely local, a second try
Antonio Vivaldi, The Four Seasons: Spring

Goal : analyse C1-functions in IR10.

Answer: Splines... (short applause, please!)
A suitable system: the 11-direction box spline (barely makes it)
Are we local? There is 1 spline,
supported in a parallelepiped of volume.... 11

The color ful revelation:
In order to answer the question “what’s going on at some
x ∈ IR10”, this spline visits x 11 times
Hint for the confused: that is the purest notion of being local!!!

Meaning: 3

What takes 3/5 wavelets 50 years,
is a one-minute job for splines

3
Assuming linear complexity with constants that depend on volume



Extremely local, a third try
CAP4: The Empire Strikes Back5

I The 11Dir box spline is used to construct MR.
I The wavelets are only implicit

I We get 1024 wavelets with average volume of support
≈ 30

Updated table:

4Youngmi Hur + AR, 2005,
ftp://ftp.cs.wisc.edu/Approx/huron.pdf

5

Just like moons and like suns,
With the certainty of tides,
Just like hopes springing high,
Still I’ll rise – M. Wavelet



Extremely local, a third try
CAP4: The Empire Strikes Back5

Updated table:

Not bad, but we’d better find a sombrero

4Youngmi Hur + AR, 2005,
ftp://ftp.cs.wisc.edu/Approx/huron.pdf

5

Just like moons and like suns,
With the certainty of tides,
Just like hopes springing high,
Still I’ll rise – M. Wavelet



Extremely local, a fourth try
CAMP6: With colors bright, the sun did rise

I The 11Dir box spline is interpolatory, hence CAMP is
available

I The wavelets, again, are only implicit

I We get, again, 1024 wavelets with average volume of
support a secret.

6

In desperation did I pray
For just a single morning ray,
For sun to pierce this darkest night,
And, with this death, bring forth new light



Extremely local, the final try
L-CAMP: “... In the Land of Mordor where the Shadows lie”

The breakthrough is based on separating between the inversion
The table:

Q. Are we performing as good as piecewise-linears?
A.

I Good news: C1 are covered (not “barely” covered). In
fact, the representation analyses smoothness up to C1.4.

I Bad news: unlike piecewise-linears, we miss the Hardy space H1 in the performance analysis
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L-CAMP: The algorithms
Decomposition

Step I: choose three lowpass filters

hc := 2−n
∑

ν∈{0,1}n

δν .

he := n − dimensional (to be discussed)

h := 1− D, supported on the odd integers

Step II: build the MRA

Step III: extract detail coefficients:



L-CAMP: The algorithms
Decomposition

Step I: choose three lowpass filters

Step II: build the MRA

↓ is downsampling:

y↓(k) = y(2k), k ∈ ZZ

(yj)
∞
j=−∞ ⊂ CZZn

s.t:

yj−1 = Cyj := (hc ∗ yj)↓, ∀j .

Step III: extract detail coefficients:



L-CAMP: The algorithms
Decomposition

Step I: choose three lowpass filters

Step II: build the MRA

Step III: extract detail coefficients:

(1) For k ∈ 2ZZn,

dj(k) := yj(k)− (he ∗ yj−1)(
k
2

).

(2) For ν ∈ {0,1}n, and k ∈ ν + 2ZZn,

dj(k) = yj(k)− (hJ(ν) ∗ yj)(k).

hJ(ν) =?



L-CAMP: The algorithms
Decomposition

Step I: choose three lowpass filters

Examples of h:

h = [0,1], h = [
1
2
,0,

1
2
], h =

1
16

× [−1,0,9,0,9,0,−1].

back to performance

Step II: build the MRA

Step III: extract detail coefficients:



L-CAMP: The algorithms
Reconstruction

Step I: for k ∈ 2ZZn,

yj(k) := dj(k) + (he ∗ yj−1)(k/2).

Step II: iteratively, by suitably ordering {0,1}n\0:

yj(k) = dj(k) + (hJ(ν) ∗ yj)(k).
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Step I: for k ∈ 2ZZn,

yj(k) := dj(k) + (he ∗ yj−1)(k/2).

Step II: iteratively, by suitably ordering {0,1}n\0:

yj(k) = dj(k) + (hJ(ν) ∗ yj)(k).



L-CAMP: The algorithms
Complexity

Denote: he is A-tap, h is B-tap

Then:
Decomposition requires for 2n detail coefficients:
2n + A + 1 + (B + 1)× (2n − 1).

Reconstruction requires:
A + 1 + (B + 1)× (2n − 1).

Average # of operations per one detail coefficient 7

2B + 3 + 21−n(A + 1).

