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Abstract. We develop an approach through geometric functional analysis to
error correcting codes and to reconstruction of signals from few linear measure-
ments. An error correcting code encodes an n-letter word x into an m-letter word
y in such a way that x can be decoded correctly when any r letters of y are cor-
rupted. We show that most linear orthogonal transformations Q : R

n → R
m form

efficient and robust robust error correcting codes over reals. The decoder (which
corrects the corrupted components of y) is the metric projection onto the range
of Q in the `1 norm. This yields robust error correcting codes over reals (and over
alphabets of polynomial size), with a Gilbert-Varshamov type bound, and with
quadratic time encoders and polynomial time decoders. An equivalent problem
arises in signal processing: how to reconstruct a signal that belongs to a small
class from few linear measurements? We prove that for most sets of Gaussian
measurements, all signals of small support can be exactly reconstructed by the
L1 norm minimization. This is an improvement of recent results of Donoho and
of Candes and Tao. An equivalent problem in combinatorial geometry is the exis-
tence of a symmetric polytope with fixed number of facets and maximal number
of lower-dimensional facets. We prove that most sections of a cube form such
polytopes. Our work thus belongs to a common ground of coding theory, signal
processing, combinatorial geometry and geometric functional analysis. Our argu-
ment, which is based on concentration of measure and improving Lipschitzness
by random projections, may be of independent interest in geometric functional
analysis.

1. Error correcting codes and transform coding

Error correcting codes are used in modern technology to protect information from
errors. Information is formed by finite words over some alphabet F. An encoder
transforms an n-letter word x into an m-letter word y with m > n. The decoder
must be able to recover x correctly when up to r letters of y are corrupted in any
way. Such an encoder-decoder pair is called an (n,m, r)-error correcting code.

Development of algorithmically efficient error correcing codes has been attracting
attention of engineers, computer scientists and applied mathematicians for past five
decades. Known constructions involve deep algebraic and combinatorial methods,
see [26], [32], [33]. This paper develops an approach to error correcting codes from
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the viewpoint of geometric functional analysis (asymptotic convex geometry). It
thus belongs to a common ground of coding theory, signal processing, combinatorial
geometry and geometric functional analysis. Our argument, outlined in Section 3,
may be of independent interest in geometric functional analysis.

Our main focus will be on words over the alphabet F = R or C. In applications,
these words may be formed of the coefficients of some signal (such as image or audio)
with respect to some basis or overcomplete system (Fourier, wavelet, etc.) Finite
alphabets will be discussed in Section 5.

The simplest and most natural way to encode a vector x ∈ R
n into a vector

y ∈ R
m is of course a linear transform

y = Qx (1.1)

where Q is given by an m × n matrix. Elementary linear algebra tells us that
if m ≥ n + 2r and the range of Q is generic1 then x can be recovered from y
even if r coordinates of y are corrupted. This gives an (n,m, r)-error correcting
code. However, the decoder for this code has a huge computational complexity, as
it involves a search through all r-element subsets of the components of y. Then the
problem is:

How to reconstruct a vector y in an n-dimensional subspace Y of R
m

from a vector y′ ∈ R
m that differs from y in at most r coordinates?

What complicates this problem is the arbitrary magnitude of errors in each corrupted
component of y′, in contrast to what happens over finite alphabets such as F = {0, 1}.

A traditional and simple approach to denoising y ′, used in applications such as
signal processing, is the mean least square (MLS) minimization. One hopes that y
is well approximated by a solution to the minimization problem

min
u∈Y

‖u − y′‖2 (MLS)

where ‖x‖2
2 =

∑

i |xi|2. The solution to (MLS) is simply the orthogonal projection
of y′ onto Y . This of course can not recover y exactly, and even the approximation
is typically poor since we have no control of the magnitude of the errors in the
corrupted coordinates. A promising alternative approach is the Basis Pursuit (BP).
We simply replace the 1-norm by the 2-norm and expect y to be the exact and
unique solution to the minimization problem

min
u∈Y

‖u − y′‖1 (BP)

where ‖x‖1 =
∑

i |xi|. Thus a solution to (BP) is the metric projection of y ′ onto Y
with respect to the 1-norm. (BP) be cast as a Linear Programming problem, and
can be attacked with a variety of methods, such as the classical simplex method or
more recent interior point methods that yield polynomial time algorithms [4].

