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Abstract. We develop a theory of almost periodic elements in
Banach algebras and present an abstract version of a noncommu-
tative Wiener’s Lemma. The theory can be used, for example, to
derive some of the recently obtained results in time-frequency anal-
ysis such as the spectral properties of the finite linear combinations
of time-frequency shifts.

1. Introduction

Wiener’s Tauberian Lemma [31] is a classical result in harmonic anal-
ysis which states that if a periodic function f has an absolutely conver-
gent Fourier series and never vanishes then the function 1/f also has an
absolutely convergent Fourier series. This result has many extensions
(see [4, 7, 8, 9, 14, 18, 19, 21, 24, 27, 28, 29] and references therein),
some of which have been used recently in the study of localized frames
[1, 5, 17, 20]. One of the key results of this paper is another extension
which is more general than the cited above. We also obtain impor-
tant spectral properties of operators with rationally independent Bohr
spectrum and apply the results to answer certain questions motivated
by the Heil-Ramanathan-Topiwala (HRT) conjecture [15]. Some of the
crucial techniques we use were developed in [8, 9, 12].

The paper is organized as follows. In the next section we introduce
almost periodicity in Banach algebras and define Fourier series with
respect to a representation. In Section 3 we derive the corresponding
extension of the Wiener’s Lemma. We use the developed technique to
present a few interesting spectral properties of elements with certain
special types of Fourier series in Section 4. Finally, in Section 5 we
obtain some properties of a C∗-algebra generated by time-frequency
shifts which contribute to our understanding of the HRT conjecture.
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2. Almost periodic Fourier series in Banach algebras

We begin with a brief introduction of almost periodicity in unital
Banach algebras. The proofs of the abstract statements in this section
may be found in [6, 10, 22, 25]. For the relevant theory of Fourier series
of linear operators (which is a special case) we cite [8, 11].

Let B be a unital Banach algebra with the unit element denoted by I.
As usually, the main example is the algebra EndX of all bounded linear
operators (endomorphisms) of a (complex) Banach space X. Let also

G be a locally compact Abelian (LCA-) group and Ĝ be its Pontryagin
dual (with the algebraic operation written additively on both). By Gd

we denote the group G endowed with discrete topology and by Ĝc its
dual – the Bohr compactification of Ĝ.

A continuous function ϕ : G → B is Bohr almost periodic if, for
every ε > 0, the set Ω(ε) = {ω ∈ G: sup

g∈G
‖ϕ(g + ω) − ϕ(g)‖ < ε} of

its ε-periods is relatively dense in G, i.e., there exists a compact set
K = Kε ⊂ G such that (g +K) ∩ Ω(ε) 6= ∅ for all g ∈ G.

Let T : Ĝ → EndB be an isometric representation of the group Ĝ
with the following properties:

• T (γ)I = I for all γ ∈ Ĝ;

• T (γ)(AB) = (T (γ)A)(T (γ)B) for all γ ∈ Ĝ, A,B ∈ B.

We refer the reader to Section 5 and [12] for a variety of examples of
representations with the above property.

Definition 2.1. We say that A ∈ B is T -almost periodic, or A ∈
AP T (B), if the function Â : Ĝ → B, Â(γ) = T (γ)A, is continuous (in
the topology of B) and Bohr almost periodic.

It is known, that for A ∈ AP T (B) the orbit {T (γ)A, γ ∈ Ĝ} is totally

bounded (precompact) and the function Â has a unique continuous

extension to the Bohr compactification Ĝc. We denote this extension
by the same symbol Â. Consider the Fourier series of the function Â

(2.1) Â(γ) ∼
∑
i∈Z

γ(gi)Ai, gi ∈ G,

where the elements Ai ∈ B are eigen-vectors of the representation T ,
that is T (γ)Ai = γ(gi)Ai, γ ∈ Ĝ. The series in (2.1) will be called the
Fourier series of A and the elements Ai – the Fourier coefficients of
A. The set {gi} of the group elements in (2.1) will be referred to as the
Bohr spectrum of the element A and denoted by Λ(A). Instead, the
set σ(A) denotes the usual spectrum of A with respect to the algebra
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B. Thus, λI − A is invertible in B for all λ ∈ ρ(A) = C \ σ(A), the
resolvent set of A.

