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Introduction
Particle Image Velocimetry (PIV):

Imaging of tracer particles, calculate displacement: local fluid velocity

Twin Nd:YAG
laser CCD camera

Light sheet
optics

Frame 1: t = t0

Frame 2: t = t0 + t

Measurement
section



Introduction
Particle Image Velocimetry (PIV)
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• divide image pair in
interrogation regions

• small region:
~ uniform motion

• compute displacement
• repeat !!!



Introduction
Particle Image Velocimetry (PIV):

Instantaneous measurement of 2 components in a plane

conventional methods
(HWA, LDV)

• single-point measurement
• traversing of flow domain
• time consuming
• only turbulence statistics

z

particle image velocimetry

• whole-field method
• non-intrusive (seeding
• instantaneous flow field



Introduction
Particle Image Velocimetry (PIV):

Instantaneous measurement of 2 components in a plane

particle image velocimetry

• whole-field method
• non-intrusive (seeding
• instantaneous flow field

instantaneous vorticity field



Example: coherent structures



Example: coherent structures

Turbulent pipe flow
Re = 5300
100×85 vectors“hairpin” 

vortex



Example: coherent structures

Van Doorne, et al.



Overview

PIV components:

- tracer particles
- light source
- light sheet optics
- camera

- measurement settings

- interrogation
- post-processing

Hardware (imaging)

Software (image analysis)



Tracer particles

Assumptions:

- homogeneously distributed
- follow flow perfectly
- uniform displacement within interrogation region

Criteria:

-easily visible
-particles should not influence fluid flow!

small, volume fraction < 10-4



Image density

NI << 1

NI >> 1

particle tracking velocimetry

particle image velocimetry

low image density

high image density



Assumption: 
uniform flow 
in “interrogation area”

Evaluation at higher density

High NI : no longer possible/desirable to follow individual tracer particles

Particle can be matched with a number of candidates

Possible „matches‟

Repeat process for other particles, sum up: “wrong” combinations will 
lead to noise, but “true” displacement will dominate

Sum of all possibilities



Statistical estimate of particle motion

 Statistical correlations used to find 

average particle displacement
1-d image @ t=t0

1-d image @ t=t1
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Cross-correlation



1-D cross-correlation example

R(i)
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Finding the maximum displacement

-Shift 2nd window with respect to the first

- Calculate “match”

- Repeat to find best estimate

Typically 16x16 or 32x32 pixels

Good indicator: R(i, j)
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Finding the maximum displacement

Bad match: sum of product of intensities low

-Shift 2nd window with respect to the first

- Calculate “match”

- Repeat to find best estimate

Typically 16x16 or 32x32 pixels

Good indicator: R(i, j)
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Finding the maximum displacement

Good match: sum of product of intensities high

-Shift 2nd window with respect to the first

- Calculate “match”

- Repeat to find best estimate

Can be implemented as 2D FFT for digitized data

o Impose periodic conditions on interrogation region…causes bias error if not treated 
properly.

Typically 16x16 or 32x32 pixels

Good indicator: R(i, j)
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Cross-correlation

This “shifting” method can formally be expressed as a cross-correlation:

1 2( )R I I ds x x s x

- I1 and I2 are interrogation areas (sub-windows) of the total frames
- x is interrogation location
- s is the shift between the images  

“Backbone” of PIV:
-cross-correlation of interrogation areas
-find location of displacement peak



Cross-correlation

RD

RF

RC

correlation 
of the mean correlation of mean &

random fluctuations correlation due 
to displacement

peak: mean
displacement



Influence of NI

NI = 5 NI = 10 NI = 25

More particles: better signal-to-noise ratio

Unambiguous detection of peak from noise:
NI=10 (average), minimum of 4 per area in 95% of areas
(number of tracer particles is a Poisson distribution)
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DI int. area size
M0 magnification



Influence of NI

NI = 5 NI = 10 NI = 25

PTV: 1 particle used for velocity estimate; error e
PIV: error ~ e/sqrt(NI)



