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1. Introduction

Let X be a Banach space with norm ‖ · ‖. We say that a set
of elements (functions) D from X is a symmetric dictionary
if each g ∈ D has norm less than or equal to one (‖g‖ ≤ 1),

g ∈ D implies −g ∈ D,

and closure of spanD = X.
For an element f ∈ X we denote by Ff a norming (peak)
functional for f :

‖Ff‖ = 1, Ff (f) = ‖f‖.

The existence of such a functional is guaranteed by the

Hahn-Banach theorem.
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Let τ := {tk}
∞
k=1 be a given sequence of nonnegative

numbers tk ≤ 1, k = 1, . . .. We define first the Weak
Chebyshev Greedy Algorithm (WCGA) that is a
generalization for Banach spaces of Weak Orthogonal
Greedy Algorithm defined for Hilbert spaces.
WCGA We define f c

0 := f c,τ
0 := f . Then for each m ≥ 1 we

inductively define
1). ϕc

m := ϕc,τ
m ∈ D is any satisfying

Ffc

m−1
(ϕc

m) ≥ tm sup
g∈D

Ffc

m−1
(g).
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2). Define
Φm := Φτ

m := span{ϕc
j}

m
j=1,

and define Gc
m := Gc,τ

m to be the best approximant to f from
Φm.
3). Denote

f c
m := f c,τ

m := f −Gc
m.

In the case tk = 1, k = 1, 2, . . . we call the WCGA the Cheby-

shev Greedy Algorithm (CGA).
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Let three sequences τ = {tk}
∞
k=1, δ = {δk}

∞
k=0, η = {ηk}

∞
k=1

of numbers from [0, 1] be given. We define the Approximate
Weak Chebyshev Greedy Algorithm (AWCGA) as follows.
AWCGA We define f0 := f τ,δ,η

0 := f . Then for each m ≥ 1 we
inductively define
1). Fm−1 is a functional with properties

‖Fm−1‖ ≤ 1,

Fm−1(fm−1) ≥ ‖fm−1‖(1 − δm−1);

and ϕm := ϕτ,δ,η
m ∈ D is any satisfying

Fm−1(ϕm) ≥ tm sup
g∈D

Fm−1(g).
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2). Define
Φm := span{ϕj}

m
j=1,

and denote
Em(f) := inf

ϕ∈Φm

‖f − ϕ‖.

Let Gm ∈ Φm be such that

‖f −Gm‖ ≤ Em(f)(1 + ηm).

3). Denote
fm := f τ,δ,η

m := f −Gm.
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The term approximate in this definition means that we use a
functional Fm−1 that is an approximation to the norming
(peak) functional Ffm−1

and also we use an approximant
Gm ∈ Φm which satisfies a weaker assumption than being a
best approximant of f from Φm.
We now consider a countable dictionary D = {±ψj}

∞
j=1. We

denote D(N) := {±ψj}
N
j=1. Let N := {Nj}

∞
j=1 be a sequence

of natural numbers. We define the Restricted Weak
Chebyshev Greedy Algorithm (RWCGA) as follows.
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RWCGA We define f0 := f c,τ,N
0 := f . Then for each m ≥ 1 we

inductively define
1).ϕm := ϕc,τ,N

m ∈ D(Nm) is any satisfying

Ffm−1
(ϕm) ≥ tm sup

g∈D(Nm)
Ffm−1

(g).

2). Define
Φm := Φτ,N

m := span{ϕj}
m
j=1,

and define Gm := Gc,τ,N
m to be the best approximant to f

from Φm.
3). Denote

fm := f c,τ,N
m := f −Gm.
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2. Convergence of the RWCGA

We consider here approximation in uniformly smooth
Banach spaces. For a Banach space X we define the
modulus of smoothness

ρ(u) := sup
‖x‖=‖y‖=1

(
1

2
(‖x+ uy‖ + ‖x− uy‖) − 1).

The uniformly smooth Banach space is the one with the
property

lim
u→0

ρ(u)/u = 0.
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Theorem 2.1 (V.T., 2001) Let a Banach space X have modulus of
smoothness ρ(u) of power type 1 < q ≤ 2; (ρ(u) ≤ γuq). Assume
that

∞∑

m=1

tpm = ∞, p =
q

q − 1
.