The coefficients Ai can be obtained via

Ai =

∫
Ĝc
Â(γ)γ(−gi)µ̄(dγ),

where µ̄ is the normalized Haar measure on Ĝc. They may also be
computed using the notion of g-nets, see [12, §4] and references therein.

Definition 2.2. Let Ω be a filtered set. A bounded net of functions
fα ∈ L1(Ĝ), α ∈ Ω, is called a g-net for some g ∈ G if the following
two conditions are satisfied:

• f̂α(g) = 1 for all α ∈ Ω;

• limα fα ∗ f = 0 for every f ∈ L1(Ĝ) such that f̂(g) = 0.

Example 2.1. The simplest example of a 0-net in L1(Rd) is given by
the following family of step functions:

(2.2) fN(x) =

{
1

(2N)d
, x ∈ [−N,N ]d;

0, x /∈ [−N,N ]d.

We cite [12, Remark 4.5] for an example of a compactly supported

g-net in L1(Ĝ) for a general LCA-group G.

If (fα) is a gi-net in L1(Ĝ) and µ is the Haar measure on Ĝ, the
following formula can be used to find the Fourier coefficient Ai of an
element A ∈ AP T (B):

(2.3) Ai = lim
α

∫
Ĝ
fα(γ)Â(−γ)µ(dγ).

The Fourier coefficient is independent of the choice of a particular gi-
net.

Remark 2.1. Observe that if A ∈ AP T (B) is invertible in B then A−1 ∈
AP T (B). This follows from the property of precompactness of the orbit
and the inequalities∥∥∥Â−1(γ)− Â−1(τ)

∥∥∥ =
∥∥∥Â−1(γ)(Â(τ)− Â(γ))Â−1(τ)

∥∥∥
≤
∥∥A−1

∥∥2
∥∥∥Â(τ)− Â(γ)

∥∥∥ .
Moreover, it can be shown [25] that the Bohr spectrum of the inverse
element A−1 is contained in the smallest subgroup of G generated by
Λ(A).
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3. Wiener’s Lemma in AP.

As usual when Wiener’s Lemma is discussed, we are interested in
elements A ∈ B whose Fourier series are summable or summable with
a weight.

Definition 3.1. A weight is a function ν : G→ [1,∞) such that

ν(g1 + g2) ≤ ν(g1)ν(g2), for all g1, g2 ∈ G.
A weight is admissible if it satisfies the GRS-condition

lim
n→∞

n−1 ln ν(ng) = 0, for all g ∈ G.

For a weight ν, by AP T
ν (B) we will denote the subset of AP T (B) of

elements with ν-absolutely convergent Fourier series, i.e.

‖A‖ν =
∑
i∈Z

ν(gi) ‖Ai‖ <∞.

Lemma 3.1. The set AP T
ν (B) is a Banach algebra with respect to the

norm ‖·‖ν.

Proof. The proof is the same as in Lemma 2 in [8] or [9]. In particular,
AP T

ν (B) is obviously a closed subspace of `1
ν(Gd,B) and, hence, is itself

a Banach space. Moreover, it is easily verified that `1
ν(Gd,B) is an

algebra with respect to the discrete convolution and AP T
ν (B) is its

subalgebra. The Banach algebra property

‖AB‖ν ≤ ‖A‖ν ‖B‖ν
follows from the submultiplicativity of the weight. Observe that the
admissibility condition is not required for this result. �

The following is the main result of this section.

Theorem 3.2. Let ν be an admissible weight. Then the subalgebra
AP T

ν (B) ⊂ B is inverse closed, that is, if A ∈ AP T
ν (B) is invertible in

B then A−1 ∈ AP T
ν (B).

Careful examination of the proof of a less general result in [8, §2]
shows that it extends almost without change to the setting studied in
this paper. We present a sketch of the proof for completeness.

We start by quoting the celebrated Bochner-Phillips theorem [13].
Let B be a unital Banach algebra with the following properties

• There exist a closed subalgebra F ⊂ B and a closed commuta-
tive subalgebra A from the center of B such that the elements

(a, f) =
n∑
k=1

akfk a = (a1, . . . , an) ∈ An, f = (f1 . . . , fn) ∈ Fn,
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are dense in B.
• ‖a0f0‖ = ‖a0‖ ‖f0‖ for all a0 ∈ A, f0 ∈ F .