7per one complete cycle of decom-recon
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L-CAMP: Theory
Introduction: wavelet-based characterizations of function spaces

Let ψ ∈ L2(IRn) ∩ L1(IRn) s.t.
∫
ψ(t)dt = 0

The Besov space Bs
pp (s ∈ IR, 0 < p < ∞)

Let ϕ ∈ S satisfy

suppϕ̂ ⊂ {1/2 ≤ |ξ| ≤ 2},
|ϕ̂(ξ)| ≥ c > 0, 3/5 ≤ |ξ| ≤ 5/3,∑

j∈ZZ |ϕ̂(2−jξ)|2 = 1, ξ ∈ IR \ {0}.

The function space Bs
pp is the set of all f ∈ S ′/P s.t.

‖f‖Bs
pp

:=

∥∥∥∥∥∥
∑

j∈ZZ

(2js|ϕj ∗ f |)p

∥∥∥∥∥∥
Lp

<∞, ϕj := 2jnϕ(2j ·).

I B0
22 ∩ Bm

22 ≈ W m
2 (the Sobolev space).
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L-CAMP: Theory
Characterization of Besov spaces using wavelets

Theorem (Meyer, Frazier-Jawerth, 198x)
n > max{s, −s, n(1

p − 1)− s}, integer.
X (Ψ) is orthonormal wavelet, and:

ψ ∈ Cm
c ,

∫
tαψ(t)dt = 0, ∀0 ≤ |α| ≤ m − 1.

Then we have
‖f‖Bs

pp
≈ ‖Qs

ψf‖Lp ,

where

Qs
ψf :=

∑
ψ,j,k

∣∣∣〈f , ψj,k
〉

2js χj,k

∣∣∣p
1/p

,



L-CAMP: Theory
framelet-based characterizations of function spaces

Theorem (Kyriazis, Nielsen)
s ∈ IR, m > max{s, −s, n(1

p − 1)− s}, integer.
X (Ψ) is frame and:

Ψ ⊂ Cm
c ,

∫
tαψ(t)dt = 0, ∀0 ≤ |α| ≤ m − 1,∀ψ ∈ Ψ (1)

Then we have ‖f‖Bs
pp
≈ ‖Qs

Ψf‖Lp , where

Qs
Ψf :=

 ∑
ψ∈Ψ,j,k∈ZZ

∣∣∣〈f , ψj,k
〉

2js χj,k

∣∣∣p
1/p

.



L-CAMP: Performance analysis
The key components

I The accuracy of the univariate filter h:

h ∗ P = P, ∀ univariate polynomial P of degree < s1

I The accuracy of the pair (hc, he):

(he↑∗hc)∗P = P, ∀multivariate polynomial P of degree < s2

I The smoothness class of the refinable function φd

whose mask is
ĥe(2·)ĥtensor ,

with htensor the n-dimensional tensor-product of h.
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L-CAMP: Performance analysis
Jackson-type performance chart

The performance chart

−1

1 1 + s
∗

n

1

p

s

s = 1

p
− 1

s = n(1

p
− 1)

s
∗ := min{s1, s2}



L-CAMP: Performance analysis
An example: the mother of all local MR representations

h := [
1
2
,0,

1
2
], 2-tap,

ĥe(ω) :=
3
4

+
1
4

ei1·ω, 2-tap.

I The accuracy of the univariate filter h: s1 = 2.
I The accuracy of the pair (hc, he): s2 = 2.
I The smoothness class of the refinable function φd

whose mask is ĥe(2·)ĥtensor : s3 > 1 (s3 = 1.4 ?).

Average # of operations: 7 + 3 · 21−n.
Total volume of the wavelets’ support: < 5.



Finalement,
c’est fini!



The 3-tap wavelet in the 5/3 system

back



Table 1

wavelets splines
275,000 .01075

back



Table 2

wavelets splines CAP
275,000 .01075 30

back



Table 3

wavelets splines CAP L−CAMP
275,000 .01075 30 .004889

back



The shape of things to come...

The breakthrough is based on separating between the
inversion (=reconstruction) and the dual system.

back



1
Three Rings for the elven kings, under the sky
Seven for the dwarf lords, in their halls of stone
Nine for mortal men, doomed to die
and one for the Dark Lord, on his dark throne
in the land of Mordor, where the shadows lie

2
One Ring to rule them all , One Ring to find them
One Ring to bring them all, and in the darkness bind them
in the land of Mordor, where the shadows lie

The shape of things to come...



The Ring
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Orienting the univariate filter

−3 −2 −1 0 1 2 3
−3

−2

−1
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1
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