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Assume that our goal is to compute mean flow statistics such as 

or pursue RANS (i.e. the "dishonest" approach) of solving the averaged 

NS eqn:

iii uUUiU

One can either:

Pursue DNS (i.e. the "honest" approach) of averaging solutions of the 

NS eqn:

where the Reynolds stress tensor, is modeled.
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DNS: Highly accurate but of limited practical usefulness.

RANS: Inaccurate, unreliable, requires empirical modeling, but of 

widespread use. 

LES, a third approach has conceptual problems - though these are 

usually ignored. In particular, the average of the filtered velocity:
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does not necessarily equal the mean velocity, i.e.

Moreover, if  where  ii
r
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is the resolved part of the velocity fluctuation, then 

Conundrum: if the subgrid 

energy is large, then K cannot 

be found. If the subgrid energy 

is small, then LES is a DNS.
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Our interest here is in the RANS approach. 

There are 2 basic options:

Direct models for jii j uuR

???R i j

or model the
i jR equation:

Direct models are most popular and we consider just this case.



iii cCC

In the molecular case:

ii UC

and the stress tensor is:

The Reynolds stress Rij has a physical interpretation as the flux of the

ith component of momenum in the jth direction caused by the fluctuating

velocity field.  

For non-dense gases the stress tensor in the Navier-Stokes equation

has a similar interpretation as representing the flux of the ith component 

of momentum in the jth direction due to molecular motion. 
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Can a similar model for the Reynolds stress tensor be justified?



There are very strong reasons for wanting such a model to be true. 

In this case the mean momentum equation becomes: 

This approach is:

•easy to install within a NS solver

•relatively well behaved

•relatively inexpensive to solve



Consider the validity of the molecular transport analogy in the

context of a  turbulent transport in a unidirectional mean flow 

such as in a channel or boundary layer: 

0(y)uv

(y)U

0(y)
dy

Ud

In this case: 

dy

dU
μccρ 21

dy

Ud
μuvρ t



Molecules transport momentum, unchanged, over the mean 

free path,  before colliding with other molecules and 

exchanging momentum.  U(y) is linear over 

U(y)
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Unlike the molecular case: 

•momentum is not preserved on paths until mixing.

•the idea of "mixing" is undefined

•no obvious separation of scales

tt-

(y)U i

local linear

approximation

To analyze the physical mechanisms behind  turbulent transport 

consider the set of fluid elements that arrive at a given point a at time t.
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Use backward particle paths to evaluate an exact Lagrangian decomposition 

of the Reynolds shear stress that exposes the underlying physics.

goes to 0 as increases 

(establishes a mixing time).

transport caused by fluid

particles carrying, unchanged,

the mean momentum at point

b to point a.

transport associated 

with changes in 

velocity (accelerations) 

along particle paths.

Thus



The correlation is created by fluid particle movements within a 

spatially varying mean field: when v > 0  the difference in 

mean velocity along the path is negative and vice versa.  
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Acceleration transport originates

largely in the effect of vortical 

structures in accelerating fluid 

particles as they move toward the wall 

(sweeps) or retarding fluid particles as 

they eject from near the wall. 

Close to the surface, viscous effects 

retard fast moving fluid 

particles leading to a decrease in 

Reynolds stress.



Decomposition of acceleration transport 

into viscous and pressure effects.



transport due to 

particle displacements

transport due to 

particle accelerations

Evaluation of the Lagrangian decomposition in channel flow yields: 



The Lagrangian analysis can yield a quantitative estimate  of

the potential errors in a gradient model of the Reynolds stress.

(Mixing length -

distance traveled 

during the mixing

time)

gradient term

effect of non-linearity of the

mean velocity over the mixing

length



Correct gradient              Non-linearity          Acceleration

contribution                    of mean velocity     effects

where

Lagrangian integral time scale

An exact decomposition of the turbulent shear stress:
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Errors in the gradient model: 

Clearly , significant errors  are present. 