•
∥∥∥∥ n∑
k=1

χ(ai)fi

∥∥∥∥ ≤ ‖(a, f)‖ for all a = (a1, . . . , an) ∈ An, f =

(f1 . . . , fn) ∈ Fn and any character (complex algebra homo-
morphism) χ from the spectrum SpA of the algebra A.

An algebra homomorphism χ̄ : B→ F is called a generalized character
if there exist a complex character χ ∈ SpA such that χ̄(af) = χ(a)f
for all a ∈ A, f ∈ F . The set of all generalized characters will be
denoted by Sp(B,F).

Theorem 3.3. (Bochner-Phillips). An element b ∈ B has a left (right)
inverse if and only if for every generalized character χ̄ ∈ Sp(B,F) the
element χ̄(b) ∈ F has a a left (right) inverse in F .

We need the following special case of the above theorem. Let B =
Lν(Gd,B) be the algebra of B-valued functions on Gd summable with
the weight ν with the algebraic operation given by (discrete) convo-
lution and the unit element denoted by δ0. Then the subalgebras
A = {fI, f ∈ Lν(Gd) = Lν(Gd,C)} and F = {Aδ0 : A ∈ B} are
easily seen to satisfy the conditions of Theorem 3.3. Moreover, since ν
is an admissible weight, all generalized characters in Sp(B,F) are de-
termined by the Fourier transform on B. Hence, we have the following
result.

Corollary 3.4. An element f ∈ Lν(Gd,B) is invertible in Lν(Gd,B)
if and only if all elements in B of the form

f̂(γ) =
∑
g∈Gd

f(g)γ(−g), γ ∈ Ĝc,

are invertible in B.

We are now ready to complete the proof of Theorem 3.2.

Proof. Let A ∈ AP T
ν (B) be invertible in B. Consider the function

f : Gd → B defined by f(gi) = Ai, gi ∈ Gd, where Ai are the Fourier
coefficients of A (we set f(g) = 0 if g /∈ Λ(A)). Clearly, f ∈ Lν(Gd,B)

and f̂(γ) = Â(−γ). Moreover, these operators are invertible:

f̂(γ)−1 = (Â(−γ))−1 = (T (−γ)A)−1 = T (−γ)(A−1), γ ∈ Ĝc.

Hence, by Corollary 3.4, f is invertible in Lν(Gd,B) and for B = A−1

we have

B̂(γ) = T (γ)B =
∑
g∈Gd

f−1(g)γ(−g).
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Therefore, B = A−1 ∈ AP T
ν (B). �

Suppose now that G = Rd ' Ĝ, Â(x) =
∑
j∈Rd

e2πi〈x,j〉Aj ∈ B, and the

Fourier coefficients of A satisfy

(3.1) ‖A‖νρ =
∑
j∈Rd

eρ|j| ‖Aj‖ <∞

for some ρ > 0. Note, the exponential weight νρ(j) = eρ|j|, j ∈ Rd,
is submultiplicative but does not satisfy the GRS condition from Def-
inition 3.1, and, hence, is not admissible. The conclusion of Theorem
3.2 fails for AP T

νρ(B), however, it is possible to prove a slightly weaker

result. Observe that the algebra AP T
νρ(B) is different from the algebra

of operators with exponential decay of Fourier coefficients considered
in [8, 9], which is, essentially,

⋃
ρ>0

AP T
νρ(B). The latter algebra is not a

Banach algebra since it is not complete. Also, if Λ(A) is bounded, the
Fourier coefficients of A ∈ AP T

νρ(B) do not necessarily have exponential
decay.

Theorem 3.5. Let νρ(j) = eρ|j|, j ∈ Rd, be an exponential weight and
A ∈ AP T

νρ(B) be invertible in B. Then there exists ρ̄ > 0 such that

A−1 ∈ AP T
νρ̄(B).

Proof. In this case, the function Â extends holomorphically to the in-
terior of the closed band

Cd
ρ = {z = x+ iy : x, y ∈ Rd, |y| ≤ ρ}.

We call this extension Ā,

Ā(z) =
∑
j∈Rd

e2πi〈z,j〉Aj.

Note Ā(x) = Â(x), for all x ∈ Rd.