Influence of in-plane displacement
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FI = 1.00

0.28
0.64

0.56
0.36

0.85
0.16

II

IIIDD
D

Y

D

X
YXFFNR 11),(~)(s

X,Y-Displacement
<
quarter of window size



Influence of out-of-plane displacement

Z / z0 = 0.00
FO = 1.00
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Influence of gradients

Displacement differences <
3-5% of int. area size, DI

Displacement differences <
Particle image size, d

a / DI = 0.00
a / d = 0.00
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2 2
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R.D. Keane & R.J. Adrian



PIV “Design rules”

• image density NI >10
• in-plane motion | X| < ¼ DI

• out-of-plane motion | z| < ¼ z0

• spatial gradients M0 u t < d

Obtained by Keane & Adrian (1993) using synthetic data



Window shifting

• in-plane motion | X| < ¼ DI

strongly limits dynamic range of PIV

large window size: too much spatial averaging



Window shifting

• in-plane motion | X| < ¼ DI

strongly limits dynamic range of PIV

small window size: too much in-plane pair loss



Window shifting

• in-plane motion | X| < ¼ DI

strongly limits dynamic range of PIV

Multi-pass approach:
start with large windows,
use this result as „pre-shift‟
for smaller windows…

No more in-plane pair loss limitations!



Window shifting: Example

fixed windows matched windows

Grid turbulence

windows at same location windows at 7px „downstream‟



Window shifting: Example

Vortex ring, decreasing window sizes

Raffel,
Willert and
Kompenhans



Sub-pixel accuracy

Maximum in the correlation plane: single-pixel resolution of displacement?

But the peak contains a lot more information!

Gaussian particle images Gaussian correlation peak (but smeared)



Sub-pixel accuracy

Fractional displacement can be obtained using 
the distribution of gray values around maximum

r

X



• peak centroid

• parabolic peak fit

• Gaussian peak fit
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Peak locking

“zig-zag” structure, sudden “kinks” in the flow



Sub-pixel Interpolation Errors

• Accuracy depends on:
– particle image size

– noise in data (seeding density, camera 
noise)

– shear rate

• Can exhibit “peak locking”
– Interpolation of peak is biased towards a 

symmetric data distribution (Integer and 1/2 

integer peak locations)

– Polynomials exhibit strong locking when 

particle diameter is small 

– Gaussian is most commonly used

– Splines are very robust, but expensive to 

calculate

• See Particle Image Velocimetry, by Raffel, 
Willert, and Kompenhans, Springer-Verlag, 
1998.
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Peak locking

centroid Gaussian peak fit
Even with Gaussian peak fit: 

particle image size too small peak locking
(Consider a „point particle‟ sampled by discrete pixels)

Histogram of velocities in a turbulent flow



Sub-pixel accuracy

optimal resolution: 
particle image size: ~2 px
Smaller: particle no longer resolved
Larger: random noise increase

“three-point” estimators:

Peak centroid
Parabolic peak fit
Gaussian peak fit
... Main difference: sensitivity to “peak locking”

or “pixel lock-in”, bias towards integer displacements

Theoretical: 0.01 – 0.05 px
In practice 0.05-0.1 px

bias errors random errors
total
error

d / dr



displacement measurement error



fixed windows matched windows

signal

noise

SNR

u’2

C2

u’2 / C2

u’2

4C2u’2

1 / 4C2

FI ~ 0.75 FI ~ 1

velocity pdf

measurement
error

window matching



fixed windows matched windows

X = 7 px u’/U = 2.5%

application example:
grid-generated turbulence



Data Validation

“article” “lab”

Spurious or “Bad” vectors



Spurious  vectors

Three main causes:

- insufficient particle-image pairs

- in-plane loss-of-pairs, out-of-plane loss-of-pairs

- gradients



Effect of tracer density

NI= 1NI= 3NI= 5NI=11NI=20NI=45NI=80



Remedies

• increase NI

• practical limitations:
• optical transparency of the fluid
• two-phase effects
• image saturation / speckle

