Large Eddy Simulation Applications to Meteorology

Marcelo Chamecki

Department of Meteorology

The Pennsylvania State University

Tutorial School on Fluid Dynamics: Topics in Turbulence May 27th 2010, College Park, MD

The Atmospheric Boundary Layer (ABL)

- ABL: lowest region of the atmosphere, directly affected by the Earth's surface
- Interaction with surface: turbulent fluxes of momentum, heat, water vapor, etc.
- The ABL has a strong diurnal cycle due to solar radiation
- First order approximation: very high-Re (~10⁷) turbulent channel flow, over rough wall, strongly affected by buoyancy forces

The two canonical states of ABL

Daytime ABL (unstable temperature stratification)

Nighttime ABL (stable temperature stratification)

Figures from Kaimal & Finnigan (1994)

Diurnal evolution of the ABL

Observations using LIDAR

Figures from NCAR website: www.eol.ucar.edu/lidar/real/obs/obs.html

LES: from high-Re channel to ABL flows

LES: from high-Re channel to ABL flows

LES of ABL flows: equation set

• Filtered Navier-Stokes equations (Boussinesq approx.):

- In this "simplified approach", the two critical components of a good LES simulation are:
 - wall models
 - SGS models

Boundary conditions - Wall models

The physical boundary condition: - No-slip at solid boundaries $\tilde{\mathbf{u}} = \mathbf{0}$ Problem for LES of high-Re flows: • Outer flow - Cannot resolve sharp gradients! (computed) The numerical boundary condition: ٠ - Equilibrium-stress models - Assume constant-flux layer Inner flow (modeled) - Use log-law to model turbulent fluxes between first grid point and solid wall $\frac{U}{v} = \frac{1}{\kappa} \ln \left(\frac{z}{z}\right)$

Figure adapted from Piomelli (PAS-1999)

Log-law for a rough surface

Replace ν/u_* by roughness length scale z_0

Monin-Obukhov Similarity Theory

- In the atmospheric surface layer the log-law has to be modified to account for effects due to temperature stratification
- Monin and Obukhov (1954):

"In the surface layer (constant flux layer) the structure of the turbulence is determined by a few key parameters."

- Height above the ground: z
- Kinematic surface stress: $au_o/
 ho=u_*^2$
- Kinematic surface heat flux: $H_o/(\rho c_p)$
- Stability parameter: $g/\overline{ heta}$
- Obukhov (1946): Obukhov length $L = \frac{-(u_*)^3}{\kappa(g/\overline{\theta})(H_o/\rho c_p)}$

Monin-Obukhov Similarity Theory (cnt'd)

 Lilly (1968): "|L| is an upper bound to the height at which turbulence is strongly influenced by surface shear"

LIDAR image of the convective boundary layer (CBL) around noon

Monin-Obukhov Similarity Theory (cnt'd)

- Dimensional analysis:
 - neutral temperature stratification:

$$\frac{d\overline{u}}{dz} = f(z, u_*) \Rightarrow \frac{z}{u_*} \frac{d\overline{u}}{dz} = \frac{1}{\kappa} \Rightarrow \frac{\overline{u}}{u_*} = \frac{1}{\kappa} \ln\left(\frac{z}{z_o}\right)$$

- non-neutral temperature stratification:

$$\frac{d\overline{u}}{dz} = f(z, u_*, L) \Rightarrow \frac{\kappa z \, d\overline{u}}{u_* \, dz} = \underbrace{\phi_m \left(\frac{z}{L}\right)}_{\substack{\mathsf{M}-\mathsf{O}\\\mathsf{Similarity}\\\mathsf{function}}}$$

• From experimental data:

$$\phi_m\left(\frac{z}{L}\right) = \begin{cases} (1 - 16z/L)^{-1/4} & \text{if } z/L < 0\\ 1 + 5z/L & \text{if } z/L > 0 \end{cases}$$

Monin-Obukhov Similarity Theory (cnt'd)