RANS models attempt to compensate for errors by a judicious choice of

the eddy viscosity.
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Dissatisfaction with linear transport models has fueled interest in 

models that are non-linear in: 

A typical example of a non-linear model (e.g. Algebraic 

RS Models): 

Sometimes non-linear models are derived by simplification of RSE models. 
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Assuming some legitimacy for linear RS models - what is t ?

For molecular transport:

suggesting that the eddy viscosity depends on the product of 

velocity (U) and length (L) scales. RANS models vary depending on 

the choice for U and L.

The K - closure assumes 
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K equation modeling 

Production 

K is a turbulent 

Prandtl number

From  equation
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equation

Production

Transport/Diffusion

Dissipation



Modeling of the equation is done in stages

by considering its properties in simplified settings:

1. isotropic decay. 

2. homogeneous shear flow.

3. constant stress layer near solid walls.



The exact equations governing the decay of Isotropic Turbulence:

These may be simplified to:

(skewness) (palenstrophy)          Reynolds number

vortex stretching         dissipation

After defining:



In the case of self-similarity, e.g.:

Two equilibria exist:  

Low RT :  vortex stretching negligible:

High RT :  vortex stretching and dissipation

equilibrate 

In traditional modeling vortex stretching is eliminated creating 

an opportunity to match decay rate with experiments:

5/2-
2

t K         
K5

7
-

dt

d

1-
2

t K         
K

-2
dt

d

1C1/-
2

ε
2ε

2
t K         

K

ε
-C

dt

dε

tr/λfru0ut)f(r,
~

SK and G are constant and the system of equations is closed and solvable.



Homogeneous shear flow
dy
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Modeled Equations for Homogeneous Shear Flow

chosen to match 

experiments1ε
C

With vortex

stretching: 

prod = diss

equilibrium

Without vortex

stretching: blow

up.



equation modeling

Isotropic turbulence model - calibrated 

to give a decay rate consistent with data

homogeneous shear flow model -

calibrated to give correct K growth
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Closure (high Re form)
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Calibration of the Closure

In the "constant stress layer" 

Assume:

and the model:

Then:

uv

Moreover, if then:

Substituting these results into the equation gives: 



Near-wall modeling

Among the problems with the high Re modeling near a boundary:

In effect, 

Boundary conditions:
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At the wall surface:

K → 0 at wall so 

dissipation blows up

yet no explicit model for has been assumed in high Re model. 

Other problems that have to be fixed near a wall:
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Low Re model for the equation near walls.



What to expect from the popular RANS models:

1. The predictions of RANS models in their standard form, can be 

both acceptable or unacceptable depending on the desired accuracy,

naivety of the user and other factors.  

2. It is very common to make ad hoc changes to the values of constants 

and even to add additional modeling expressions in order to improve 

accuracy, or to force the solution to acquire desired physical attributes. 

The idea is that some aspect of physics is lacking in the original model

that needs to be compensated for. 

3. Changing the properties of models can bring the solutions closer

to one set of data and further from another set of data. 

4. Sometimes model alterations - with no basis in physics - are made 

as a last resort to force better results:  e.g. "clipping"

5. RANS solutions sometimes are regarded as successful if only one 

part of the solution is captured - the part that is of interest. 



6. Adding additional physics to RANS calculations can be especially

difficult - two layers of inaccuracy: the underlying turbulence and 

the new physical model. Different models of the physics (e.g. 

particle dispersion, chemistry, combustion) can react differently to 

the same underlying RANS modeling. 

7. A numerical calculation with a RANS scheme may converge for 

one set of input parameters and not converge for a similar case of 

the same flow. 

8. The quality of one particular RANS model may appear to be 

better than it is because if performs better than other models.

9. Very often computational speed is considered more important 

than accuracy. 

10. In some flows, complaints about steady RANS solutions have 

led to the use of URANS (Unsteady RANS) in which features 

such as vortex shedding are considered to be part of the mean 

(albeit transient) field. 



11. Many research studies have compared LES predictions to 

RANS predictions. Sometimes RANS is as good as LES, 

sometimes LES is better, sometimes the added accuracy of LES 

is not justified by the cost. 

12. RANS is increasingly being used to model the wall region of 

LES since the local DNS resolution that one would hope for is 

often not feasible. 


