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High accuracy simulations of Kerr tails: coordinate dependence and higher multipoles
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We investigate the late time behavior of a scalar field on a fixed Kerr background using a 2 + 1
dimensional pseudospectral evolution code. We compare evolutions of pure axisymmetric multipoles
in both Kerr-Schild and Boyer-Lindquist coordinates. We find that the late-time power-law decay
rate depends upon the slicing of the background, confirming previous theoretical predictions for
those decay rates. The accuracy of the numerical evolutions is sufficient to decide unambiguously
between competing claims in the literature.
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I. INTRODUCTION

Following the original work of Price [1], the late time
behavior of fields propagating on a Schwarzschild black
hole has been studied for decades. By now there is
a rather complete theoretical picture of it, with com-
pelling supporting numerical evidence. Since in the
Schwarzschild case the background geometry is spheri-
cally symmetric, perturbations can be expanded in spher-
ical harmonics. Solutions with different multipole num-
bers (ℓ, m) evolve independently. For initial data that is
not time symmetric, each of these perturbations decays
at late times as t−(2ℓ+3), regardless of the type of pertur-
bation (scalar, gravitational, electromagnetic, etc).

In contrast, our understanding of the late-time decay
on a Kerr background is still incomplete. In fact, it has
been the subject of controversy over the past decade.

Since in the spinning case the background is not spheri-
cally symmetric, additional multipoles are generated dur-
ing the evolution of an initially pure multipole. The first
analytical calculations for the decay rate of these dynam-
ically generated multipoles were done by Barack and Ori
[2] and Hod [3]. According to their calculations, the in-
teractions between different multipoles and the black hole
angular momentum change the decay rate of each of those
multipoles compared to the Schwarzschild case. Further-
more, those calculations also predict that in the Kerr case
the late time decay rate is not universal, in the sense that
it depends on the type of perturbations.

For example, Hod [3] predicted that a scalar perturba-
tion with an initial pure multipole structure with indices
(ℓ, m) on a Kerr background in Boyer-Lindquist coordi-
nates would be dominated at late times by the following
multipole component and decay:

Ψ ∝ Y (ℓ,m)t−(2ℓ+3) if ℓ = m or ℓ = m + 1, (1)

Ψ ∝ Y (ℓ=m,m)t−(ℓ+m+1) if ℓ − m ≥ 2 (even), (2)

Ψ ∝ Y (ℓ=m+1,m)t−(ℓ+m+2) if ℓ − m ≥ 2 (odd).(3)

In contrast, Burko and Khanna [4] argued in favor of a
“simple picture”, in which at late times the decay would

also be dominated by the lowest multipole that can be
generated by mode mixing during the evolution, but that
such a mode decays in the same way that it would on a
Schwarzschild background. In other words, the authors
claimed that the details of the multipole interactions do
not affect the late time decay rate. Therefore, according
to this simple picture the late time decay for a massless
scalar field in a spinning Kerr background should simply
be t−(2ℓmin+3), where ℓmin is the lowest multipole that can
be generated during the evolution. For example, in the
axisymmetric case an initial perturbation that is sym-
metric about the equator would produce even ℓ modes
by mixing, with ℓmin = 0. An antisymmetric initial per-
turbation would have ℓmin = 1.

The simplest case in which these predictions differ is
the axisymmetric solution of the wave equation with
ℓ = 4 initial data. The lowest multipole that can be
generated during evolution is the monopole term. The
simple picture argument predicts for it a decay as in
Schwarzschild, t−3, while Hod’s calculations predict in-
stead a decay of t−5. Early numerical studies of the
wave equation on a Kerr background in Boyer-Lindquist
coordinates by Krivan [5] found an approximate decay
of t−5.5, which was interpreted by some as an approxi-
mate verification of Hod’s prediction. Others suggested
that Krivan’s results were plagued by numerical prob-
lems and that Krivan’s time decay of t−5.5 should not be
interpreted as supporting Hod’s prediction, but as a nu-
merical artifact, a transient, or both [4]. Krivan in fact,
had reported problems with the angular differentiation in
the code used in [5]. In particular the decay rate found
in [5] does not appear to get closer to t−5 with increasing
angular resolution but to t−5.5, leaving room for ques-
tioning the interpretation of the result as a confirmation
of Hod’s prediction.