1that is, in general position with respect to all subspaces R
I , |I| = r
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y’

(BP)(MLS)
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The potential of Basis Pursuit for exact reconstruction is illustrated by the fol-
lowing heuristics, essentially due to [13]. The solution u to (MLS) is the contact
point where the smallest Euclidean ball centered at y ′ meets the subspace Y . That
contact point is in general different from y. The situation is much better in (BP):
typically the solution coincides with y. The solution u to (BP) is the contact point
where the smallest octahedron centered at y ′ (the ball with respect to the 1-norm)
meets Y . Because the vector y − y′ lies in a low-dimensional coordinate subspace,
the octahedron has a wedge at y. Thus, many subspaces Y through y will miss
the octahedron of radius y − y′ (as opposed to the Euclidean ball). This forces the
solution u to (BP), which is the contact point of the octahedron, to coincide with y.

The idea of using the 1-norm instead of the 2-norm for better data recovery has
been explored since mid-seventies in various applied areas, in particular geophysics
and statistics (early history can be found in [36]). With the subsequent develop-
ment of fast interior point methods in Linear Programming, (BP) turned into an
effectively solvable problem, and was put forward more recently by Donoho and his
collaborators, triggering massive experimental and theoretical work [4, 17, 18, 19,
14, 25, 34, 35, 36, 13, 10, 11, 15, 16, 7, 6, 8].

The main result of this paper validates the Basis Pursuit method for most sub-
spaces Y under an asymptotically sharp condition on m,n, r. We thus prove that
the Basis Pursuit yields exact reconstruction for most subspaces Y in the Grass-
manian. The randomness is with respect to the normalized Haar measure on the
Grassmanian Gm,n of n-dimensional subspaces of R

m. Positive absolute constants
will be denoted throughout the paper by C, c, C1, . . ..

Theorem 1.1. Let m, n and r < cm be positive integers such that

m = n + R, where R ≥ Cr log(m/r). (1.2)

Then a random n-dimensional subspace Y in R
m satisfies the following with prob-

ability at least 1 − e−cR. Let y ∈ Y be an unknown vector, and we are given a
vector y′ in R

m that differs from y on at most r coordinates. Then y can be exactly
reconstructed from y′ as the solution to the minimization problem (BP).

In an equivalent form, this theorem is an improvement of recent results of Donoho
[10] and of Candes and Tao [8], see Theorem 2.1 below.
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1.1. Error correcting codes. Theorem 1.1 implies a natural (n,m, r)-error cor-
recting code over R. The encoder (1.1) is given by an m × n random orthogonal
matrix2 Q. Its range Y is a random n-dimensional subspace in R

m. The decoder
takes a corrupted vector y′, solves (BP) and outputs QT u = Q−1u. Theorem 1.1
states that this encoder-decored pair is an (n,m, r)-error correcting code with ex-
ponentially good probability ≥ 1 − e−cR, provided the assumption (1.2) holds.

Assumption (1.2) meets, up to an absolute constant, the Gilbert-Varshamov bound
which is fundamental in coding theory (see [26]): n/m ≥ 1−H(Cr/n), where H(x)
is the entropy function. The encoder runs in quadratic time in the size n of the
input, the decoder runs in polynomial time.

1.2. Sharpness. The sufficient condition (1.2) is sharp up to an absolute constant
C (see Section 5) and is only slightly stronger than the necessary condition m ≥
n + 2r. The ratio ε = r/m in (1.2) is the number of errors per letter in the noisy
communication channel that maps y to y ′. Thus ε should be considered as a quality
of the channel, which is independent of the message. Thus (1.2) is equivalent to

m ≥
(

1 + Cε log
1

ε

)

n.

1.3. Robustness. An natural feature of our error correction code is its robustness.
Simple linear algebra yields that the solution to (BP) is stable with respect to the
1-norm – in the same way as the solution to (MLS) is stable with respect to the
2-norm, see [8]. Such robustness allows in particular quantization of the messages.
This immediately yields robust and polynomial-time error correcting codes for finite
alphabets, which asymptotically meet the Gilbert-Varshamov bound, see Section 5.

1.4. Transform coding. In the signal processing, the linear codes (1.1) are known
as transform codes. The general paradigm about transform codes is that the redun-
dancies in the coefficients of y that come from the excess of the dimension m > n
should guarantee a stability of the signal with respect to noise, quantization, era-
sures, etc. This is confirmed by an extensive experimental and some theoretical
work, see e.g. [9, 21, 22, 24, 23, 27, 3, 5] and the bibliography contained therein.
Theorem 1.1 states that most orthogonal transform codes are good error-correcting
codes.

Acknowledgement. This work has started when the second author was visiting
University of Missouri-Columbia as a Miller Visiting Scholar. He is grateful to the
UMC for the hospitality.
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2one can view it as the first n rows of a random matrix from O(m) equipped with the normalized
Haar measure.
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2. Reconstruction of signals from linear measurements.

