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The Signal Recovery Problem
❦

Let s be an m-sparse signal in Rd, for example

s =
[
0 −7.3 0 0 0 2.7 0 1.5 0 . . .

]T
Use measurement vectors x1, . . . ,xN to collect N nonadaptive linear

measurements of the signal

〈s, x1〉 , 〈s, x2〉 , . . . , 〈s, xN〉

Q1. How many measurements are necessary to determine the signal?

Q2. How should the measurement vectors be chosen?

Q3. What algorithms can perform the reconstruction task?

Signal Recovery from Partial Information (CSCAMM, 10 May 2005) 2



Motivations
❦

Medical Imaging

❧ Tomography provides incomplete, nonadaptive frequency information

❧ The images typically have a sparse gradient

❧ Reference: [Candès–Romberg–Tao 2004]

Sensor Networks

❧ Limited communication favors nonadaptive measurements

❧ Some types of natural data are approximately sparse

❧ References: [Haupt–Nowak 2005, Baraniuk et al. 2005]
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Q1: How many measurements?
❦

Adaptive measurements

Consider the class of m-sparse signals in Rd that have 0–1 entries

It is clear that log2

(
d
m

)
bits suffice to distinguish members of this class.

By Sterling’s approximation,

Storage per signal: O(m log(d/m)) bits

A simple adaptive coding scheme can achieve this rate

Nonadaptive measurements

The näıve approach uses d orthogonal measurement vectors

Storage per signal: O(d) bits

But we can do exponentially better. . .
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Q2: What type of measurements?
❦

Idea: Use randomness

Random measurement vectors yield summary statistics that are

nonadaptive yet highly informative. Examples:

Bernoulli measurement vectors

Independently draw each xn uniformly from {−1,+1}d

Gaussian measurement vectors

Independently draw each xn from the distribution

1
(2π)d/2

e−‖x‖2
2/2
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Connection with Sparse Approximation
❦

Define the fat N × d measurement matrix

Φ =

 xT
1
...

xT
N


The columns of Φ are denoted ϕ1, . . . ,ϕd

Given an m-sparse signal s, form the data vector v = Φ s

 v1
...

vN

 =

ϕ1 ϕ2 ϕ3 . . . ϕd




s1

s2

s3
...
sd


Note that v is a linear combination of m columns from Φ
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Orthogonal Matching Pursuit (OMP)
❦

Input: A measurement matrix Φ, data vector v, and sparsity level m

Initialize the residual r0 = v

For t = 1, . . . ,m do

A. Find the column index ωt that solves

ωt = arg maxj=1,...,d |〈rt−1, ϕj〉|

B. Calculate the next residual

rt = v − Pt v

where Pt is the orthogonal projector onto span {ϕω1, . . . ,ϕωt}

Output: An m-sparse estimate ŝ with nonzero entries in components

ω1, . . . , ωm. These entries appear in the expansion

Pm v =
∑T

t=1
ŝωt ϕωt
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Advantages of OMP
❦

We propose OMP as an effective method for signal recovery because

❧ OMP is fast

❧ OMP is easy to implement

❧ OMP is surprisingly powerful

❧ OMP is provably correct

The goal of this lecture is to justify these assertions
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Theoretical Performance of OMP
❦

Theorem 1. [T–G 2005] Choose an error exponent p.

❧ Let s be an arbitrary m-sparse signal in Rd

❧ Draw N = O(p m log d) Gaussian or Bernoulli(?) measurements of s

❧ Execute OMP with the data vector to obtain an estimate ŝ

The estimate ŝ equals the signal s with probability exceeding (1 − 2 d−p).

To achieve 99% success probability in practice, take

N ≈ 2 m ln d
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Flowchart for Algorithm

Specify a coin-tossing 
algorithm, including the 
distribution of coin flips

Flip coins and 
determine 

measurement 
vectors 

Adversary 
chooses arbitrary  
m-sparse signal 

Measure signal,
Run greedy 

pursuit
 algorithm

Output signal

knowledge of algorithm and 
distribution of coin flips

no knowledge of 
measurement vectors

no knowledge of 
signal choice
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Empirical Results on OMP
❦

For each trial. . .

