Signal Recovery from Partial Information

Joel A. Tropp Anna C. Gilbert

{jtropp|annacg}@umich.edu

Department of Mathematics The University of Michigan

The Signal Recovery Problem

 (\mathfrak{G})

Let s be an m-sparse signal in \mathbb{R}^d , for example

$$m{s} = egin{bmatrix} 0 & -7.3 & 0 & 0 & 0 & 2.7 & 0 & 1.5 & 0 & \ldots \end{bmatrix}^T$$

Use *measurement vectors* x_1, \ldots, x_N to collect N *nonadaptive* linear measurements of the signal

Q1. How many measurements are necessary to determine the signal?Q2. How should the measurement vectors be chosen?Q3. What algorithms can perform the reconstruction task?

Motivations

Medical Imaging

- Tomography provides incomplete, nonadaptive frequency information
- The images typically have a sparse gradient
- Reference: [Candès-Romberg-Tao 2004]

Sensor Networks

- Limited communication favors nonadaptive measurements
- Some types of natural data are approximately sparse
- ▹ References: [Haupt–Nowak 2005, Baraniuk et al. 2005]

Q1: How many measurements?

Adaptive measurements

Consider the class of *m*-sparse signals in \mathbb{R}^d that have 0–1 entries It is clear that $\log_2 {d \choose m}$ bits suffice to distinguish members of this class. By Sterling's approximation,

Storage per signal: $O(m \log(d/m))$ bits

A simple adaptive coding scheme can achieve this rate

Nonadaptive measurements

The naïve approach uses d orthogonal measurement vectors

Storage per signal: O(d) bits

But we can do exponentially better. . .

Q2: What type of measurements?

Idea: Use randomness

Random measurement vectors yield summary statistics that are nonadaptive yet highly informative. Examples:

Bernoulli measurement vectors

Independently draw each \boldsymbol{x}_n uniformly from $\{-1,+1\}^d$

Gaussian measurement vectors

Independently draw each $oldsymbol{x}_n$ from the distribution

$$\frac{1}{(2\pi)^{d/2}} \,\mathrm{e}^{-\|\boldsymbol{x}\|_2^2/2}$$

Connection with Sparse Approximation

Define the fat $N \times d$ measurement matrix

$$oldsymbol{\Phi} \ = \left[egin{array}{ccc} oldsymbol{x}_1^T \ dots \ oldsymbol{x}_N^T \ oldsymbol{x}_N^T \end{array}
ight]$$

The columns of $oldsymbol{\Phi}$ are denoted $oldsymbol{arphi}_1,\ldots,oldsymbol{arphi}_d$

Given an m-sparse signal s, form the data vector $oldsymbol{v} = oldsymbol{\Phi} \, s$

$$\begin{bmatrix} v_1 \\ \vdots \\ v_N \end{bmatrix} = \begin{bmatrix} \varphi_1 & \varphi_2 & \varphi_3 & \dots & \varphi_d \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ \vdots \\ s_d \end{bmatrix}$$

Note that $oldsymbol{v}$ is a linear combination of m columns from $oldsymbol{\Phi}$

Orthogonal Matching Pursuit (OMP)

Input: A measurement matrix Φ , data vector v, and sparsity level mInitialize the residual $r_0 = v$ For t = 1, ..., m do

A. Find the column index ω_t that solves

$$\omega_t = \arg \max_{j=1,...,d} |\langle \boldsymbol{r}_{t-1}, \boldsymbol{\varphi}_j \rangle|$$

B. Calculate the next residual

$$oldsymbol{r}_t = oldsymbol{v} - oldsymbol{P}_t \, oldsymbol{v}$$

where P_t is the orthogonal projector onto span $\{\varphi_{\omega_1}, \ldots, \varphi_{\omega_t}\}$

Output: An *m*-sparse estimate \hat{s} with nonzero entries in components $\omega_1, \ldots, \omega_m$. These entries appear in the expansion

$$oldsymbol{P}_m oldsymbol{v} = \sum_{t=1}^T \widehat{s}_{\omega_t} oldsymbol{arphi}_{\omega_t}$$

Advantages of OMP

We propose OMP as an *effective method for signal recovery* because

- ▹ OMP is fast
- OMP is easy to implement
- OMP is surprisingly powerful
- OMP is provably correct

The goal of this lecture is to justify these assertions

Theoretical Performance of OMP

Theorem 1. [T–G 2005] Choose an error exponent *p*.

