On Greedy Algorithms with restricted depth search

Vladimir Temlyakov (South Carolina)

1. Introduction

Let *X* be a Banach space with norm $\|\cdot\|$. We say that a set of elements (functions) \mathcal{D} from *X* is a symmetric dictionary if each $g \in \mathcal{D}$ has norm less than or equal to one ($||g|| \leq 1$),

 $g \in \mathcal{D}$ implies $-g \in \mathcal{D}$,

and closure of span $\mathcal{D} = X$. For an element $f \in X$ we denote by F_f a norming (peak) functional for f:

$$||F_f|| = 1, \qquad F_f(f) = ||f||.$$

The existence of such a functional is guaranteed by the Hahn-Banach theorem.

Let $\tau := \{t_k\}_{k=1}^{\infty}$ be a given sequence of nonnegative numbers $t_k \leq 1, k = 1, \ldots$. We define first the Weak Chebyshev Greedy Algorithm (WCGA) that is a generalization for Banach spaces of Weak Orthogonal Greedy Algorithm defined for Hilbert spaces. **wCGA** We define $f_0^c := f_0^{c,\tau} := f$. Then for each $m \geq 1$ we inductively define

1). $\varphi_m^c := \varphi_m^{c,\tau} \in \mathcal{D}$ is any satisfying

$$F_{f_{m-1}^c}(\varphi_m^c) \ge t_m \sup_{g \in \mathcal{D}} F_{f_{m-1}^c}(g).$$

2). Define

$$\Phi_m := \Phi_m^\tau := \operatorname{span}\{\varphi_j^c\}_{j=1}^m,$$

and define $G_m^c := G_m^{c,\tau}$ to be the best approximant to f from Φ_m . 3). Denote

$$f_m^c := f_m^{c,\tau} := f - G_m^c.$$

In the case $t_k = 1, k = 1, 2, ...$ we call the WCGA the Chebyshev Greedy Algorithm (CGA). Let three sequences $\tau = \{t_k\}_{k=1}^{\infty}$, $\delta = \{\delta_k\}_{k=0}^{\infty}$, $\eta = \{\eta_k\}_{k=1}^{\infty}$ of numbers from [0, 1] be given. We define the Approximate Weak Chebyshev Greedy Algorithm (AWCGA) as follows. **AWCGA** We define $f_0 := f_0^{\tau,\delta,\eta} := f$. Then for each $m \ge 1$ we inductively define 1). F_{m-1} is a functional with properties

 $\|F_{m-1}\| \le 1,$

 $F_{m-1}(f_{m-1}) \ge ||f_{m-1}||(1 - \delta_{m-1});$

and $\varphi_m := \varphi_m^{\tau,\delta,\eta} \in \mathcal{D}$ is any satisfying

$$F_{m-1}(\varphi_m) \ge t_m \sup_{g \in \mathcal{D}} F_{m-1}(g).$$

2). Define

$$\Phi_m := \operatorname{span}\{\varphi_j\}_{j=1}^m,$$

and denote

$$E_m(f) := \inf_{\varphi \in \Phi_m} \|f - \varphi\|.$$

Let $G_m \in \Phi_m$ be such that

$$||f - G_m|| \le E_m(f)(1 + \eta_m).$$

3). Denote

$$f_m := f_m^{\tau,\delta,\eta} := f - G_m.$$

The term *approximate* in this definition means that we use a functional F_{m-1} that is an approximation to the norming (peak) functional $F_{f_{m-1}}$ and also we use an approximant $G_m \in \Phi_m$ which satisfies a weaker assumption than being a best approximant of f from Φ_m . We now consider a countable dictionary $\mathcal{D} = \{\pm \psi_j\}_{j=1}^\infty$. We denote $\mathcal{D}(N) := \{\pm \psi_j\}_{j=1}^N$. Let $\mathcal{N} := \{N_j\}_{j=1}^\infty$ be a sequence of natural numbers. We define the Restricted Weak

Chebyshev Greedy Algorithm (RWCGA) as follows.