In order to settle this issue, Burko and Khanna [4] per-
formed simulations of the wave equation on a Kerr back-
ground using “ingoing Kerr” coordinates and obtained
a late time decay very close to t−3, concluding that Kri-
van’s results were indeed misleading because of numerical
artifacts.
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It turns out, however, that the simulations of Burko
and Khanna and Krivan do not correspond to the same
physical scenario. In the spinning case, the characteriza-
tion of the initial data in terms of a spherical harmonic
decomposition is not unique, since there is no preferred
sphere with respect to which such a decomposition should
be done. In particular, a pure ℓ = 4 initial perturbation
in ingoing Kerr coordinates does not correspond to pure
ℓ = 4 initial data in Boyer-Lindquist coordinates, and
vice-versa. Not only are the spatial coordinates differ-
ent, but also the slicing of spacetime. In fact, in a more
recent analytic calculation, Poisson [6] explicitly showed
that for perturbations of flat spacetime (where, in partic-
ular, the contribution due to the spin is treated only to
leading order) the decay does depend on the choice of co-
ordinates. Furthermore, Poisson was able to obtain both
Hod’s and the simple prediction within this linearized
scenario, depending on which coordinates are used.

In Ref. [7] Scheel et al. presented high accuracy evolu-
tions of the wave equation on a Kerr background using
pure multipole initial data in Kerr-Schild coordinates up
to ℓ = 4. Their numerical results confirmed the predic-
tions of the simple picture with high accuracy; in par-
ticular, they were consistent with those of Burko and
Khanna.

More recently, Gleiser, Price and Pullin [8] have pre-
sented numerical results for linear scalar perturbations
of a Schwarzschild black hole where the effect of the spin
is treated perturbatively. This is done through a hierar-
chy of one-dimensional evolution equations, which take
into account increasingly higher order corrections due to
the spin, in what would correspond to Boyer-Lindquist
coordinates. Their results show that if one starts with
a pure ℓ = 4 mode in those coordinates and solves the
corresponding hierarchy of equations to study the late
time behavior of the monopole term (which is the one
that dominates at late times) at the leading order in the
angular momentum, it decays as in Hod’s prediction (i.e.,
as t−5), not as in the simple picture prediction. The ad-
vantage of this approach is that the resulting equations
can be solved by a simple numerical code, since they are
one-dimensional in space. The disadvantage is that the
treatment is perturbative in the black hole angular mo-
mentum, leaving open the question of whether the full
non-linear dependence on the angular momentum would
change the results.

The goal of this paper is to study the late time behav-
ior of fields in a Kerr spacetime by numerically evolving
a scalar field in axisymmetry, including the full depen-
dence of the equations on the spin, and unambiguously
determine what the decay is, and whether it depends on
the coordinates used. For that purpose we numerically
evolve a scalar field on a Kerr background, using both
Kerr-Schild and Boyer-Lindquist coordinates. Our sim-
ulations are of enough accuracy so as to rule out any
possibility of numerical artifacts. We discuss the case
that has been under dispute, which is the simplest one in
which Hod’s and the simple prediction disagree, namely

pure ℓ = 4 initial data. We also go beyond it and analyze
the ℓ = 5, 6, 7, 8 initial data cases.

Our results for the Kerr-Schild case extend those of
Scheel et al. and Burko and Khanna to higher accu-
racy and higher multipole initial data. In particular, we
confirm that the decay in those coordinates is governed
by the predictions of the “simple picture”. For Boyer-
Lindquist coordinates our results extend those of Krivan
and of Gleiser, Pullin and Price, again to higher accu-
racy and higher multipole initial data. Consistent with
the conclusions of those references, we unambiguously
find that the decay rate in these coordinates is the one
predicted by Hod.