- so Let s be an arbitrary m-sparse signal in \mathbb{R}^d
- ▷ Draw $N = O(p m \log d)$ Gaussian or Bernoulli(?) measurements of s
- \triangleright Execute OMP with the data vector to obtain an estimate \widehat{s}

The estimate \hat{s} equals the signal s with probability exceeding $(1 - 2d^{-p})$.

To achieve 99% success probability in practice, take

$N \approx 2 m \ln d$

Flowchart for Algorithm

Empirical Results on OMP

For each trial. . .

- Solution Generate an *m*-sparse signal s in \mathbb{R}^d by choosing *m* components and setting each to one
- \blacktriangleright Draw N Gaussian measurements of s
- > Execute OMP to obtain an estimate \widehat{s}
- \blacktriangleright Check whether $\widehat{s} = s$

Perform 1000 independent trials for each triple (m, N, d)

Percentage Recovered vs. Number of Gaussian Measurements

Signal Recovery from Partial Information (CSCAMM, 10 May 2005)

Percentage Recovered vs. Number of Bernoulli Measurements

Signal Recovery from Partial Information (CSCAMM, 10 May 2005)

Percentage Recovered vs. Level of Sparsity

Signal Recovery from Partial Information (CSCAMM, 10 May 2005)

Number of Measurements for 95% Recovery Regression Line: $N = 1.5 m \ln d + 15.4$

Signal Recovery from Partial Information (CSCAMM, 10 May 2005)

d = 256			d = 1024		
\boxed{m}	N	$N/(m\ln d)$	$\mid m$	N	$N/(m\ln d)$
4	56	2.52	5	80	2.31
8	96	2.16	10	140	2.02
12	136	2.04	15	210	2.02
16	184	2.07			
20	228	2.05			

Number of Measurements for 99% Recovery

These data justify the rule of thumb

 $N \approx 2 m \ln d$

Percentage Recovered: Empirical vs. Theoretical

Signal Recovery from Partial Information (CSCAMM, 10 May 2005)

Execution Time for 1000 Complete Trials

Signal Recovery from Partial Information (CSCAMM, 10 May 2005)

Elements of the Proof I

A Thought Experiment

- > Fix an *m*-sparse signal s and draw a measurement matrix Φ
- > Let $\mathbf{\Phi}_{\mathrm{opt}}$ consist of the m correct columns of $\mathbf{\Phi}$
- \checkmark Imagine we could run OMP with the data vector and the matrix Φ_{opt}
- > It would choose all m columns of $\mathbf{\Phi}_{\mathrm{opt}}$ in some order
- If we run OMP with the full matrix Φ and it succeeds, then *it must select columns in exactly the same order*

Elements of the Proof II

The Sequence of Residuals

- \blacktriangleright If OMP succeeds, we know the sequence of residuals r_1, \ldots, r_m
- >>> Each residual lies in the span of the correct columns of Φ
- So Each residual is stochastically independent of the incorrect columns

Elements of the Proof III

The Greedy Selection Ratio

- > Suppose that r is the residual in Step A of OMP
- \checkmark The algorithm picks a correct column of Φ whenever

$$\rho(\boldsymbol{r}) = \frac{\max_{\{j : s_j=0\}} |\langle \boldsymbol{r}, \boldsymbol{\varphi}_j \rangle|}{\max_{\{j : s_j\neq 0\}} |\langle \boldsymbol{r}, \boldsymbol{\varphi}_j \rangle|} < 1$$