RWCGA We define $f_0 := f_0^{c,\tau,\mathcal{N}} := f$. Then for each $m \ge 1$ we inductively define

1). $\varphi_m := \varphi_m^{c,\tau,\mathcal{N}} \in \mathcal{D}(N_m)$ is any satisfying

$$F_{f_{m-1}}(\varphi_m) \ge t_m \sup_{g \in \mathcal{D}(N_m)} F_{f_{m-1}}(g).$$

2). Define

$$\Phi_m := \Phi_m^{\tau,\mathcal{N}} := \operatorname{span}\{\varphi_j\}_{j=1}^m,$$

and define $G_m := G_m^{c,\tau,\mathcal{N}}$ to be the best approximant to f from Φ_m . 3). Denote

$$f_m := f_m^{c,\tau,\mathcal{N}} := f - G_m.$$

2. Convergence of the RWCGA

We consider here approximation in uniformly smooth Banach spaces. For a Banach space X we define the modulus of smoothness

$$\rho(u) := \sup_{\|x\|=\|y\|=1} \left(\frac{1}{2}(\|x+uy\| + \|x-uy\|) - 1\right).$$

The uniformly smooth Banach space is the one with the property

 $\lim_{u \to 0} \rho(u)/u = 0.$

Theorem 2.1 (V.T., 2001) Let a Banach space X have modulus of smoothness $\rho(u)$ of power type $1 < q \leq 2$; $(\rho(u) \leq \gamma u^q)$. Assume that

$$\sum_{m=1}^{\infty} t_m^p = \infty, \quad p = \frac{q}{q-1}$$

Then the WCGA converges for any $f \in X$.

Theorem 2.2 Let a Banach space X have modulus of smoothness $\rho(u)$ of power type $1 < q \leq 2$; $(\rho(u) \leq \gamma u^q)$. Assume that $\lim_{m\to\infty} N_m = \infty$ and

$$\sum_{m=1}^{\infty} t_m^p = \infty, \quad p = \frac{q}{q-1}$$

Then the RWCGA converges for any $f \in X$.

We now proceed to study the rate of convergence of the RWCGA. We denote the closure of the convex hull of \mathcal{D} by $\mathcal{A}_1(\mathcal{D})$.

Theorem 2.3 (V.T., 2001) Let X be a uniformly smooth Banach space with the modulus of smoothness $\rho(u) \leq \gamma u^q$, $1 < q \leq 2$. Then for a sequence $\tau := \{t_k\}_{k=1}^{\infty}$, $t_k \leq 1$, k = 1, 2, ..., we have for any $f \in \mathcal{A}_1(\mathcal{D})$ that

$$||f_m^{c,\tau}|| \le C(q,\gamma)(1+\sum_{k=1}^m t_k^p)^{-1/p}, \quad p := \frac{q}{q-1},$$

with a constant $C(q, \gamma)$ which may depend only on q and γ .

For b > 0, K > 0 we define the class

 $\mathcal{A}_1^b(K,\mathcal{D}) :=$

 $\{f: d(f, \mathcal{A}_1(\mathcal{D}(n)) \le Kn^{-b}, \quad n = 1, 2, \dots\}.$

Here, $\mathcal{A}_1(\mathcal{D}(n))$ is a convex hull of $\{\pm \psi_j\}_{j=1}^n$ and for a compact set F

$$d(f,F) := \inf_{\phi \in F} \|f - \phi\|.$$

Theorem 2.4 Let X be a uniformly smooth Banach space with the modulus of smoothness $\rho(u) \leq \gamma u^q$, $1 < q \leq 2$. Then for $t \in (0, 1]$ there exist $C_1(t, \gamma, q, K)$, $C_2(t, \gamma, q, K)$ such that for \mathcal{N} with $N_m \geq C_1(t, \gamma, q, K)m^{r/b}$, $m = 1, 2, \ldots$ we have for any $f \in \mathcal{A}_1^b(K, \mathcal{D})$

$$\|f_m^{c,\tau,\mathcal{N}}\| \le C_2(t,\gamma,q,K)m^{-r},$$

 $\tau = \{t\}, \quad r := 1 - 1/q.$

We note that we can choose an algorithm from Theorem 2.4 that satisfies the *polynomial depth search* condition $N_m \leq Cm^a$.