The organization of this paper is as follows. In Sec. II
we describe the method we use to numerically evolve the
scalar field. In Sec. III we present our results for pure ℓ
initial data for both Kerr-Schild and Boyer-Lindquist co-
ordinates. Finally, we present our conclusions in Sec. IV.

II. THE NUMERICAL METHOD

We evolve axisymmetric solutions of the wave equation
∇a∇aΨ = 0 on a fixed Kerr black hole background in
both Kerr-Schild and Boyer-Lindquist coordinates. In
both cases we cast and numerically solve the equations
as a first order in space and time system. For example,
in the Boyer-Lindquist case we write the equations as

Ψ̇t =
(r2 + a2)2

Σ2
∂r∗Ψr∗ +

2r∆

Σ2
Ψr∗ −

2y∆

Σ2
Ψy

+
∆(1 − y2)

Σ2
∂yΨy,

Ψ̇r∗ = ∂r∗Ψt,

Ψ̇y = ∂yΨt,

Ψ̇ = Ψt,

where M, a are the mass and spin of the black hole, re-
spectively,

∆ = r2 − 2Mr + a2,

Σ =
[

(r2 + a2)2 − a2∆(1 − y2)
]1/2

,

y = − cos θ,

and where we have introduced the Kerr-tortoise coordi-
nate r∗, defined by

dr∗
dr

=
r2 + a2

∆
.

Here Ψr∗ , Ψt , and Ψy are auxiliary variables introduced
to cast the system in first order form; at the continuum
they satisfy Ψr∗ = ∂r∗Ψ, Ψt = ∂tΨ, and Ψy = ∂yΨ.

We solve the resulting equations using a special pur-
pose two-dimensional code written for this project. A re-
quirement for the numerical solution is that it be demon-
strably accurate enough that there is no doubt about the



3

results. Since the solution is smooth, a spectral method
should be optimal in terms of efficiency for high accu-
racy. Accordingly, we use a pseudo-spectral collocation
(PSC) method in space and the method of lines to evolve
in time. A by-product of using a spectral method is that
we avoid all difficulties in handling the polar singularities
in spherical coordinates.

In the simulations shown below the domain in the ra-
dial direction is partitioned into blocks, each of length
10M (in either Boyer-Lindquist-tortoise or Kerr-Schild
coordinates). On each block the dependence of the so-
lution in the angular and radial directions is expanded
in spherical harmonic and Chebyshev polynomials, re-
spectively, using Gauss-Lobatto collocation points. The
solution is advanced in time at each of these points us-
ing a fourth-order Runge-Kutta method. Information
at the interfaces of the different blocks is communicated
through characteristic variables using a penalty method,
as described in [9, 10].

We use initial data of the form

Ψ(t = 0) = 0,

Ψt(t = 0) = e−(r−r0)
2/σ2

Y (ℓ,0),

where r0 = 20M and σ = 4M . In these expressions as
well as in the results shown in the next section, r and
t are the Boyer-Lindquist or Kerr-Schild radial and time
coordinates, respectively, depending on the equations be-
ing solved.

We set the angular momentum to a = 0.5M . In the
Kerr-Schild case the black hole singularity is excised by
placing a purely outflow inner boundary at 1.8M , while
in the Boyer-Lindquist case the inner boundary is placed
at r∗ = −40M (which in Boyer-Lindquist radius corre-
sponds to a distance of ∼ 10−8M from the event horizon)
and we set the incoming modes to zero. In both cases
the outer boundary is placed far away enough so that
the results here shown are causally disconnected from
the type of boundary conditions there imposed (incom-
ing modes set to zero). In more detail, if we evolve for
a total time T , we typically place the outer boundary at
r = T/2 + 100M + rIB , where rIB is the radial location
of the inner boundary.