The heuristic idea that guides the Statistical Learning Theory is that a function
f from a small class should be determined by few linear measurements. Linear
measurements are generally given by some linear functionals Xk in the dual space,
which are fixed (in particular are independent of f). Most common measurements
are point evaluation functionals; the problem there is to interpolate f between known
values while keeping f in the known (small) class. When the evaluation points are
chosen at random, this becomes the ‘proper learning’ problem of the Statistical
Learning Theory (see [31]).

We shall however be interested in general linear measurements. The proposal to
learn f from general linear measurements (‘sensing’) has been originated recently
from a criticism of the current methodology of signal compression. Most of real life
signals, such as images and sounds, seem to belong to small classes. This is because
they carry much of unwanted information that can be discarded with almost no
perceptual loss, which makes such signals easily compressible. Donoho [12] then
questions the conventional scheme of signal processing, where the whole signal must
be first acquired (together with lots of unwanted information) and only then be
compressed (throwing away the unwanted part). Instead, can one directly acquire
(‘sense’) the essential part of the signal, via few linear measurements? Similar issues
are raised in [8]. We shall operate under the assumption that some technology allows
us to take linear measurements in certain fixed ‘directions’ Xk.

We will assume that our signal f is discrete, so we view it as a vector in R
m. Sup-

pose we can take linear measurements 〈f,Xk〉 with some fixed vectors X1, X2, . . . , XR

in R
m. Assuming that f belongs to a small class, how many measurements R are

needed to reconstruct f? And even when we prove that R measurements do deter-
mine f (uniquely or approximately), the algorithmic issue remains unsettled: how
can one reconstruct f from these measurements?

The previous section suggests to reconstruct f as a solution to the Basis Pursuit
minimization problem

min ‖g‖1 subsect to 〈g,Xk〉 = 〈f,Xk〉, k = 1, . . . , R. (BP′)

For the Basis Pursuit to work, the vectors Xk must be in a good position with
respect to all coordinate subspaces R

I , |I| ≤ r. A typical choice for such vectors
would be the independent standard Gaussian vectors3 Xk.

2.1. Functions with small support. In the class of functions with small support,
one can hope for exact reconstruction. Candes and Tao [8] have indeed proved that
every fixed function f with support |suppf | ≤ r can indeed be recovered by (BP ′),
correctly with the polynomial probability 1−m−const, from the R = Cr log m Gauss-
ian measurements. However, the polynomial probability is clearly not sufficient to
deduce that there is one set vectors Xk that can be used to reconstruct all functions
f of small support.

3All the components of Xk are independent standard Gaussian random variables.
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The following equivalent form of Theorem 1.1 does yield a uniform exact recon-
struction. It provides us with one set of linear measurements from from which we
can effectively reconstruct every signal of small support.

Theorem 2.1 (Uniform Exact Reconstruction). Let m, r < cm and R be positive
integers satisfying R ≥ Cr log(m/r). The independent standard Gaussian vectors
Xk in R

m satisfy the following with probability at least 1 − e−cR. Let f ∈ R
m be an

unknown function of small support, |suppf | ≤ r, and we are given R measurements
〈f,Xk〉. Then f can be exactly reconstructed from these measurements as a solution
to the Basis Pursuit problem (BP′).

This theorem gives uniformity in Candes-Tao result [8], improves the polynomial
probability to an exponential probability, and improves upon the number R of mea-
surements (which was R ≥ Cr log m in [8]). Donoho [12] proved a weaker form of
Theorem 2.1 with R/r bounded below by some function of m/r.

Proof. Write g = f − u for some u ∈ R
m. Then (BP′) reads as

min ‖u − f‖1 subsect to 〈u,Xk〉 = 0, k = 1, . . . , R. (2.1)

The constraints here define a random (n = m − R)-dimensional subspace Y of R
m.

Now apply Theorem 1.1 with y = 0 and y′ = f . It states that the unique solution
to (2.1) is u = 0. Therefore, the unique solution to (BP′) is f .

2.2. Compressible functions. In a larger class of compressible functions [12], we
can only hope for an approximate reconstruction. This is a class of functions f that
are well compressible by a known orthogonal transform, such as Fourier or wavelet.
This means that the coefficients of f with respect to a certain known orthogonal
basis have a power decay. By applying an appropriate rotation, we can assume that
this basis is the canonical basis of R

m, thus f satisfies

f∗(s) ≤ s−1/p, s = 1, . . . ,m (2.2)

where f ∗ denotes a nonincreasing rearrangement of f . Many natural signals are
compressible for some 0 < p < 1, such as smooth signals and signals with bounded
variations (see [8]), in particular most photographic images. Theorem 2.1 implies, by
the argument of [8], that functions compressible in some basis can be approximately
reconstructed from few fixed linear measurements. This is an improvement of a
result of Donoho [12].