We assume that A ∈ AP T
νρ(B) is invertible in B. Hence, Â(x) is

invertible in B for all x ∈ Rd. Moreover, since

Ā(x+iy) = Â(x)+Ā(x+iy)−Â(x) = Â(x)(I+(Â(x))−1(Ā(x+iy)−Â(x))),

Ā(x+iy) is invertible in B as soon as
∥∥∥Ā(x+ iy)− Â(x)

∥∥∥
B
<
∥∥∥Â(x)−1

∥∥∥−1

B
=

‖A−1‖−1
B . Let |y| ≤ ρ̄ for some ρ̄ > 0. Then∥∥∥Ā(x+ iy)− Â(x)

∥∥∥
B

=

∥∥∥∥∥∥
∑
j∈Rd

e2πi〈x+iy,j〉Ak −
∑
j∈Rd

e2πi〈x,j〉Aj

∥∥∥∥∥∥ ≤
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j∈Rd

∣∣e2πi〈x+iy,j〉 − e2πi〈x,j〉∣∣ ‖Aj‖ ≤∑
j∈Rd

∣∣e−2π〈y,j〉 − 1
∣∣ ‖Aj‖ .

For a compact subset K ⊂ Rd let

A(K) =
∑
j∈K

Aj and A(K̄) = A− A(K) =
∑

j∈Rd\K

Aj.

Since A ∈ AP T
νρ(B) ⊂ AP T

1 (B), we can choose K so that
∥∥A(K̄)

∥∥
1
≤∥∥A(K̄)

∥∥
νρ
< 1

4
‖A−1‖−1

. Then from the above inequalities for ρ̄ ≤ ρ
2π

we get∥∥∥Ā(x+ iy)− Â(x)
∥∥∥
B
≤
∑
j∈K

∣∣e−2π〈y,j〉 − 1
∣∣ ‖Aj‖+ ∑

j∈Rd\K

∣∣e−2π〈y,j〉 − 1
∣∣ ‖Aj‖

≤ sup
j∈K

∣∣e−2πρ̄|j| − 1
∣∣ ∥∥A(K)

∥∥
1

+ 2
∥∥∥A(K̄)

∥∥∥
νρ
.

The above quantity is clearly less than ‖A−1‖−1
for sufficiently small ρ̄

which depends only on ‖A‖νρ , ‖A
−1‖B, and Λ(A).

Hence, if B = A−1, the function B̂ admits a bounded holomorphic
extension

(3.2) B̄(z) =
(
Ā(z)

)−1
=
∑
j∈Rd

e2πi〈z,j〉Bj ∈ AP T
1 (B), z ∈ Cd

ρ̄.

To see that B̄(z) indeed has the above series representation, observe,
first, that B̄(z) ∈ AP T

1 (B) for all z ∈ Cd
ρ̄ due to Theorem 3.2. Hence,

for every j ∈ Rd and z ∈ Cd
ρ̄ there exists the Fourier coefficient

Bj(z) = lim
N→∞

1

(2N)d

∫
[−N,N ]d

e−2πi〈t,j〉T (−t)B̄(z)dt.

Moreover, since convergence of the above limit and integral is abso-
lute and uniform in z, the functions Bj(z) are holomorphic in Cd

ρ̄.

Finally, since Bj(x) = e2πi〈x,j〉Bj, where Bj, j ∈ Rd, are the Fourier
coefficients of B, and the holomorphic extension is unique, we get the
series representation in (3.2). This representation clearly implies that
A−1 ∈ AP T

νρ̄(B). �

Since ρ̄ in the above theorem depends only on ‖A‖νρ , ‖A
−1‖B, and

Λ(A), we have the following slightly stronger result. We let dist(g, S) =
inf{|g − x| , x ∈ S} denote the distance between g and a set S.