The number of collocation points in the radial and an-
gular directions per domain is denoted by nr, nℓ, respec-
tively and, unless otherwise stated, the time step is kept
fixed at ∆t = 0.025M . Obtaining fast convergence as
we increase the number of collocation points shows that
the time step is small enough that the errors due to the
time integration are smaller than those associated with
the spatial dimensions.

In order to be able to follow the solution for long
enough periods of time, especially for the higher mul-
tipole initial data cases (which decay faster) we use
quadruple precision.
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Figure 1: Decay of an initial ℓ = 4 mode in Kerr-Schild coor-
dinates.

III. RESULTS

Hod’s predictions and the simple one coincide for ℓ =
0, 1, 2, 3 initial data. We have checked that our simu-
lations reproduce the expected decay for each of those
values of ℓ, using both Boyer-Lindquist and Kerr-Schild
coordinates. In particular, we have found that ℓ = 0 and
ℓ = 1 modes already present in the initial data have a late
time decay of t−3 and t−5, respectively. As we will show
below, and as predicted by Hod and Poisson, the decay
of these multipoles is different when they are dynamically

generated in a Boyer-Lindquist background.
In the following we report our results for higher mul-

tipole initial data, for which Hod’s prediction and the
simple one disagree. We show our results for observers
at r = 21.8M in the Kerr-Schild case and r∗ = 20M in
the Boyer-Lindquist one, though similar results hold for
other observer locations.

A. The ℓ = 4 case

Figure 1 shows the decay of the scalar field versus time
for a fixed observer radius and ℓ = 4 initial data and
evolution in Kerr-Schild coordinates. Shown are the first
few (ℓ = 0, 2, 4) even multipole components of the so-
lution [the odd components stay at quadruple precision
roundoff values (∼ 10−35) at all times]. Initially only the
ℓ = 4 mode is present, but additional modes are gener-
ated during evolution; at late times the monopole term
dominates.

Figure 2 shows the local power index, defined as

LPI(ℓ, t) = −tΨ
(ℓ)
t /Ψ(ℓ) (where Ψ(ℓ) is the projection

of the solution to its ℓ-multipole component), for the
monopole term shown in Fig.1. If the monopole term de-
cays as Ψ(0) ∝ t−µ at late times, then one should obtain
that LPI → µ. The LPI for the monopole is approaching
−3 at late times in our simulations, as predicted by the
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Figure 2: Local power index for the monopole term of the
previous figure.
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Figure 3: Decay of an initial ℓ = 4 mode in Boyer-Lindquist
coordinates.

simple picture.
Figure 3 shows the decay for the evolution of ℓ = 4

initial data in Boyer-Lindquist coordinates. The slowest
decaying multipole is again the monopole term, but in
this case we find that it decays as t−5, as predicted by
Hod and shown in Fig. 4.

The results shown above were obtained with nr = 45
and nℓ = 4. To give an idea of the errors in these
simulations, Fig. 5 shows the differences in the LPI for
the monopole term between different spatial resolutions
(nr = 30, 35, 38, 40) and the highest one (nr = 45) as
a function of time, keeping nℓ = 4 fixed. Similarly, the
figure also shows the differences in the LPI when keeping
nr = 45 fixed and increasing nℓ. At late times the errors
introduced by using nℓ Legendre polynomials, where ℓ
is the multipole index of the initial data (as opposed to
using higher order polynomials) is comparable to the er-
rors in the radial direction. Therefore, unless otherwise
specified, in the simulations below we use nℓ Legendre
polynomials, where the value of ℓ is the same as in the
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Figure 4: Local power index for the monopole term of the
previous figure.

initial data, and nr = 45.