Corollary 2.2 (Uniform Approximate Reconstruction). Let m and r be positive
integers. The independent standard Gaussian vectors Xk in R

m satisfy the following
with probability at least 1−e−cR. Assume that an unknown function f ∈ R

m satisfies
either (2.2) for some 0 < p < 1 or ‖f‖1 ≤ 1 for p = 1. Suppose that we are given
R measurements 〈f,Xk〉. Then f can be approximately reconstructed from these
measurements: a unique solution g to the Basis Pursuit problem (BP′) satisfies

‖f − g‖2 ≤ Cp

( log(m/R)

R

) 1

p
− 1

2

where Cp depends on p only.
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Corollary 2.2 was proved by Donoho [12] under an additional assumption that
m ∼ CRα for some α > 1. Notice that in this case log(m/R) ∼ log m. Now
this assumption is removed. Candes and Tao [8] proved Corollary 2.2 without the
uniformity in f due to a weaker (polynomial) probability. Finally, Corollary 2.2 also
improves upon the approximation error (there is now the ratio m/r instead of m in
the logarithm).

3. Counting low-dimensional facets of polytopes.

Theorem 1.1 turns out to be equivaent to a problem of counting lower-dimensional
facets of polytopes. Let Bm

1 denote the unit ball with respect to the 1-norm; it is
sometimes called the unit octahedron. The polar body is the unit cube Bm

∞ =
[−1, 1]m. The conclusion of Theorem 1.1 is then equivalent to the following state-
ment: the affine subspace z + Y is tangent to the unit octahedron at point z, where
z = y′ − y. This should happen for all z from the coordinate subspaces R

I with
|I| = r. By the duality, this means that the subspace Y ⊥ intersects all (m − r)-
dimensional facets of the unit cube. The section of the cube by the subspace Y ⊥

forms an origin-symmetric polytope of dimension R and with 2m facets.
Our problem can thus be stated as a problem of counting lower-dimensional facets

of polytopes.

Consider an R-dimensional origin symmetric polytope with 2m facets.
How many (R − r)-dimensional facets can it have?

Clearly4, no more than 2r
(m

r

)
. Does there exist a polytope with that many facets?

Our ability to construct such a polytope is equivalent to the existence of the efficient
error correcting code. Indeed, looking at the canonical realization of such a polytope
as a section of the unit cube by a subspace Y ⊥, we see that Y ⊥ intersects all
the (m − r)-dimensional facets of the cube. Thus Y satisfies the conclusion of
Theorem 1.1. We can thus state Theorem 1.1 in the following form:

Theorem 3.1. There exists an R-dimensional symmetric polytope with m facets
and with the maximal number of (R − r)-dimensional facets (which is 2r

(
m
r

)
), pro-

vided R ≥ Cr log(m/r). A random section of the cube forms such a polytope with
probability 1 − e−cR.

So, how can we prove that a random subspace Y ⊥ indeed intersects all the (m−r)-
dimensional facets of the cube? It is enough to show that Y ⊥ intersects one such fixed

facet with exponential probability (bigger than 1 − 2−r
(m

r

)−1
). The main difficulty

here is that the concentration of measure technique can not be readily applied. This
is because the ∞-norm defined by the unit cube (more precisely, by its facet) has
a bad Lipschitz constant. To improve the Lipschitzness, we first project the facet
onto a random subspace (within its affine span); the random subspace parallel to
which we project is taken from the random directions that form Y ⊥. This creates a
big Euclidean ball inside the projected facet; here we shall use the full strength of
the estimate of Garnaev and Gluskin [20] on Euclidean projections of a cube. The

4Any such facet is the intersection of some r facets of the polytope of full dimension R−1; there
are m facets to choose from, each coming with its opposite by the symmetry.
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existence of the Euclidean ball inside a body creates the needed Lipschitzness, so
we can now use the concentration of measure tecnique.

The rest of the paper is organized as follows. In Section 4 we prove Theorem 1.1.
In Section 5 we discuss some optimality and robustness of the Basis Pursuit with
applications to error correcting codes over finite alphabets.

4. Proof

We shall use the following standard notations throughout the proof. The p-
norm (1 ≤ p < ∞) on R

m is defined by ‖x‖p
p =

∑

i |xi|p, and for p = ∞ it is
‖x‖∞ = maxi |xi|. The unit ball with respect to the p-norm on R

n is denoted by
Bm

p . When the p-norm is considered on a coordinate subspace R
I , I ⊂ {1, . . . ,m},

the corresponding unit ball is denoted by BI
p .

The unit Euclidean sphere in a subspace E is denoted by S(E). The normalized
rotational invariant Lebesgue measure on S(E) is denoted by σE . The orthogonal
projection in onto a subspace E is denoted by PE . The standard Gaussian measure
on E (with the identity covariance matrix) is denoted by γH . When E = R

d, we
write σd−1 for σE and γd for γE.