▷ The proof shows that $\rho(\mathbf{r}_t) < 1$ for all t with high probability

Elements of the Proof IV

Measure Concentration

- \checkmark The incorrect columns of Φ are probably almost orthogonal to r_t
- >>> One of the correct columns is probably somewhat correlated with $m{r}_t$
- So the numerator of the greedy selection ratio is probably small

$$\operatorname{Prob}\left\{\max_{\{j \ : \ s_j=0\}} \left| \langle \boldsymbol{r}_t, \ \boldsymbol{\varphi}_j \rangle \right| \ > \ \varepsilon \ \|\boldsymbol{r}_t\|_2 \right\} \ \lesssim \ d \operatorname{e}^{-\varepsilon^2/2}$$

>>> But the denominator is probably not too small

$$\operatorname{Prob}\left\{\max_{\{j \ : \ s_{j} \neq 0\}} \left| \langle \boldsymbol{r}_{t}, \ \boldsymbol{\varphi}_{j} \rangle \right| < \left(\sqrt{\frac{N}{m}} - 1 - \varepsilon \right) \left\| \boldsymbol{r}_{t} \right\|_{2} \right\} \lesssim e^{-\varepsilon^{2} m/2}$$

Another Method: ℓ_1 Minimization

 (\mathfrak{G})

- Suppose s is an m-sparse signal in \mathbb{R}^d
- > The vector $oldsymbol{v} = oldsymbol{\Phi} oldsymbol{s}$ is a linear combination of m columns of $oldsymbol{\Phi}$
- \blacktriangleright For Gaussian measurements, this *m*-term representation is unique

Signal Recovery as a Combinatorial Problem

$$\min_{\widehat{s}} \|\widehat{s}\|_0$$
 subject to $\Phi \,\widehat{s} = v$ (ℓ_0)

Relax to a Convex Program

 $\min_{\widehat{s}} \|\widehat{s}\|_1$ subject to $\Phi \,\widehat{s} = v$ (ℓ_1)

References: [Donoho et al. 1999, 2004] and [Candès et al. 2004]

A Result for ℓ_1 Minimization

 (\mathfrak{G})

Theorem 2. [Rudelson–Vershynin 2005] Draw $N = O(m \log(d/m))$ Gaussian measurement vectors. With probability at least $(1 - e^{-d})$, the following statement holds. For every *m*-sparse signal in \mathbb{R}^d , the solution to (ℓ_1) is identical with the solution to (ℓ_0) .

Notes:

- > One set of measurement vectors works for all *m*-sparse signals
- Related results have been established in [Candès et al. 2004–2005] and in [Donoho et al. 2004–2005]

So, why use OMP?

 (\boldsymbol{b})

Ease of implementation and speed

- Solve (ℓ_1) is difficult
- Solving (ℓ_1) is slow

Sample Execution Times

m	N	d	OMP Time	(ℓ_1) Time
14	175	512	0.02 s	1.5 s
28	500	2048	0.17	14.9
56	1024	8192	2.50	212.6
84	1700	16384	11.94	481.0
112	2400	32768	43.15	1315.6

Randomness

(0

In contrast with ℓ_1 , OMP may require randomness during the algorithm

Randomness can be reduced by

- Amortizing over many input signals
- Using a smaller probability space
- Accepting a small failure probability

Research Directions

- (Dis)prove existence of deterministic measurement ensembles
- Extend OMP results to approximately sparse signals
- Applications of signal recovery
- Develop new algorithms

Related Papers and Contact Information

- Signal recovery from partial information via Orthogonal Matching Pursuit," submitted April 2005
- * "Algorithms for simultaneous sparse approximation. Parts I and II," accepted to EURASIP J. Applied Signal Processing, April 2005
- "Greed is good: Algorithmic results for sparse approximation," IEEE
 Trans. Info. Theory, October 2004
- * "Just Relax: Convex programming methods for identifying sparse signals," submitted February 2004

All papers available from http://www.umich.edu/~jtropp E-mail: {jtropp|annacg}@umich.edu