❧ Generate an m-sparse signal s in Rd by choosing m components and

setting each to one

❧ Draw N Gaussian measurements of s

❧ Execute OMP to obtain an estimate ŝ

❧ Check whether ŝ = s

Perform 1000 independent trials for each triple (m,N, d)
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Percentage Recovered vs. Number of Gaussian Measurements
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Percentage Recovered vs. Number of Bernoulli Measurements
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Percentage Recovered vs. Level of Sparsity
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Number of Measurements for 95% Recovery
Regression Line: N = 1.5 m ln d + 15.4
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Number of Measurements for 99% Recovery

d = 256 d = 1024
m N N/(m ln d) m N N/(m ln d)
4 56 2.52 5 80 2.31
8 96 2.16 10 140 2.02

12 136 2.04 15 210 2.02
16 184 2.07
20 228 2.05

These data justify the rule of thumb

N ≈ 2 m ln d
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Percentage Recovered: Empirical vs. Theoretical
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Execution Time for 1000 Complete Trials
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Elements of the Proof I
❦

A Thought Experiment

❧ Fix an m-sparse signal s and draw a measurement matrix Φ

❧ Let Φopt consist of the m correct columns of Φ

❧ Imagine we could run OMP with the data vector and the matrix Φopt

❧ It would choose all m columns of Φopt in some order

❧ If we run OMP with the full matrix Φ and it succeeds, then it must

select columns in exactly the same order
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Elements of the Proof II
❦

The Sequence of Residuals

❧ If OMP succeeds, we know the sequence of residuals r1, . . . , rm

❧ Each residual lies in the span of the correct columns of Φ

❧ Each residual is stochastically independent of the incorrect columns
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Elements of the Proof III
❦

The Greedy Selection Ratio

❧ Suppose that r is the residual in Step A of OMP

❧ The algorithm picks a correct column of Φ whenever

ρ(r) =
max{j : sj=0} |〈r, ϕj〉|
max{j : sj 6=0} |〈r, ϕj〉|

< 1

❧ The proof shows that ρ(rt) < 1 for all t with high probability
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Elements of the Proof IV
❦

Measure Concentration

❧ The incorrect columns of Φ are probably almost orthogonal to rt

❧ One of the correct columns is probably somewhat correlated with rt

❧ So the numerator of the greedy selection ratio is probably small

Prob
{

max
{j : sj=0}

|〈rt, ϕj〉| > ε ‖rt‖2

}
. d e−ε2/2

❧ But the denominator is probably not too small

Prob

{
max

{j : sj 6=0}
|〈rt, ϕj〉| <

(√
N

m
− 1 − ε

)
‖rt‖2

}
. e−ε2 m/2
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Another Method: `1 Minimization
❦

❧ Suppose s is an m-sparse signal in Rd

❧ The vector v = Φ s is a linear combination of m columns of Φ
❧ For Gaussian measurements, this m-term representation is unique

Signal Recovery as a Combinatorial Problem

minbs ‖ŝ‖0 subject to Φ ŝ = v (`0)

Relax to a Convex Program

minbs ‖ŝ‖1 subject to Φ ŝ = v (`1)

References: [Donoho et al. 1999, 2004] and [Candès et al. 2004]

Signal Recovery from Partial Information (CSCAMM, 10 May 2005) 23



A Result for `1 Minimization
❦

Theorem 2. [Rudelson–Vershynin 2005] Draw N = O(m log(d/m))
Gaussian measurement vectors. With probability at least (1 − e−d), the

following statement holds. For every m-sparse signal in Rd, the solution to

(`1) is identical with the solution to (`0).

Notes:

❧ One set of measurement vectors works for all m-sparse signals

❧ Related results have been established in [Candès et al. 2004–2005] and

in [Donoho et al. 2004–2005]
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So, why use OMP?
❦

Ease of implementation and speed

❧ Writing software to solve (`1) is difficult

❧ Even specialized software for solving (`1) is slow

Sample Execution Times

m N d OMP Time (`1) Time

14 175 512 0.02 s 1.5 s
28 500 2048 0.17 14.9
56 1024 8192 2.50 212.6
84 1700 16384 11.94 481.0

112 2400 32768 43.15 1315.6
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Randomness
❦

In contrast with `1, OMP may require randomness during the algorithm

Randomness can be reduced by

❧ Amortizing over many input signals

❧ Using a smaller probability space

❧ Accepting a small failure probability
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Research Directions
❦

❧ (Dis)prove existence of deterministic measurement ensembles

❧ Extend OMP results to approximately sparse signals

❧ Applications of signal recovery

❧ Develop new algorithms
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