4.1. Duality. We begin the proof of Theorem 1.1 with a typical duality argument,
leading to the same reformulation of the problem as in [8]. We claim that the
conclusion of Theorem 1.1 follows from (and is actually equivalent to) the following
separation condition:

(z + Y ) ∩ interior (Bm
1 ) = ∅ for all z ∈

⋃

|I|=r

BI
1 . (4.1)

Indeed, suppose (4.1) holds. We apply it for

z :=
y − y′

‖y − y′‖1

noting that z ∈ ⋃

|I|=r BI
1 holds, because y and y′ differ in at most r coordinates.

By (4.1),
(z + v) ∩ interior (Bm

1 ) = ∅ for all v ∈ Y

which implies
‖z + v‖1 ≥ 1 for all v ∈ Y .

Let u ∈ Y be arbitrary. Using the inequality above for v := u−y
‖u−y‖1

, we conclude

that
‖u − y‖1 ≥ ‖y − y′‖1 for all u ∈ Y .

This proves that y is indeed a solution to (BP). The solution to (BP) is unique with
probability 1 in the Grassmanian. This follows from a direct dimension argument,
see e.g. [8].

By Hahn-Banach theorem, the separation condition 4.1 is equivalent to the fol-
lowing: for every z ∈ ⋃

|I|=r boundaryBI
1 there exists w = w(z) ∈ Y ⊥ such that

〈w, z〉 = sup
x∈Bm

1

〈w, x〉 = ‖w‖∞.
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This holds if and only if the components of w satisfy
{

wj = sign(zj) for j ∈ I,

|wj | ≤ 1 for j ∈ Ic.
(4.2)

The set of vectors w in R
m that satisfy (4.2) form a (m − r)-dimensional facet of

the unit cube Bm
∞. Then with E := Y ⊥ we can say that the conclusion of Theorem

1.1 is equivalent to the following:

A random R-dimensional subspace E in R
m intersects all the (m−r)-

dimensional facets of the unit cube with probability at least 1− e−cR.

It will be enough to show that E intersects one fixed facet with the probability
1− e−cR. Indeed, since the total number of the facets is N = 2r

(m
r

)
, the probability

that E misses some facet would be at most Ne−cR ≤ e−c1R with an appropriate
choice of the absolute constant in (1.2).

4.2. Realizing a random subspace. We are to show that a random R-dimensional
subspace E intersects one fixed (m− r)-dimensional facet of the unit cube Bm

∞ with
high probability. Without loss of generality, we can assume that our facet is

F = {(w1, . . . , wm−r, 1, . . . , 1), all |wj | ≤ 1},
whose center is

θ = (0, . . . , 0
︸ ︷︷ ︸

m−r

, 1, . . . , 1).

The probability we are interested in is

P := Prob{E ∩ F 6= ∅}.
We shall restrict our attention to the linear span of F ,

lin(F ) = {(w1, . . . , wm−r, t, . . . , t), all wj ∈ R, t ∈ R},
and even to its the affine span of F ,

aff(F ) = {(w1, . . . , wm−r, 1, . . . , 1), all wj ∈ R}.
Only the random affine subspace E ∩ aff(F ) matters for us, because

P = Prob
{

(E ∩ aff(F )) ∩ F 6= ∅
}

.

The dimension of that affine subspace is almost surely

l := dim(E ∩ aff(F )) = R − r.

We can realize the random affine subspace E∩aff(F ) (or rather a random subspace
with the same law) by the following algorithm:

(1) Select a random variable D with the same law as dist(θ,E ∩ aff(F )).
(2) Select a random subspace L0 in the Grassmanian Gm−r,l. It will realize the

“direction” of E ∩ aff(F ) in aff(F ).
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(3) Select a random point z on the Euclidean sphere D · S(L⊥
0 ) of radius D, ac-

cording to the uniform distribution on the sphere. Here L⊥
0 is the orthogonal

complement of L0 in R
m−r. The vector z will realize the distance from the

affine subspace E ∩ aff(F ) to the center θ of F .
(4) Set L = θ + z + L0. Thus the random affine subspace L has the same law as

E ∩ aff(F ).

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

θ

F

E aff(F) L

0
θ+L o

θ z

θ

aff(F)

L=   +z+Lo

E 

z

Hence

P = Prob{L ∩ F 6= ∅} = Prob{(z + L0) ∩ Bm−r
∞ 6= ∅} = Prob{z ∈ PL⊥

0
Bm−r

∞ }.

