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Motivation
Numerical modeling of storm surges and tsunamis

Alevras 2009 c�Anders Garwin 2006
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Outline

Discontinuous Galerkin Method applied to SWE

Coastal Ocean Modeling

Adaptive Mesh Refinement
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Shallow Water Equations

∂q

∂t
+∇ · F (q) = S (q) ,where q = (φ,U)T

F (q) =

�
U

U⊗U

φ + 1
2

�
φ2 − φ2

b

�
I2

�

S (q) = −
�

0
f (k × U)− φs∇φb − τ

ρH + γU

�

where,
φ = g (hs + hb)

U = φū

hs− free surface height, hb− bathymetry
g− gravitational acceleration
f = f0 + β (y − ym)− Coriolis parameter
τ− wind stress, γ− bottom friction
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Discontinuous Galerkin Method
The domain Ω is decomposed into Ne conforming elements.

Ω =
Ne�

e=1

Ωe

For the operators, a non−singular mapping

x = Ψ (ξ)

transforms the physical coordinate system X = (x , y)T to local
reference coordinate system ξ = (ξ, η)T .
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Discontinuous Galerkin Method
The local elementwise solution is approximated by Nth order
polynomial in ξ by

qN (ξ) =
Mn�

i=1

ψi (ξ) qN (ξi )

where Mn = 1
2 (N + 1) (N + 2) is the number of interpolation

points and ψi (ξ) the associated Lagrange polynomials.
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Triangular basis functions

Triangular basis functions of order N=1 at 3 interpolation points.
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Triangular basis functions

Triangular basis functions of order N=2 at 6 interpolation points.
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Triangular basis functions

Triangular basis functions of order N=3 at 10 interpolation points.
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Discontinuous Galerkin Method
Applying DG to the Shallow water equations to obtain the weak
form

�

Ωe

�
∂q(e)N

∂t
− F (e)

N ·∇− S (e)
N

�
ψi (x) dx

= −
3�

l=1

�

Γe

ψi (x) n
(e,l) · F (∗,l)

N dx

Integrating the above equation by parts,

�

Ωe

ψi (x)

�
∂q(e)N

∂t
+∇ · F (e)

N − S (e)
N

�
dx

=
3�

l=1

�

Γe

ψi (x) n
(e,l) ·

�
F (e)
N − F (∗,l)

N

�
dx
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Discontinuous Galerkin Method

Rusanov Numerical Flux

F (∗,l)
N =

1

2

�
FN

�
q(e)N

�
+ FN

�
q(l)N

�
− |λ(l)|

�
q(l)N − q(e)N

�
n(e,l)

�

Where,

λ(l) = max

�
|U(e)|+

�
φ(e), |U(l)|+

�
φ(l)

�

with,

U(e,l) = u(e,l) · n(l)
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Matrix form of semi−discrete equations
Using the polynomial approximation qN =

�MN
i=1 ψiqi

�

Ωe

ψiψjdx
∂q(e)j

∂t
+

�

Ωe

ψi∇ψjdx · F (e)
j −

�

Ωe

ψiψjdxS
(e)
j

=
3�

l=1

�

Γe

ψiψjn
(e,l)dx ·

�
F (e) − F (∗,l)

�

j

Defining element matrices as

M(e)
ij =

�

Ωe

ψiψjdx , M
(e,l)
ij =

�

Γe

ψiψjn
(e,l)dx , D(e)

ij =

�

Ωe

ψi∇ψjdx
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Matrix form of semi−discrete equations
Eliminating mass matrix on LHS

D̂(e)
=

�
M(e)

�−1
D(e), M̂(e,l)

=

�
M(e)

�−1
M(e,l)

∂q(e)i

∂t
+

�
D̂(e)
ij

�T
F (e)
j − S (e)

i =

3�

l=1

�
M̂(e,l)

ij

�T �
F (e) − F (∗,l)

�

j
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Inundation Modeling
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Coastal ocean modeling

The shoreline is represented as a moving boundary condition
where φ = φs + φb = 0

Moving front is described as x = xb +
�
vbdt.

Where xb is initial position and v the velocity of the front.

Approaches used to model the wetting and drying of land.
Fixed grid methods. − Easier to implement. Additional
algorithms required to maintain depth positivity.
Moving grid methods. − traditionally perceived as
cumbersome. (Lynch and Gray 1978)
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Wetting and Drying Algorithm

!
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Wetting and Drying Algorithm − based on Gourgue et al 2009
Conservation of Mass

∂φs

∂t
= −F (U)

where φ = φs + φb, and operator F (U) ≡ F (φs , ū)

Step 1 − limit φ to a threshold value.