- Mean velocity profile:
 - from MOS Theory:

 $\frac{\kappa z}{u_*} \frac{d\overline{u}}{dz} = \phi_m \left(\frac{z}{L}\right)$

- Integrating:
 - $$\begin{split} \overline{u}_{*} &= \frac{1}{\kappa} \left[\ln \left(\frac{z}{z_{o}} \right) \Psi_{m} \left(\frac{z}{L} \right) \right] \\ & \text{Stability correction} \\ & \text{(deviation from log-law)} \\ \Psi_{m} \left(\frac{z}{L} \right) &= \int \frac{1 \phi_{m}(z/L)}{z/L} d(z/L) \end{split}$$
- Equilibrium stress model:

$$u_* = \left[\frac{\kappa \widetilde{u}_h}{\ln\left(\frac{z}{z_o}\right) - \Psi_m\left(\frac{z}{L}\right)}\right]$$

Figure adapted from Kaimal & Finnigan (1994)

Subgrid Scale (SGS) Models for ABL flows

- Two main problems:
 - Complex physics introduced by mean shear and buoyancy effects
 - Poor resolution at the first vertical grid levels (filter in the production range)

- Some possible approaches:
 - Prescribe effects (e.g. Canuto and Cheng, 1997)
 - "Second-order closures" (e.g. Wyngaard, 2004)
 - Dynamic models based on Germano Identity
- As an example here: Smagorinsky and dynamic Smagorinsky models $\tau_{ij}^{smag} = -2(c_s \Delta)^2 |\tilde{\mathbf{S}}| \tilde{S}_{ij}$

The dynamic Smagorinsky model

- SGS stress at grid-filter scale (Δ): $\tau_{ij} = \widetilde{u_i u_j} \widetilde{u}_i \widetilde{u}_j$
- SGS stress at test-filter scale ($\alpha \Delta$): $T_{ij} = \overline{\widetilde{u_i u_j}} \overline{\widetilde{u}_i \widetilde{\widetilde{u}_j}}$
- Germano Identity: $L_{ij} \equiv \overline{\widetilde{u}_i}\overline{\widetilde{u}}_j \overline{\widetilde{u}}_i\overline{\widetilde{u}}_j = T_{ij} \overline{\tau}_{ij}$
- Smagorinsky model at both scales:

 $\tau_{ij}^{smag} = -2[c_s(\Delta)\Delta]^2 |\tilde{\mathbf{S}}| \tilde{S}_{ij} \qquad T_{ij}^{smag} = -2[c_s(\alpha\Delta)\alpha\Delta]^2 |\tilde{\mathbf{S}}| \tilde{\tilde{\mathbf{S}}}_{ij}$

- Define the error of the model as: $\epsilon \equiv L_{ij} (T_{ij}^{smag} \overline{\tau}_{ij}^{smag})$
- Assume scale similarity: $c_s(\alpha \Delta) = c_s(\Delta)$ \leftarrow Can be justified for filters in the inertial range

Minimizing least squared error yields:

$$(c_s^{\Delta})^2 = \frac{\left\langle L_{ij} M_{ij} \right\rangle}{\left\langle M_{mn} M_{mn} \right\rangle} \qquad \qquad M_{ij} = 2\Delta^2 (\overline{|\mathbf{\tilde{S}}|\mathbf{\tilde{S}}}_{ij} - \alpha^2 |\mathbf{\tilde{S}}| \overline{\mathbf{\tilde{S}}}_{ij})$$

A priori SGS model tests for ABL flows

Kettleman City, CA, 2000 HATS campaign (NCAR-JHU) 2D filter (using Taylor's hypothesis):

Determine c_s^2 by requiring the model to predict the correct dissipation:

Experimental evidence for scale dependence

- Scale similarity: Cs can depend on height (z) but not on filter width (Δ)
- Measurements at a constant height above ground (z_1 =3.41m and z_2 =3.92m)
- A priori analysis using different filter widths