H := L⊥
0 is a random subspace in Gm−r,m−r−l = Gm−r,m−R. By the rotational

invariance of z ∈ D · S(H),

P =

∫

R+

∫

Gm−r,m−R

σH(D−1PHBm−r
∞ ) dν(H) dµ(D) (4.3)

where ν is the normalized Haar measure on Gm−r,m−R and µ is the law of D. We
shall bound P in two steps:

(1) Prove that the distance D is small with high probability;
(2) Prove that a suitable multiple of the random projection PHBm−r

∞ has an
almost full Gaussian (thus also spherical) measure.

4.3. The distance D from the center of the facet to a random subspace. We
shall first relate D, the distance to the affine subspace E ∩ aff(F ), to the distance to
the linear subspace E∩lin(F ). Equivalently, we compute the length of the projection
onto E ∩ lin(F ).

Lemma 4.1.

‖PE∩lin(F )θ‖2 =

√
r

r + D2
‖θ‖2.

Proof. Let f be the multiple of the vector PE∩lin(F )θ such that f − θ is orthogonal
to θ. Such a multiple exists and is unique, as this is a two-dimensional problem.
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P
E  lin(F)

θ

0

f

θ
Then f ∈ E∩aff(F ). Notice that D = ‖f −θ‖2. By the similarity of the triangles

with the vertices (0, θ, PE∩lin(F )θ) and (0, f, θ), we conclude that

‖PE∩lin(F )θ‖2 =
r√

r + D2
=

√
r

r + D2
‖θ‖2

because ‖θ‖2 =
√

r. This completes the proof.

The length of the projection of a fixed vector onto a random subspace in Lemma 4.1
is well known. The asymptotically sharp estimate was computed by S. Artstein [1],
but we will be satisfied with a much weaker elementary estimate, see e.g. [30] 15.2.2.

Lemma 4.2. Let θ ∈ R
d−1 and let G be a random subspace in Gd,k. Then

Prob
{

c

√

k

d
‖θ‖2 ≤ ‖PGθ‖2 ≤ C

√

k

d
‖θ‖2

}

≥ 1 − 2e−ck.

We apply this lemma for G = E ∩ lin(F ), which is a random subspace in the
Grassmanian of (l+1)-dimensional subspaces of lin(F ). Since dim lin(F ) = m−r+1,
we have

Prob
{

‖PE∩lin(F )θ‖2 ≥ c

√

l + 1

m − r + 1
‖θ‖2

}

≥ 1 − 2e−cl.

Together with Lemma 4.1 this gives

Prob
{

D ≤ c
√

m − r

√
r

l

}

≥ 1 − 2e−cl. (4.4)

Note that
√

m − r is the radius of the Euclidean ball circumscribed on the facet
F . The statement D ≤ √

m − r would only tell us that the random subspace E
intersects the circumscribed ball, not yet the facet itself. The ratio r/l in (4.4) will
be chosen logarithmically small, which will force E intersect also the facet F .

4.4. Gaussian measure of random projections of the cube. By (4.3) and
(4.4),

P ≥
∫

Gm−r,m−R

σH

( c√
m − r

√

l

r
PHBm−r

∞
)

dν(H) − 2e−cl.

We can replace the spherical measure σH by the Gaussian measure γH via a simple
lemma:

Lemma 4.3. Let K be a star-shaped set in R
d. Then

γd(c
√

d · K) − e−d ≤ σd−1(K) ≤ γd(C
√

d · K) · (1 + e−d).
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Proof. Passing to polar coordinates, by the rotational invariance of the Gaussian
measure we see that there exists a probability measure µ on R

+ so that the Gaussian
measure of every set A can be computed as

∫

R+ σt(A) dµ(t), where σt denotes the

normalized Lebesgue measure on the Euclidean sphere of radius t in R
d. Since K is

star-shaped, σt(K) is a non-increasing function of t. Hence

γd(K) ≥
∫ C

√
d

0
σt(K) dµ(t) ≥ σC

√
d(K) · γd(C

√
dBd

2)

and

γd(K) ≤
∫ c

√
d

0
dµ(t) + σc

√
d(K)

∫ ∞

c
√

d
dµ(t) ≤ γd(c

√
d · Bd

2) + σc
√

d(K).

The classical large deviation inequalities imply γd(c
√

d·Bd
2) ≤ e−d and γd(C

√
dBd

2) ≥
1 − e−d/2. Using the above argument for c

√
d · K, we conclude that γd(c

√
d · K) ≤

e−d + σd−1(K) and γd(C
√

d · K) ≥ σd−1(K) · (1 − e−d/2).

Using Lemma 4.3 in the space H of dimension d = m − R, we obtain

P ≥
∫

Gm−r,m−R

γH

(

c

√

m − R

m − r

√

l

r
PHBm−r

∞
)

dν(H) − 2e−cl − em−R.