• detection, removal & replacement
• keep finite NI ( ~ 0.05 ) 

• data loss is small
• signal loss occurs in isolated points
• data recovery by interpolation



Detection methods

• human perception
• peak height

• amount of correlated signal
• peak detectability

• peak height relative to noise
• lower limit for SNR

• residual vector analysis
• fluctuation of displacement

• multiplication of correlation planes
• fluid mechanics

• continuity
• fuzzy logic & neural nets



Residual analysis

• evaluate fluctuation of measured velocity residual 
• ideally: Uref = true velocity
• reference values:

• Uref = global mean velocity
• comparable to 2D-histogram analysis
• does not take local coherent motion into account
• probably only works in homogeneous turbulence

• Uref = local (3×3) mean velocity
• takes local coherent motion into account
• very sensitive to outliers in the local neighborhood

• Uref = local (3×3) median velocity
• almost identical statistical properties as local mean
• Strongly suppressed sensitivity to outliers in heighborhood

refUUr



Example of residual test
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Standard mean and r.m.s. are very sensitive to bad data 
contamination… need robust measure of fluctuation



Median test

1 2 3

4 0 5

6 7 8

1 - Calculate reference velocity: median of 8 neighbors

2 – calculate residuals:

3 – Normalize target residual by: median(ri) + 

4 – Robust measure found for:
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Interpolation

Bilinear interpolation satisfies continuity

For 5% bad vectors, 80% of the vectors are isolated

Bad vector can be recovered without any problems

N.B.: interpolation biases statistics (power spectra, correlation function)
Better not to replace bad vectors (use e.g. slotting method)



Overlapping windows

Method to increase data yield:

Allow overlap between adjacent interrogation areas

a
Motivation: particle pairs near edges
contribute less to correlation result;
Shift window so they are in the center:
additional, relatively uncorrelated result

50% is very common, but beware of oversampling



A Generic PIV program

Data acquisition

Image pre-processing

PIV cross-correlation

Vector validation

Post-processing

Laser control,
Camera settings, etc.

Reduce non-uniformity
of illumination; Reflections

Pre-shift; Decreasing
window sizes

Vorticity, interpolation
of missing vectors, etc.

Median test,
Search window



PIV software
Free

PIVware: command line, linux (Westerweel)
JPIV: Java version of PIVware (Vennemann)
MatPiv: Matlab PIV toolbox (Cambridge, Sveen)
URAPIV: Matlab PIV toolbox (Gurka and Liberzon)
DigiFlow (Cambridge), PIV Sleuth (UIUC), MPIV, GPIV, CIV, OSIV,…

Commercial

PIVtec PIVview
TSI Insight
Dantec Flowmap
LaVision DaVis
Oxford Lasers/ILA VidPIV
…



Particle Motion: tracer particle

• Equation of motion for spherical particle:

– Where

– Neglect: non-linear drag (only really needed for high-speed flows), Basset 
history term (higher order effect)
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Simple thought experiment

• Lets see how a particle responds to a step change in 
velocity
– Only consider viscous drag
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Particle Transfer Function

• Useful to examine steady-state particle response to 1-D 
oscillating flow of arbitrary sum of frequencies
– Represent u as an infinite sum of harmonic functions

– Neglect gravity (DC response, not transient)
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Particle Transfer Function

• This can be rearranged:

• Examine
– Liquid in air, gas in water, plastic in water

r 
v pr 
u 

p p

f f

1 2

A2 B2

A2 1

1 2

2
3

2
2

B

St
A

tan 1
Im p / f

Re p / f

tan 1 A(1 B)

A2 B



Liquid particles in Air

– Liquid drops in air require St~0.3 for 95% fidelity (1 m ~ 15 kHz)

– Size relatively unimportant for near-neutrally buoyant particles

– Bubbles are a poor choice: always overrespond unless quite small