UC Davis, CA, Summer 1999 Porte-Agel et al. (2001)

A Scale-dependent dynamic model

- Dynamic model:
 - Assume $c_s(\alpha \Delta) = c_s(\Delta) = c_s$
 - Use Germano identity to determine c_s
- Scale-dependent dynamic model: (Porte-Agel et al., 2000; Bou-Zeid et al., 2005)
 - Assumption: power-law dependence $c_s(\Delta) = m\Delta^{\phi}$
 - Approach:

a) Apply 2 test-filters, typically at scales $\alpha \Delta$ and $\alpha^2 \Delta$ b) Use Germano identity twice to solve for m and ϕ

Experimental validation

• Power-law dependence implies:

$$\frac{c_s(\alpha^2 \Delta)}{c_s(\alpha \Delta)} = \frac{m(\alpha^2 \Delta)^{\phi}}{m(\alpha \Delta)^{\phi}} = \alpha^{\phi}$$

$$\frac{c_s(\alpha\Delta)}{c_s(\Delta)} = \frac{m(\alpha\Delta)^{\phi}}{m(\Delta)^{\phi}} = \alpha^{\phi}$$

Test of validity:

$$\frac{c_s(\alpha^2 \Delta)}{c_s(\alpha \Delta)} = \frac{c_s(\alpha \Delta)}{c_s(\Delta)}$$

• For scale similarity to hold:

$$c_s(\Delta) = m\Delta^{\phi} = c_s^* \Rightarrow \phi = 0$$

$$\phi = 0 \Rightarrow \frac{c_s(\alpha^2 \Delta)}{c_s(\alpha \Delta)} = \frac{c_s(\alpha \Delta)}{c_s(\Delta)} = 1$$

Lake Geneva, Switz., 2006 Bou-Zeid et al. (2008)

A posteriori validation for high-Re channel flow

20

18

16

 \overline{u}

 u_*

- Comparison of SGS models: ٠
 - Standard Smagorinsky
 - Dynamic model (scale similar)

Buoyancy effects on model coefficient

- Buoyancy has a profound effect on interactions among scales in ABL flows
- Model constants will depend on buoyancy/shear balances in models that do not account for these effects explicitly (Chamecki et al., 2007)

Applications - The convective boundary layer

- Strong surface heating and weak mean wind
- Buoyancy dominates the dynamics, shear is not important (L is very small)
- Flow is dominated by large coherent structures (thermal plumes)

108. Buoyant thermals rising from a heated surface. Mushroom-shaped plumes rise periodically above a heated copper plate. They are made visible by an electrochemical

technique using thymol blue. The heating rate is higher in the photograph at the right. Sparrow, Husar & Goldstein 1970 An album of fluid motion (Van Dyke)

- Important consequences for atmospheric dispersion
 - Increased vertical mixing
 - Asymmetric distribution of vertical velocity

LES of convective boundary layer

- Simulation from Peter Sullivan (NCAR)
- Strong surface heating and no mean wind
- Domain: 20 x 20 x 1.5 km³
 (400 x 400 x 96 grid points)

Dispersion in convective boundary layers

JANUARY 1972

JAMES W. DEARDORFF

Numerical Investigation of Neutral and Unstable Planetary Boundary Layers

JAMES W. DEARDORFF

National Center for Atmospheric Research, 1 Boulder, Colo. 80302

- Major contribution to understanding of the CBL (scaling, eddy structure, etc.)
- 4 paragraphs on dispersion in the CBL at the very end

Main conclusions:

- Cluster rises fast (on updrafts)
- 2) Cluster overshoots equilibrium
 - Fast vertical spread (1 o2 two orders of magnitude faster than neutral)

Dispersion in convective boundary layers (cnt'd)

- Deardorff's LES results lead to a series of studies of dispersion in the CBL
- Laboratory experiments of point source release in convection chambers by Willis and Deardorff