By choosing the absolute constant c in the assumption r < cm appropriately small,
we can assume that 2r < R < m/2. Thus

P ≥
∫

Gm−r,m−R

γH

(

c

√

R

r
PHBm−r

∞
)

dν(H) − 2e−cR. (4.5)

We now compute the Gaussian measure of random projections of the cube.

Proposition 4.4. Let H be a random subspace in Gn,n−k, k < n/2. Then the
inequality

γH

(

C

√

log
n

k
PHBn

∞
)

≥ 1 − e−ck

holds with probability at least 1 − e−ck in the Grassmanian.

The proof of this estimate will follow from the concentration of Gaussian measure,
combined with the existence of a big Euclidean ball inside a random projection of
the cube.

Lemma 4.5 (Concentration of Gaussian measure). Let A be a measurable set in
R

n. Then for ε > 0,

γn(A) ≥ e−ε2n implies γn(A + Cε
√

nBn
2 ) ≥ 1 − e−ε2n.

With the stronger assumption γ(A) ≥ 1/2, this lemma is the classical concentra-
tion inequality, see [28] 1.1. The fact that the concentration holds also for expo-
nentially small sets follows formally by a simple extension argument that was first
noticed by D. Amir and V. Milman in [2], see [28] Lemma 1.1.
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The optimal result on random projections of the cube is due to Garnaev and
Gluskin [20].

Theorem 4.6 (Euclidean projections of the cube [20]). Let H be a random subspace
in Gn,n−k, where k = αn < n/2. Then with probability at least 1 − e−ck in the
Grassmanian, we have

c(α)PH (
√

nBn
2 ) ⊆ PH(Bn

∞) ⊆ PH(
√

nBn
2 )

where

c(α) = c

√
α

log(1/α)
.

Proof of Proposition 4.4. Let g1, g2, . . . be independent standard Gaussian
random variables. Then for a suitable positive absolute constant c and for every
0 < ε < 1/2,

γn

(

C

√

log
1

ε
Bn

∞
)

= Prob
{

max
1≤j≤n

|gi| ≤ C

√

log
1

ε

}

≥ (1 − ε2/10)n ≥ e−ε2n.

Since for every measurable set A and every subspace H one has γH(PHA) ≥ γ(A),
we conclude that

γH

(

C

√

log
1

ε
PHBn

∞
)

≥ e−ε2n for 0 < ε < 1/2.

Then by Lemma 4.5,

γH

(

C

√

log
1

ε
PHBn

∞ + Cε
√

nPHBn
2

)

≥ 1 − e−ε2n for 0 < ε < 1/2. (4.6)

Theorem 4.6 tells us that for a random subspace H, if ε = c
√

α = c
√

k/n, then
Euclidean ball is absorbed by the projection of the cube in (4.6):

ε
√

nPHBn
2 ⊂ C

√

log
1

ε
PHBn

∞.

Hence for a random subspace H and for ε as above we have

γH

(

C

√

log
1

ε
PHBn

∞
)

≥ 1 − e−ε2n,

which completes the proof.

Coming back to (4.5), we shall use Lemma 4.4 for a random subspace H in the
Grassmanian Gm−r,m−R. We conclude that if

c

√

R

r
≥ C

√

log
m − r

R − r
, (4.7)

then with probability at least 1 − e−cR in the Grassmanian,

γH

(

c

√

R

r
PHBm−r

∞
)

≥ 1 − e−cR.
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Since m−r
R−r ≤ m

r , the choice of R in (1.2) satisfies condition (4.7). Thus (4.5) implies

P ≥ 1 − 3e−cR.

This completes the proof.

5. Optimality, robustness, finite alphabets

5.1. Optimality. The logarithmic term in Theorems 1.1 and 2.1 is necessary, at
least in the case of small r. Indeed, combining formula (4.3) and Lemmas 4.1, 4.2,
4.3, we obtain

P ≤
∫

Gm−r,m−R

γH

(

c

√

R

r
PHBm−r

∞
)

dν(H) + 2e−cR. (5.1)

To estimate the Gaussian measure we need the following

Lemma 5.1. Let x1, . . . xs be vectors in R
s. Then

γs





s∑

j=1

[−xj, xj ]



 ≤ γs(M · Bs
∞),

where M = maxj=1,...s ‖xj‖2.

The sum in the Lemma is understood as the Minkowski sum of sets of vectors,
A + B = {a + b | a ∈ A, b ∈ B}.
Proof. Let F = span(x1, . . . xs−1) and let V = F⊥. Let v ∈ V be a unit vector.

Set Z =
∑s−1

j=1[−xj, xj ]. Then

γs

( s∑

j=1

[−xj, xj ]
)

=

∫

V
γF

(( s∑

j=1

[−xj, xj ] − tv
)

∩ F
)

dγV (t)

=

∫

[−PV xs,PV xs]
γF (Z + tPF xs)dγV (t).