B. The ℓ = 5 case

Figure 6 shows our results for the dipole LPI in evo-
lutions of ℓ = 5 initial data in Kerr-Schild and Boyer-
Lindquist coordinates. In both cases the dipole term
eventually dominates, with a decay of t−5 in the Kerr-
Schild case, as predicted by the “simple picture”, and a
decay of t−7 in Boyer-Lindquist coordinates, as predicted
by Hod.

C. The ℓ = 6 case

Figure 7 shows our results for the monopole LPI in
evolutions of ℓ = 6 initial data in Kerr-Schild and Boyer-
Lindquist coordinates. According to the simple picture
interpretation, the monopole term should dominate at
late times, with a decay of t−3, while Hod’s prediction
for this case is a decay of t−7.

D. The ℓ = 7 case

Figure 8 shows our results for the dipole LPI in evo-
lutions of ℓ = 7 initial data in Kerr-Schild and Boyer-
Lindquist coordinates. In the latter case the solution de-
cays much faster and we need to use higher resolution in
the radial direction, with an associated smaller timestep
for CFL stability. Figure 8 shows our results for both
nr = 45, ∆t = 0.025 and nr = 50, ∆t = 0.0125. Accord-
ing to the simple picture interpretation, the dipole term
should dominate at late times, with a decay of t−5, while
Hod’s prediction for this case is a decay of t−9.
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Figure 5: Errors in the LPI for the monopole term of the
previous figure.

E. The ℓ = 8 case

In the Boyer-Lindquist case the monopole term decays
even faster for ℓ = 8 initial data and we start reach-
ing quadruple precision roundoff values by the time the
tail regime begins, as seen in Figure 9. As a conse-
quence, there is a rather short time interval in which
we can measure the local power index, and the latter is
not as clean as for the lower multipoles. Figure 10 shows
our results for evolutions of ℓ = 8 initial data in both
Kerr-Schild and Boyer-Lindquist coordinates. According
to the simple picture interpretation, the monopole term
should dominate at late times, with a decay of t−3, while
Hod’s prediction for this case is a decay of t−9.

IV. DISCUSSION

In this paper we have evolved an axisymmetric scalar
field on a Kerr background using both Boyer-Lindquist
and Kerr-Schild coordinates, with pure multipole initial
data with indices ℓ = 0, 1, 2 . . .6, 7, 8, and established the
decay rate at late times for each initial data and choice of
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Figure 6: Local power index for the dipole term of ℓ = 5
Kerr-Schild and Boyer-Lindquist initial data and evolution.

background coordinates. The numerical values that we
obtained for those rates confirm the “simple picture” pre-
diction [4] in the Kerr-Schild case, but Hod’s prediction
[3] in the Boyer-Lindquist one. Thus, the most impor-
tant conclusion of this paper is that the observed late-
time decay of the field depends on the time-slicing of the
background spacetime Thus, the most important conclu-
sion of this paper is that the observed late-time decay of
the field depends on the time-slicing of the background
spacetime.

The differences between the decay rates that we found
in our simulations and the above asymptotic (t → ∞)
predictions are small enough so as to rule out the possi-
bility of numerical artifacts. Those differences are typi-
cally less than one percent, except for the ℓ = 8 initial
data Boyer-Lindquist case. The dominant factor in these
differences in all cases appears to be the fact that we
are evolving for a long but finite time; the numerical er-
rors in our simulations are several order of magnitudes
smaller. In the particular case of Boyer-Lindquist evolu-
tions of ℓ = 8 initial data, the solution reaches quadruple
precision roundoff errors while entering the tail regime.
For that reason we cannot determine the decay rate with
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Figure 7: Local power index for the monopole term of ℓ = 6
Kerr-Schild and Boyer-Lindquist initial data and evolution.

uncertainties as small as in the ℓ = 0 . . . 7 cases. The
late time decay rate that we find for the ℓ = 8 initial
data Boyer-Lindquist case is roughly between −9.2 and
−9.0, to be compared with Hod’s prediction (−9) and
the simple picture one (−3).