Then the WCGA converges for any f ∈ X .
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Theorem 2.2 Let a Banach space X have modulus of smoothness ρ(u)
of power type 1 < q ≤ 2; (ρ(u) ≤ γuq). Assume that
limm→∞Nm = ∞ and

∞∑

m=1

tpm = ∞, p =
q

q − 1
.

Then the RWCGA converges for any f ∈ X .
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We now proceed to study the rate of convergence of the
RWCGA. We denote the closure of the convex hull of D by
A1(D).
Theorem 2.3 (V.T., 2001) Let X be a uniformly smooth Banach space
with the modulus of smoothness ρ(u) ≤ γuq , 1 < q ≤ 2. Then for a
sequence τ := {tk}

∞
k=1, tk ≤ 1, k = 1, 2, . . . , we have for any

f ∈ A1(D) that

‖f c,τ
m ‖ ≤ C(q, γ)(1 +

m∑

k=1

tpk)
−1/p, p :=

q

q − 1
,

with a constant C(q, γ) which may depend only on q and γ.
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For b > 0, K > 0 we define the class

Ab
1(K,D) :=

{f : d(f,A1(D(n)) ≤ Kn−b, n = 1, 2, . . . }.

Here, A1(D(n)) is a convex hull of {±ψj}
n
j=1 and for a

compact set F
d(f, F ) := inf

φ∈F
‖f − φ‖.
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Theorem 2.4 Let X be a uniformly smooth Banach space with the
modulus of smoothness ρ(u) ≤ γuq , 1 < q ≤ 2. Then for t ∈ (0, 1]
there exist C1(t, γ, q,K), C2(t, γ, q,K) such that for N with

Nm ≥ C1(t, γ, q,K)mr/b, m = 1, 2, . . . we have for any

f ∈ Ab
1(K,D)

‖f c,τ,N
m ‖ ≤ C2(t, γ, q,K)m−r,

τ = {t}, r := 1 − 1/q.

We note that we can choose an algorithm from Theorem 2.4

that satisfies the polynomial depth search condition Nm ≤ Cma.
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Example

We give an example of performance of the RWCGA. The
problem concerns the trigonometric m-term approximation
in the Lp-norm. Let T (N) be the subspace of real
trigonometric polynomials of order N and let T be the real
trigonometric system

1

2
, sin x, cos x, sin 2x, cos 2x, . . . .

Denote for f ∈ Lp(T )

σm(f,T )p := inf
c1,...,cm;φ1,...,φm∈T

‖f −
m∑

j=1

cjφj‖p
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the best m-term trigonometric approximation of f in the
Lp-norm. It is clear that one can get an upper estimate for
σ2m+1(f,T )p by approximating f by trigonometric
polynomials of order m. Denote

Em(f,T )p := inf
u∈T (m)

‖f − u‖p.
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Let

A1 := A1(T ) := {f :
∞∑

k=0

(|ak(f)| + |bk(f)|) ≤ 1}

where ak(f), bk(f) are the corresponding Fourier
coefficients. From the general results on convergence rate
of the WCGA (see Theorem 2.3 above) it follows that for
f ∈ A1, tk = t ∈ (0, 1), k = 1, 2, . . . ,

‖f c,τ
m ‖p ≤ C(p, t)m−1/2, 2 ≤ p <∞.
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Let us apply Theorem 2.4 in the same situation. Now, in
addition to f ∈ A1 we require

En(f,T )p ≤ Dn−b, n = 1, 2, . . ., (2.1)

with some b > 0.
Then it is easy to derive from Theorem 2.4 that there exist
two constants C1(p, t,D), C2(p, t,D) such that for τ = {t}

and N with Nm ≥ C1(p, t,D)m−1/(2b), m = 1, 2, . . . we have
for any f ∈ A1 satisfying (2.1) that

‖f c,τ,N
m ‖p ≤ C2(p, t,D)m−1/2. (2.2)
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We note that for the above class one cannot obtain an
esimate better than (2.2) (clearly, for b ≤ 1/2). Indeed, let m
be given. Consider

f(x) := (2m)−1R(x), R(x) =
2m∑

k=1

± cos kx,

where R(x) is the Rudin-Shapiro polynomial such that

‖R‖∞ ≤ Cm1/2.