Example

We give an example of performance of the RWCGA. The problem concerns the trigonometric *m*-term approximation in the L_p -norm. Let T(N) be the subspace of real trigonometric polynomials of order N and let T be the real trigonometric system

$$\frac{1}{2}$$
, $\sin x$, $\cos x$, $\sin 2x$, $\cos 2x$, ...

Denote for $f \in L_p(\mathcal{T})$

$$\sigma_m(f, \mathcal{T})_p := \inf_{c_1, \dots, c_m; \phi_1, \dots, \phi_m \in \mathcal{T}} \|f - \sum_{j=1}^m c_j \phi_j\|_p$$

the best *m*-term trigonometric approximation of *f* in the L_p -norm. It is clear that one can get an upper estimate for $\sigma_{2m+1}(f, \mathcal{T})_p$ by approximating *f* by trigonometric polynomials of order *m*. Denote

$$E_m(f,\mathcal{T})_p := \inf_{u \in \mathcal{T}(m)} \|f - u\|_p.$$

Let

$$\mathcal{A}_1 := \mathcal{A}_1(\mathcal{T}) := \{ f : \sum_{k=0}^{\infty} (|a_k(f)| + |b_k(f)|) \le 1 \}$$

where $a_k(f)$, $b_k(f)$ are the corresponding Fourier coefficients. From the general results on convergence rate of the WCGA (see Theorem 2.3 above) it follows that for $f \in A_1$, $t_k = t \in (0, 1)$, k = 1, 2, ...,

 $||f_m^{c,\tau}||_p \le C(p,t)m^{-1/2}, \quad 2 \le p < \infty.$

Let us apply Theorem 2.4 in the same situation. Now, in addition to $f \in A_1$ we require

$$E_n(f, \mathcal{T})_p \le Dn^{-b}, \quad n = 1, 2, \dots,$$
 (2.1)

with some b > 0.

Then it is easy to derive from Theorem 2.4 that there exist two constants $C_1(p, t, D)$, $C_2(p, t, D)$ such that for $\tau = \{t\}$ and \mathcal{N} with $N_m \ge C_1(p, t, D)m^{-1/(2b)}$, $m = 1, 2, \ldots$ we have for any $f \in \mathcal{A}_1$ satisfying (2.1) that

$$\|f_m^{c,\tau,\mathcal{N}}\|_p \le C_2(p,t,D)m^{-1/2}.$$
(2.2)

We note that for the above class one cannot obtain an esimate better than (2.2) (clearly, for $b \leq 1/2$). Indeed, let m be given. Consider

$$f(x) := (2m)^{-1} R(x), \quad R(x) = \sum_{k=1}^{2m} \pm \cos kx,$$

where R(x) is the Rudin-Shapiro polynomial such that

 $||R||_{\infty} \le Cm^{1/2}.$

Then $f \in \mathcal{A}_1$ and

 $E_n(f,\mathcal{T})_{\infty} \leq Dn^{-1/2}, \quad n=1,2,\ldots$

Also,

$\sigma_m(f,\mathcal{T})_2 \ge m^{-1/2}/2.$

We now make some general remarks on *m*-term approximation with the depth search constraint. The depth search constraint means that for a given *m* we restrict ourselves to systems of elements (subdictionaries) containing at most N := N(m) elements. Let *X* be a linear metric space and for a set $\mathcal{D} \subset X$, let $\mathcal{L}_m(\mathcal{D})$ denote the collection of all linear spaces spanned by *m* elements of \mathcal{D} . For a linear space $L \subset X$, the ϵ -neighborhood $U_{\epsilon}(L)$ of *L* is the set of all $x \in X$ which are at a distance not exceeding ϵ from *L* (i.e. those $x \in X$ which can be approximated to an error not exceeding ϵ by the elements of *L*). For any compact set $F \subset X$ and any integers $N, m \ge 1$, we define the (N, m)-entropy numbers (V.T., 1998)

 $\epsilon_{N,m}(F,X) :=$ $\inf_{\#\mathcal{D}=N} \inf \{ \epsilon : F \subset \bigcup_{L \in \mathcal{L}_m(\mathcal{D})} U_{\epsilon}(L) \}.$