By Anderson’s Lemma (see [29]), γF (Z + tPFxs) ≤ γF (Z). Thus,

γs

( s∑

j=1

[−xj, xj ]
)

≤ γV ([−PV xs, PV xs]) · γF (Z) ≤ γ1([−M,M ]) · γF (Z).

The proof of the Lemma is completed by induction.

The Gaussian measure of a projection of the cube can be estimated as follows.

Proposition 5.2. Let H be any subspace in Gn,n−k, k < n/2. Then

γH

( c√
k

√

log
n

k
PHBn

∞
)

≤ e−cn/k. (5.2)
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Proof. Decompose I into the disjoint union of the sets J1, . . . Js+1, so that each of
the sets J1, . . . Js contains k + 1 elements and (k + 1)s < n ≤ (k + 1)(s + 1). Let
1 ≤ j ≤ s. Let Uj = H ∩ (PHei, i ∈ {1, . . . n} \ Jj)

⊥, where e1, . . . en is the standard
basis of R

n. Then Uj is a one-dimensional subspace of H. Set

xj =
∑

i∈Jj

εiPHei,

where the signs εi ∈ {−1, 1} are chosen to maximize ‖PUj
xj‖2. Let E = span(x1, . . . xs−1).

Since PUj
Bn

∞ = [−xj, xj ], we get

PHBn
∞ ∩ E =

s∑

j=1

[−xj, xj ],

where the sum is understood in the sense of Minkowski addition. Since ‖PUJ
‖ = 1,

‖xj‖2 ≤ C
√

k and by Lemma 5.1,

γE




c̄
√

log s√
k

s∑

j=1

[−xj, xj ]



 ≤ γE(c′
√

log s · BE
∞) ≤ e−cs

for some appropriately chosen constant c̄. Finally, log-concavity of the Gaussian
measure implies that for any convex symmetric body K ⊂ H

γH(K) ≤ γE(K ∩ E).

Combining (5.1) and (5.2) we obtain P ≤ 2e−cR, whenever R ≤ c log(m/r).

5.2. Robustness and codes for finite alphabets. Robustness is a well known
property of the Basis Pursuit method. It states that the solution to (BP) is stable
with respect to the 1-norm. Indeed, it is not hard to show that, once Theorem 1.1
holds, the unknown vector y in Theorem 1.1 can be approximately recovered from
y′′ = y′ + h, where h ∈ R

m is any additional error vector of small 1-norm (see [8]).
Namely, the solution u to the Basis Pursuit problem

min
u∈Y

‖u − y′′‖1

satisfies
‖u − y‖1 ≤ 4‖h‖1.

This implies a possibility of quantization of the coefficients in the process of encoding
and yields robust error correcting codes over alphabets of polynomial size, with a
Gilbert-Varshamov type bound, and with quadratic time encoders and polynomial
time decoders.

The following is the (m,n, r)-error correcting code under the Gilbert-Varshamov
type assumption (1.2), with input words x over the alphabet {1, . . . , p} and the

encoded words y over the alphabet {1, . . . , Cpn3/2}.
The construction is the same as in (1.1); we just have to introduce quantization.

The encoder takes x ∈ {1, . . . , p}n, computes y = Qx and outputs the ŷ whose
coefficients are the quantized coefficients of y with step 1

10m . Then ŷ ∈ 1
10mZ

m ∩
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[−p
√

m, p
√

m]m, which by rescaling can be identified with {1, . . . , Cpn3/2} because
we can assume that m ≤ 2n. The decoder takes y ′ ∈ 1

10mZ
m, finds solution u to

(BP) with Y = range(Q), inverts to x′ = QT u and outputs x̂′ whose coefficients are
the quantized coefficients of x′ with step 1.

This is indeed an (m,n, r)-error correcting code. If y ′ differs from ŷ on at most
r coordinates, this and the condition ‖ŷ − y‖1 ≤ 1

10 implies by the robustness that

‖u− y‖1 ≤ 0.4. Hence ‖x′−x‖2 = ‖QT (u− y)‖2 = ‖u− y‖2 ≤ ‖u− y‖1 ≤ 0.4. Thus

x̂′ = x, so the decoder recovers x from y′ correctly.
The robustness also implies a “continuity” of our error correcting codes. If the

number of corrupted coordinates in the received message y ′ is bigger than r but is
still a small fraction, then the (m,n, r)-error correcting code above can still recover
y up to some small fraction of the coordinates.

We hope to return to consequences of our method, in particular to robustness and
continuity of our codes and generally to codes over finite alphabets, in a separate
publication.
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