Theorem 3.6. Let νρ(j) = eρ|j| be an exponential weight. Then for
every A ∈ AP T

νρ(B) and ε > 0 there exists ρ̄ > 0 such that (λI−A)−1 ∈
AP T

νρ̄(B) for every λ ∈ C such that dist(λ, σ(A)) ≥ ε.
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In the case when the spectrum of A admits a disjoint decomposition
σ(A) = S1 ∪ S2 into two nonempty separated components (this means
that there exists a closed Jordan curve contained in the resolvent set
that separates S1 from S2) then holomorphic functional calculus (see
[26]) can be used to show the following

Corollary 3.7. Let νρ(j) = eρ|j| be an exponential weight, and A ∈
AP T

νρ(B) be such that its spectrum (in B)) admits a decomposition

σ(A) = S1 ∪ S2 into two nonempty separated components. Let γ :
[0, 1]→ ρ(A) be a closed Jordan curve separating S1 from S2. Then

(3.3) P =
1

2πi

∫
γ

(zI − A)−1dz

is a nontrivial idempotent in AP T
νρ̄(B) for some ρ̄ > 0, that is, P 2 = P

and P ∈ AP T
νρ̄(B)\{0, I}. Furthermore, when B is a C∗-algebra then

P ∗ = P .

4. Some spectral properties of AP elements.

In [11] there is a detailed study of the spectral properties of elements
with two-point Bohr spectrum. We begin this section by presenting a
similar result for elements with rationally independent Bohr spectrum.

Definition 4.1. We say that the spectrum Λ(A) = {gk; k ∈ N} of an
element A ∈ AP T (B) is (finitely) rationally independent if∑
k∈Ω

rk ·gk 6= 0 for all (finite) Ω ⊂ N and r = (r1, . . . , rn, . . .) ∈ Z∞\{0}.

Here rk · gk =
∑rk

i=1 gk ∈ G if rk > 0, rk · gk = −((−rk) · gk) if rk < 0,
and 0 · gk = 0 ∈ G.

The proposition below follows immediately from [10, Theorem 3.6.11].

Proposition 4.1. Assume that A ∈ AP T (B) has finitely rationally
independent Bohr spectrum. Then the Fourier series of A converges
unconditionally to A with the constant of unconditional convergence
equal to one.

The following theorem is the key result of the section.

Theorem 4.2. Assume that A ∈ AP T (B) has finite rationally indepen-
dent Bohr spectrum Λ(A) = {g1, g2, . . . , gn}, n ∈ N. Then the spectrum
σ(A) in the Banach algebra B (or AP T

1 (B)) is invariant under rotations
around the origin in C.
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Proof. Let Gk be the smallest subgroup of Gd that contains gk ∈ Λ(A),

GA =
n⊕
k=1

Gk, and AA = {B ∈ AP T
1 (B) : Λ(B) ∈ GA}. Obviously, GA

is the smallest subgroup of Gd that contains Λ(A) and AA is inverse
closed by Remark 2.1. Observe also that, because of rational indepen-
dence, a general element B ∈ AA has a unique representation of the
form

B =
∑
g∈GA

Bg =
∑
k∈Zn

Bk·Λ(A),

where k · Λ(A) =
∑n

i=1 ki · gi. Hence, we can define a representation
TA: Tn → EndAA by

TA(θ)B =
∑
k∈Zn

θkBk·Λ(A),

where θ = (θ1, . . . , θn) ∈ Tn and θk = θk1
1 · . . . · θknn . It is easily verified

that this representation satisfies the assumptions preceding Definition
2.1. Hence, for every θ ∈ Tn and λ /∈ σ(A)

TA(θ)(A− λI)−1 = (TA(θ)A− λI)−1 ∈ AA ⊂ AP T
1 (B)

and it remains to take θ = (θ0, . . . , θ0) for all θ0 ∈ T to obtain

TA(θ0, . . . , θ0)(A− λI)−1 = (θ0A− λI)−1 ∈ AA

and complete the proof. �

Remark 4.1. A theorem similar to the above lies at the core of the paper
[11] and leads to results on exponential dichotomy for certain abstract
differential and difference equations. Clearly, Theorem 4.2 can be used
in a similar way, however, we prefer to develop these results elsewhere.
Certain generalizations of Theorem 4.2 for elements with rationally
dependent Bohr spectrum are also possible. For related results see [2].

Using Proposition 4.1, we obtain the following stronger version of
Theorem 4.2. In the proof we shall use the notation

R(λ;B) = (B − λI)−1

for the resolvent of the element B ∈ B, λ /∈ σ(B).