We can express $\sigma_m(F, \mathcal{D})$ as

$$\sigma_m(F,\mathcal{D}) = \inf\{\epsilon : F \subset \bigcup_{L \in \mathcal{L}_m(\mathcal{D})} U_\epsilon(L)\}.$$

It follows therefore that

$$\inf_{\#\mathcal{D}=N} \sigma_m(F,\mathcal{D}) = \epsilon_{N,m}(F,X).$$

In other words, finding best dictionaries consisting of N elements for m-term approximation of F is the same as finding sets \mathcal{D} which attain the (N, m)-entropy numbers $\epsilon_{N,m}(F, X)$. It is easy to see that $\epsilon_{m,m}(F, X) = d_m(F, X)$ where $d_m(F, X)$ is the Kolmogorov width of F in X. This establishes a connection between (N, m)-entropy numbers and the Kolmogorov widths.

3. Convergence of RAWCGA

Let three sequences $\tau = \{t_k\}_{k=1}^{\infty}$, $\delta = \{\delta_k\}_{k=0}^{\infty}$, $\eta = \{\eta_k\}_{k=1}^{\infty}$ of numbers from [0, 1] be given. Let $\mathcal{N} := \{N_j\}_{j=1}^{\infty}$ be a sequence of natural numbers. We define the Restricted Approximate Weak Chebyshev Greedy Algorithm (RAWCGA) as follows. **RAWCGA** We define $f_0 := f_0^{\tau,\delta,\eta,\mathcal{N}} := f$. Then for each $m \ge 1$ we inductively define 1). F_{m-1} is a functional with properties

 $\|F_{m-1}\| \le 1,$

 $F_{m-1}(f_{m-1}) \ge ||f_{m-1}||(1 - \delta_{m-1});$

and $\varphi_m := \varphi_m^{\tau,\delta,\eta,\mathcal{N}} \in \mathcal{D}(N_m)$ is any satisfying

 $F_{m-1}(\varphi_m) \ge t_m \sup_{g \in \mathcal{D}(N_m)} F_{m-1}(g).$

2). Define

$$\Phi_m := \operatorname{span}\{\varphi_j\}_{j=1}^m,$$

and denote

$$E_m(f) := \inf_{\varphi \in \Phi_m} \|f - \varphi\|.$$

Let $G_m \in \Phi_m$ be such that

$$||f - G_m|| \le E_m(f)(1 + \eta_m).$$

3). Denote

$$f_m := f_m^{\tau,\delta,\eta,\mathcal{N}} := f - G_m.$$

We begin with the convergence theorem.

Theorem 3.1 (V.T., 2002) Let a Banach space X have modulus of smoothness $\rho(u)$ of power type $1 < q \leq 2$; $(\rho(u) \leq \gamma u^q)$. Assume that

$$\sum_{m=1}^{\infty} t_m^p = \infty, \quad p = \frac{q}{q-1};$$

and

$$\delta_m = o(t_m^p), \qquad \eta_m = o(t_m^p).$$

Then the AWCGA converges for any $f \in X$.

Theorem 3.2 (V.T., 2002) Let X be a uniformly smooth Banach space. Assume that $\tau = \{t\}, t \in (0, 1]$. Then for any two sequences $\delta, \eta \in c_0$ the corresponding AWCGA converges for any $f \in X$. We got the following convergence result for the RAWCGA. **Theorem 3.3** Let a Banach space X have modulus of smoothness $\rho(u)$ of power type $1 < q \leq 2$; $(\rho(u) \leq \gamma u^q)$. Assume that $\lim_{m\to\infty} N_m = \infty$,

$$\sum_{m=1}^{\infty} t_m^p = \infty, \quad p = \frac{q}{q-1},$$

and

$$\delta_m = o(t_m^p), \qquad \eta_m = o(t_m^p).$$

Then the RAWCGA converges for any $f \in X$.

Theorem 3.4 Let *X* be a uniformly smooth Banach space. Assume that $\tau = \{t\}, t \in (0, 1]$. Then for any two sequences $\delta, \eta \in c_0$ the corresponding RAWCGA converges for any $f \in X$ provided $\lim_{m\to\infty} N_m = \infty$.