φ∗
s = max (φn

s ,Hthreshold − φb)

Step 2

φ∗∗
s

∆t
= −F (φ∗

s , ū)

Step 3 − ensure free surface does not move to dry areas.

φn+1
s

∆t
= −F

∗ (φ∗
s , ū)
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Wetting and Drying Algorithm − based on Gourgue et al 2009
Conservation of Mass in matrix form

∂φ∗∗(e)
i

∂t
= −

�
D̂(e)
ij

�T
F (e)
j +

3�

l=1

�
M̂(e,l)

ij

�T �
F (e) − F (∗,l)

�

j

Let,

F s
j (φ

∗
s , ū) = −

�
D̂(e)
ij

�T
F (e)
j

F c
j (φ∗

s , ū) =
3�

l=1

�
M̂(e,l)

ij

�T �
F (e) − F (∗,l)

�

j
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Wetting and Drying Algorithm − based on Gourgue et al 2009

φn+1
s

∆t
= F

c∗
j (φ∗

s , ū) + F
s∗
j (φ∗

s , ū)

Where,

F
c∗
j = { 0 if F

j
c < 0 & φn < Hthreshold

F
j
c otherwise

F
s∗
j = { 0 if there is a node i ∈ Ωe with F

j
s < 0 & φ < Hthreshold

F
j
s otherwise

*limited to using linear elements.
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Steady state test

Is the model well balanced ?
Bottom topography is defined as,

hb(x) = max
�
0, 0.25− 5

�
x − 0.52

��
, 0 ≤ x eq 1

Initial condition

hs + hb = max (0.2, b)

φU = 0 over entire domain
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Steady state test case
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Balzano [1998] Test Case 1

Bottom topography is defined as,

hb(x) =
x

2760

Domain size is 13,800 meters. Sinusoidal forcing at the open end is
given by,

φs = g ∗ (2sin
�

2πt

43200

�
)

Thursday, October 21, 2010



Balzano [1998] Test Case 1

t=0

t=20

t=40

t=60

t=80

t=100
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Balzano [1998] Test Case 2

Bottom topography is defined as,

hb(x) =






x
2760 if x ≤ 3600m, or if x ≥ 6000m
30
23 if 3600m ≤ x ≤ 4800m
x

920 − 100
23 if 4800m ≤ x ≤ 6000m

Domain size is 13,800 meters. Sinusoidal forcing at the open end is
given by,

φs = g ∗ (2sin
�

2πt

43200

�
)
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Balzano [1998] Test Case 2

t=0

t=20

t=40
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t=80
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Balzano [1998] Test Case 3

Bottom topography is defined as,

hb(x) =






x
2760 if x ≤ 3600m, or if x ≥ 6000m
−x
2760 + 60

23 if 3600m ≤ x ≤ 4800m
x

920 − 100
23 if 4800m ≤ x ≤ 6000m

Domain size is 13,800 meters. Sinusoidal forcing at the open end is
given by,

φs = g ∗ (2sin
�

2πt

43200

�
)
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Balzano [1998] Test Case 3
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t=20

t=0

t=80

t=100

Thursday, October 21, 2010



Thursday, October 21, 2010



Balzano [1998] 2D Test Case 1
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Balzano [1998] 2D Test Case 2
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Balzano [1998] Test Case 3

Thursday, October 21, 2010



Thursday, October 21, 2010



Adaptive Mesh Refinement
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Adaptive Mesh Refinement

2−3 and 3−2 flipping

Edge bisection

4−4 flipping

Edge collapse
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2D Unstructured AMR − S. Menon (In Progress)
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3D Unstructured AMR − Gopalakrishnan, Quan and Schmidt
[2006]

 

 

Figure 6: Droplet shapes at times: 0.0, 2.5, 5.0, 7.0, 10.0, 12.0 and 15.0  
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Parallel AMR
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Conclusions and Future Directions

DG provides a robust framework to implement SWE.

Use of triangular DG method enables the modeling of complex

coastlines.

Adaptive mesh refinement helps in providing adequate

resolution to resolve interesting features.

Higher order Wetting and Drying Methods.

Wind forcing data from mesoscale atmospheric codes -

NUMA.

Moving mesh technique may provide a useful alternative to

model inundation as a moving boundary.

Collaboration with Randy LeVeque and Kyle Mandli.

Comparison and verification of test cases.
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