Theorem 4.3. Assume that A ∈ AP T (B) has finitely rationally inde-
pendent Bohr spectrum Λ(A) = {g1, g2, . . . , gn, . . .}. Then the spectrum
σ(A) in the Banach algebra B is invariant under rotations around the
origin in C.
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Proof. Let A =
∑

k∈ZAk, where the series converges unconditionally
by Proposition 4.1, and fix λ /∈ σ(A). For m ∈ N we define A(m) and
D(m) via

A(m) =
∑
|k|≤m

Ak and D(m) = A− A(m).

Below we assume thatm ∈ N is big enough so that
∥∥D(m)

∥∥ ≤ 1
2
‖R(λ;A)‖−1.

Then we have∥∥R(λ;A(m))
∥∥ ≤ ‖R(λ;A)‖ ·

∥∥(I −R(λ;A)D(m))
−1
∥∥

≤ ‖R(λ;A)‖
∞∑
k=0

‖R(λ;A)‖k
∥∥D(m)

∥∥k ≤ 2 ‖R(λ;A)‖ .

Since Λ(A(m)) is finite for any m ∈ N, we can use Theorem 4.2 together
with Proposition 4.1 to obtain∥∥R(θλ;A(m))

∥∥ ≤ 2 ‖R(λ;A)‖ , for all θ ∈ T.

Using the above inequality, we get for big m,n ∈ N
‖R(θλ;A(m))−R(θλ;A(n))‖

≤
∥∥R(θλ;A(m))

∥∥ · ∥∥R(θλ;A(n))
∥∥ · ∥∥D(m) −D(n)

∥∥
≤ 4 ‖R(λ;A)‖2 (

∥∥D(m)

∥∥+
∥∥D(n)

∥∥), θ ∈ T.

Hence, the sequence {R(θλ;A(m))}m∈N is Cauchy for every θ ∈ T and,
therefore, converges to R(θλ;A). Thus, θλ /∈ σ(A) and the theorem is
proved. �

The following theorem presents a class of elements that cannot be
idempotent. We shall use it in the next section to derive some spectral
properties of so-called causal operators.

Theorem 4.4. Let A ∈ AP T (B) and assume that there exists λ ∈ Λ(A)
such that λ 6= λ1 + λ2 for all λ1, λ2 ∈ Λ(A). Then A2 6= A.

Proof. Let A ∈ AP T (B) and λ ∈ Λ(A) have the above property. It is
immediate (see also [12, Corollary 7.8]), that

(4.1) Λ(MN) ⊂ Λ(M) + Λ(N) for all M,N ∈ AP T (B).

Hence, λ /∈ Λ(A2) and, therefore, A2 6= A. �

5. Time-frequency shifts and the HRT conjecture.

Here we illustrate the significance of the above results in time-frequency
analysis and their connection with the HRT conjecture. In this section
the algebra B is assumed to be EndLp(G), p ∈ [1,∞).
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The standard examples of representations are typically provided by
translations

S : G→ B, (S(g)f)(x) = f(x− g), x, g ∈ G, f ∈ Lp(G),

and modulations

M : Ĝ→ B, (M(γ)f)(x) = 〈γ, x〉f(x), x ∈ G, γ ∈ Ĝ, f ∈ Lp(G).

The representation T is then assumed to be either

T : G→ EndB, T (g)A = S(g)AS(−g), A ∈ B,
or

T : Ĝ→ EndB, T (γ)A = M(γ)AM(−γ), A ∈ B.
We, however, are more interested in the time-frequency analysis. For

this reason, we consider an LCA-group G×Ĝ and a Weyl representation
T : Ĝ×G→ EndB defined by

(5.1) T (γ, g)A = S(g)M(γ)AM(−γ)S(−g), g ∈ G, γ ∈ Ĝ, A ∈ B.
It is immediate that this is a representation that satisfies the assump-
tions preceding Definition 2.1. For brevity, we will denote Uλ = Ug,γ =
M(γ)S(g) and refer to these operators as time-frequency shifts. Below
we shall always assume the following.

Assumption 5.1. The group G is such that any eigen-vector of T is
a constant multiple of some Uλ.

Observe that the group Rd naturally satisfies the above assumption
because the only bounded linear operators on Lp(Rd), p ∈ [1,∞), that
commute with all translations and modulations are scalar multiples of
the identity.

From the results in Section 3, we immediately get the following two
corollaries (see [4] for analogous results).

Corollary 5.2. The algebra of all ν-summable time-frequency shifts
coincides with AP T

ν (B) and, therefore, is inverse closed.