- Confirmed by LES (Lamb, 1978)
- CONDORS field experiment (1983)
- Adopted by EPA in 2005 (AERMOD)

LES of the complete diurnal cycle

- Domain: 4 x 4 x 2 km³ (160 x 160 x 160 grid points)
- Scale-dependent dynamic Smagorinky SGS model
- · Forced using geostrophic velocity and surface heat flux from experimental data

LES of the complete diurnal cycle (cnt'd)

LES of the complete diurnal cycle (cnt'd)

Evolution of stable and unstable ABL

Evolution of the nocturnal low-level jet

Challenges: moving to more realistic conditions

- These idealized studies are very useful in building up basic understanding of the dynamics of ABL flows
- Moving toward more "realistic" conditions require:
 - Replacing periodic horizontal b.c.'s by inflow from regional/mesoscale models
 - Coupling radiation and dynamics (surface energy balance, clouds, etc.)
 - Resolving vegetated surfaces (instead of modeling trees as roughness)
 - Accounting for topography

- ...

- Resolving urban areas (buildings, etc.)
- Including surface heterogeneity (resolved and subgrid)

Turbulence above and within plant canopies

- Observations suggest existence of coherent structures:
 - Strong organized motions of short duration
 - Large contribution to fluxes of momentum/heat
- Gao et al. (1989) measurements over forest:

Antonia et al. (1986) - ramp-cliff structures form at the diverging separatrix between two large eddies

Turbulence above and within plant canopies (cnt'd)

• Mean velocity profile and mixing layer analogy (Raupach et al., 1996):

- Visual hint: waving cereal crops (mostly wheat) "honami"
- Differences from ML: growth is limited by canopy and structures travel faster
- Experimental data lack spatial information required to fully understand the development and dynamic of these coherent structures

LES over vegetated surfaces

LES over vegetated surfaces (cnt'd)

• Detailed validation by Su et al. (1998) and Dupont and Brunet (2008)

LES over vegetated surfaces (cnt'd)

LES over vegetated surfaces (cnt'd)

From Dupont and Brunet (2009)

LES studies of pollen dispersion

 Area source release of ragweed pollen:

Chamecki et al. (2008, 2009)

Effect of source field size on pollen dispersion

Pollen concentration boundary layer

Pollen BL growth: ٠

Field size

0

Δ

 10^{0}

10¹

 r/δ_c

1L

2L

4L

8L

10⁻¹

10⁻³

10⁻⁴

10²

10³

Challenges: moving to more realistic conditions

- Moving toward more "realistic" conditions require:
 - Replacing periodic horizontal b.c.'s by inflow from regional/mesoscale models
 - Coupling radiation and dynamics (surface energy balance, clouds, etc.)
 - Resolving vegetated surfaces (instead of modeling trees as roughness)
 - Accounting for topography

- ...

- Resolving urban areas (buildings, etc.)
- Including surface heterogeneity (resolved and subgrid)

Thanks!

Equilibrium-stress wall model for ABL

- Using MOS and the equilibrium-stress assumption
 - Determine the kinematic wall stress from resolved velocity:

$$u_{*} = \begin{bmatrix} \frac{\kappa \tilde{u}_{h}}{\ln\left(\frac{z}{z_{o}}\right) - \Psi_{m}\left(\frac{z}{L}\right)} \end{bmatrix}$$
Resolved horizontal velocity at first grid point
$$\tilde{u}_{h} = \left[(\tilde{u}_{1})^{2} + (\tilde{u}_{2})^{2} \right]^{1/2}$$

- Divide stress in components proportional to velocity components:

Streamwise:
$$\tau_{w,1} = -\rho u_*^2 \left(\frac{\tilde{u}_1}{\tilde{u}_h} \right)$$

Spamwise: $\tau_{w,2} = -\rho u_*^2 \left(\frac{\tilde{u}_2}{\tilde{u}_h} \right)$

This is a VERY rough method to enforce boundary conditions! (We need to do better than that)

and the second second second