Our results are in apparent, but not real, contradic-
tion with those of Scheel et al. [7] and recent work by
Burko and Khanna [11]. In order to clarify the source of
these apparent contradictions we need to describe parts
of those references in some detail.

The 3D code used by Scheel et al. in Ref. [7] only
allowed for evolutions on a black hole background where
the singularity is excised from the computational domain
by placing a purely outflow inner boundary. Since this
excludes Boyer-Lindquist coordinates, Kerr-Schild ones
(t, x, y, z) were used in Ref. [7]. In this coordinate system,
the metric is given by

gµν = ηµν + 2Hℓµℓν ,
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Figure 8: Local power index for the dipole term of ℓ = 7
Kerr-Schild and Boyer-Lindquist initial data and evolution.

where

H =
Mr3

r4 + a2z2
,

ℓµ = {1,
rx + ay

r2 + a2
,
ry − ax

r2 + a2
,
z

r
},

and the radial coordinate r is defined not as a spherical
coordinate but rather a spheroidal coordinate:

x2 + y2

r2 + a2
+

z2

r2
= 1.

Scheel et al. evolved scalar waves on a Kerr-Schild back-
ground using two sets of initial data, corresponding to
pure multipoles in spherical and spheroidal coordinates
on constant-time Kerr-Schild slices. In both cases, they
found the tail decayed as in the simple picture. Our
Kerr-Schild evolutions confirm this. However, this does
not necessarily correspond to the evolution of pure multi-
pole initial data on a constant-time Boyer-Lindquist slice,
as seen by a Boyer-Lindquist observer. Hod’s prediction
is for the late time decay rate seen by an observer with
constant Boyer-Lindquist radius as a function of Boyer-
Lindquist time, for an evolution of pure multipole ini-
tial data in Boyer-Lindquist coordinates. This is exactly
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what we have explicitly numerically solved for in this pa-
per.

In more recent work [11], Burko and Khanna evolved
pure multipole ℓ = 4 initial data, using Boyer-Lindquist
coordinates to define the multipole decomposition as well
as to perform the evolution, obtaining a decay of t−3,
which appears to be consistent with the simple picture
and in contradiction with our results. The reason for
this apparent contradiction seems to be caused by the
type of initial data used in Ref. [11]. Rather than giving
pure multipole initial data to the scalar field and its time
derivative as done in Hod’s original work and in this pa-
per, in Ref. [11] pure multipole initial data was given to
the scalar field and its “momentum”,

Ψ(t = 0) = g(r)Y (ℓ,m),

(∂t + b∂r∗)Ψ(t = 0) = 0,

where b = b(r, θ). The angular dependence of b effec-
tively corresponds to adding an ℓ = 0 component to the
initial data for ∂tΨ. As explained at the beginning of
Sec. III, the decay rate of an initial ℓ = 0 mode for the
pair (Ψ, ∂tΨ) according to both Hod’s prediction and the
simple picture is t−3 (our simulations, as well as previ-
ous ones, have in particular confirmed this). What we
have found in this paper, though, which is also reported
by Gleiser, Price and Pullin [8], is that the decay rate of
a dynamically generated monopole in a Boyer-Lindquist
coordinates is faster. If as initial data for (Ψ, ∂tΨ) one
superposes ℓ = 4 and ℓ = 0 modes, as effectively done in
Ref. [11], the late time decay rate of each component can
be considered independently, since the evolution equa-
tions considered are linear. The evolution of the initial
ℓ = 4 component will dynamically generate a monopole

term that decays as t−5, while the evolution of the initial
ℓ = 0 component will be dominated by a decay rate of
t−3. The results of Ref. [11] can be understood by the
fact that the latter will dominate over the former at late
times.
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Figure 10: Local power index for the monopole term of ℓ = 8
Kerr-Schild and Boyer-Lindquist initial data and evolution.
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