Corollary 5.3. Let ν(λ) = νρ(λ) = eρ|λ| be an exponential weight,
G = Rd and A ∈ AP T

νρ(B) be an invertible operator. Then there exists

ρ̄ > 0 such that A−1 ∈ AP T
νρ̄(B).

In the case p = 2, B is a C∗-algebra and Corollary 3.7 implies the
following result (for the definition of the pseudoinverse see [26]).

Corollary 5.4. Let ν(λ) = νρ(λ) = eρ|λ| be an exponential weight,
G = Rd and A ∈ AP T

νρ(EndL
2(G)) be an operator with closed range.

Then both its pseudoinverse A# ∈ AP T
νρ̄(EndL

2(G)) and the orthogonal

projection onto its range PRanA ∈ AP T
νρ̄(EndL

2(G)), for some ρ̄ > 0.
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Remark 5.1. Similar to [5, 16, 20] one can obtain localization results
for canonical duals of Weyl-Heisenberg frames immediately from the
above corollaries. We will explore these consequences elsewhere.

Next, we address the question of the faithful tracial state on the
C∗-algebra

U = AP T (End(L2(G))).

It is known (see, e.g., [4]) that Γ : U → C, Γ(
∑

λ cλUλ) = c0 defines
such a state. We, however, can give a more explicit formula using (2.3).
As an immediate consequence of [12, Theorem 4.19(i)] we obtain

τ(A) =

∫
(Ĝ×G)c

Â(−γ,−g)µ̄(d(γ, g))

= lim
α

∫
Ĝ×G

fα(γ, g)T (−γ,−g)Aµ(d(g, γ)) = c0I,

(5.2)

where the limit and the integrals converge in the uniform operator
topology. Hence, the faithful tracial state Γ admits a representation

Γ(A) =

∫
(Ĝ×G)c

〈Â(−γ,−g)x, x〉µ̄(d(g, γ))

= lim
α

∫
Ĝ×G

fα(γ, g)〈(T (−γ,−g)A)x, x〉µ(d(g, γ)),

where (fα) is a 0-net in L1(Ĝ×G) and x ∈ L2(G) has norm 1.
The following analog of Theorem 5.5.8 in [30] is now immediate.

Theorem 5.5. Let G satisfy Assumption 5.1. Then the C∗-algebra U
contains no proper (closed) C∗-ideals.

Proof. Indeed, if I is a closed C∗-ideal and 0 6= A∗A ∈ I then, ob-

viously, Â∗A(−γ,−g) ∈ I for all (γ, g) ∈ (Ĝ × G)c and, therefore,
0 6= τ(A∗A) = c0I ∈ I by (5.2). �

Corollary 5.6. If G is an infinite group (satisfying Assumption 5.1),
the algebra U contains no non-trivial compact operators.

Corollary 5.7. If G is an infinite group (satisfying Assumption 5.1),
the algebra U contains no non-trivial finite rank projections.

Proof. The result is, of course, immediate since finite rank projections
are compact, but we find it instructive to show that if P is a rank-one
projection on L2(Rd) then Γ(P ) = 0. Let Px =< x, f > f , f ∈ L2(Rd),
‖f‖ = 1, and choose the representation of Γ via the 0-net in (2.2):

Γ(P ) = lim
N→∞

1

(2N)2d

∫
[−N,N ]d

∫
[−N,N ]d

< T (−ω,−t)Px, x > dtdω.
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An easy computation using Plancherel’s formula shows that∫
R2d

< T (−ω,−t)Px, x > dtdω =

∫
R2d

< PMωStx,MωStx > dtdω =∫
R2d

| < f,MωStx > |2dtdω =

∫
Rd

(∫
Rd

∣∣∣∣∫
Rd
f(u)(Stx)(u)e−2πiω·udu

∣∣∣∣2 dω
)
dt

=

∫
Rd

(∫
Rd
|f(u)|2|(Stx)(u)|2du

)
dt =

∫
Rd
|f(u)|2

(∫
Rd
|x(u+ t)|2dt

)
du

= ‖f‖2 ‖x‖2 <∞.
Hence, Γ(P ) = 0 and, since γ is a faithful state, we conclude that

P = 0. �

Next, we consider certain subalgebras of U which we call causal fol-
lowing [12].