Then f ∈ A1 and

En(f,T )∞ ≤ Dn−1/2, n = 1, 2, . . ..

. – p.19



Also,
σm(f,T )2 ≥ m−1/2/2.

We now make some general remarks on m-term
approximation with the depth search constraint. The depth
search constraint means that for a given m we restrict
ourselves to systems of elements (subdictionaries)
containing at most N := N(m) elements.
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LetX be a linear metric space and for a set D ⊂ X, let Lm(D)

denote the collection of all linear spaces spanned by m ele-

ments of D. For a linear space L ⊂ X, the ε-neighborhood

Uε(L) of L is the set of all x ∈ X which are at a distance not

exceeding ε from L (i.e. those x ∈ X which can be approx-

imated to an error not exceeding ε by the elements of L).
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For any compact set F ⊂ X and any integers N,m ≥ 1, we
define the (N,m)-entropy numbers (V.T., 1998)

εN,m(F,X) :=

inf
#D=N

inf{ε : F ⊂ ∪L∈Lm(D)Uε(L)}.

We can express σm(F,D) as

σm(F,D) = inf{ε : F ⊂ ∪L∈Lm(D)Uε(L)}.

It follows therefore that

inf
#D=N

σm(F,D) = εN,m(F,X).
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In other words, finding best dictionaries consisting of N
elements for m-term approximation of F is the same as
finding sets D which attain the (N,m)-entropy numbers
εN,m(F,X). It is easy to see that εm,m(F,X) = dm(F,X)

where dm(F,X) is the Kolmogorov width of F in X. This
establishes a connection between (N,m)-entropy numbers
and the Kolmogorov widths.
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3. Convergence of RAWCGA

Let three sequences τ = {tk}
∞
k=1, δ = {δk}

∞
k=0, η = {ηk}

∞
k=1

of numbers from [0, 1] be given. Let N := {Nj}
∞
j=1 be a se-

quence of natural numbers. We define the Restricted Ap-

proximate Weak Chebyshev Greedy Algorithm (RAWCGA)

as follows.
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RAWCGA We define f0 := f τ,δ,η,N
0 := f . Then for each m ≥ 1

we inductively define
1). Fm−1 is a functional with properties

‖Fm−1‖ ≤ 1,

Fm−1(fm−1) ≥ ‖fm−1‖(1 − δm−1);

and ϕm := ϕτ,δ,η,N
m ∈ D(Nm) is any satisfying

Fm−1(ϕm) ≥ tm sup
g∈D(Nm)

Fm−1(g).
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2). Define
Φm := span{ϕj}

m
j=1,

and denote
Em(f) := inf

ϕ∈Φm

‖f − ϕ‖.

Let Gm ∈ Φm be such that

‖f −Gm‖ ≤ Em(f)(1 + ηm).

3). Denote
fm := f τ,δ,η,N

m := f −Gm.
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We begin with the convergence theorem.
Theorem 3.1 (V.T., 2002) Let a Banach space X have modulus of
smoothness ρ(u) of power type 1 < q ≤ 2; (ρ(u) ≤ γuq). Assume
that

∞∑

m=1

tpm = ∞, p =
q

q − 1
;

and

δm = o(tpm), ηm = o(tpm).

Then the AWCGA converges for any f ∈ X .
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Theorem 3.2 (V.T., 2002) Let X be a uniformly smooth Banach space.
Assume that τ = {t}, t ∈ (0, 1]. Then for any two sequences δ, η ∈ c0
the corresponding AWCGA converges for any f ∈ X .

. – p.28



We got the following convergence result for the RAWCGA.
Theorem 3.3 Let a Banach space X have modulus of smoothness ρ(u)
of power type1 < q ≤ 2; (ρ(u) ≤ γuq). Assume that
limm→∞Nm = ∞,

∞∑

m=1

tpm = ∞, p =
q

q − 1
,

and

δm = o(tpm), ηm = o(tpm).

Then the RAWCGA converges for any f ∈ X .
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Theorem 3.4 Let X be a uniformly smooth Banach space. Assume that

τ = {t}, t ∈ (0, 1]. Then for any two sequences δ, η ∈ c0 the corre-

sponding RAWCGA converges for any f ∈ X provided limm→∞Nm =

∞.
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