Definition 5.1. Let A ∈ U and SA ⊂ Ĝ×G be the smallest semigroup
of Ĝ×G that contains Λ(A). The element A is called causal if −SA ∩
SA = {0} and hypercausal if, in addition, 0 /∈ Λ(A). We denote the set
of all causal and hypercausal elements by C and HC, respectively. If
S ⊂ Ĝ×G is a semigroup with −S∩ S = {0} then we let C(S) = {B ∈
C : Λ(B) ⊆ S} and HC(S) = {B ∈ HC : Λ(B) ⊆ S}.

It is not hard to see [12] that C(S) is a closed subalgebra of U and
HC(S) is a proper two-sided ideal in C(S). The causal spectrum σS(A)
is the spectrum of A ∈ C(S) in the Banach algebra C(S).

Theorem 5.8. Let G satisfy Assumption 5.1 and A ∈ C be such that
(Λ(A) − λ) ∩ (Λ(A) ∪ {0}) = {0} for some λ ∈ Λ(A). Then A2 6= A
unless A ∈ {0, I}.
Proof. Let A ∼

∑
λ cλUλ ∈ U satisfy the assumptions of the theorem

and assume for the contrary that A2 = A /∈ {0, I}. From (4.1) we infer
that c2

0 = c0, and, hence, either A ∈ HC or I − A ∈ HC. It remains to
apply Theorem 4.4 to get a contradiction. �

Remark 5.2. If SA is a finitely generated semigroup then the only pro-
jections in C are 0 and I. This can be proved using the technique
developed in [12, §8].

Corollary 5.9. Let A ∈ C and assume the semigroup SA satisfies at
least one of the following conditions:

(1) SA is a finitely generated semigroup;
(2) SA satisfies

(SA\{0}) + (SA\{0}) 6= SA\{0}.



14 RADU BALAN AND ILYA KRISHTAL

Then the causal spectrum σS(A) is connected. In particular, any contour
in the infinite connected component ρ∞(A) of the resolvent set ρ(A)
does not separate the spectrum σ(A).

Proof. Assume for the contrary that σS(A) is not connected. Then there
exists a non-trivial Riesz projection P ∈ C(SA) and we get a contradic-
tion with Theorem 5.8 or Remark 5.2. �

The above results are interesting not only in themselves but also in
view of the following long-standing conjecture.

HRT Conjecture. Let A ∈ End(L2(Rd)) be a finite linear combina-
tion of time-frequency shifts. Then A has no eigen-vectors.

The conjecture has been proved for many special cases (see in [4]),
but the general case, to the best of our knowledge, remains open. Below
are a few relevant propositions that can be inferred easily from the
above results.

Proposition 5.10. Let A ∈ End(L2(Rd)) be a finite linear combina-
tion of time-frequency shifts. Then A has no isolated eigen-values with
finite-dimensional eigen-spaces.

Proof. Follows immediately from Corollary 5.7. �

Proposition 5.11. If HRT fails, then there is a counterexample A ∈ C
such that the causal spectrum σS(A) is connected. In particular, any
contour in the infinite connected component ρ∞(A) of the resolvent set
ρ(A) does not separate the spectrum σ(A).

Proof. Follows immediately from Corollary 5.9. �

Proposition 5.12. Let A ∈ End(L2(Rd)) be a finite linear combi-
nation of time-frequency shifts with the rationally independent Bohr
spectrum Λ(A). Then σ(A) is invariant under rotations around 0 in
C. In particular, 0 is the only possible isolated point in σ(A).

Proof. Follows immediately from Theorem 4.2. �

Example 5.1. Let A ∈ End(L2(R)) be such that

Λ(A) ⊂ {(1, 0), (0, 1), (
√

2,
√

2)}.
To the best of our knowledge it is not known if such an operator satisfies
HRT. From the above proposition we infer that 0 could be the only
isolated eigen-value of A. However, since HRT holds in the lattice case
(by Linnell’s proof [23]), 0 is not an eigen-value of A. Hence, σ(A) has
no isolated eigen-values.
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[17] K. Gröchenig, Localization of frames, Banach frames, and the invertibility
of the frame operator, J. Fourier Anal. Appl. , 10 (2004), no. 2, 105–132.
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