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Abstract
We study a system of elliptic equations from the Abelian Born-

Infeld system coupled with the Einstein equations under the boundary
condition of the symmetric vacuum(nontopological type). When the
total string number satisfies 1 ≤ N < 1

4πG , where G is the gravita-
tional constant, we construct a family of solutions to the system. The
qualitative properties of the solutions are quite different from the so-
lutions with the boundary condition of the broken vacuum symmetry.

1 Introduction

We consider the following problem for (u, η):

(P )





∆u =
2eη(eu − 1)√
1− 1

b2
(eu − 1)2

+ 4π
m∑

j=1

njδ(z − zj),

∆[η + 8πG(eu − u)] = −32π2G

m∑
j=1

njδ(z − zj),

eu → 0 and eη → 0 as |z| → 0,

where we denoted z = x1 + ix2 ∈ C = R2, and G > 0 is the gravitational
constant. The problem (P ) represent physically the equilibrium configura-
tion of the Abelian Born-Infeld cosmic strings. More precisely, it generates

1



a static Einstein equations coupled with the Abelian Born-Infeld electrody-
namic equations under the assumption of translation symmetry in one spa-
tial direction(say in x3 direction). For more details on the derivation of the
above system starting from the Lagrangian of the self-gravitating Abelian
Born-Infeld theory by applying the Bogoml’nyi method combined with the
Taubes’ reduction argument[17], as well as the physical backgrounds, we refer
to [23]. Parenthetically, we note that the Born-Infeld field theory, originated
in [2], has now become a very hot issue of research in the theoretical physics,
mainly due to its natural connection to the superstring theory(e.g. [10, 18],
and so many articles in the LANL archive). Also in the physics of cosmology
there are many studies on the cosmic strings(See e.g.[9, 11, 19, 20] and ref-
erences therein). The Abelian Born-Infeld cosmic string model incorporates
the Born-Infeld field theory into the area of cosmic string theories.
The boundary condition in (P ), in particular, means that we are assuming
symmetric vacuum near infinity. The above system with the different bound-
ary condition, namely with the broken vacuum symmetry boundary condi-
tion, eu → 1 and eη → 0 as |z| → 0, as well as the similar problem on
a compact surface have been studied extensively by Y. Yang[22, 23, 21]. Our
boundary condition above is different from that of those studies. We remark
that this symmetric vacuum boundary condition is not allowed in order to
generate finite energy solution of the system in the case of flat(Minkowskian)
Abelian Born-Infeld theory[23]. On the other hand, our symmetric vacuum
boundary condition resembles the nontopological boundary condition in the
Chern-Simons Higgs and the related theories studied in [15, 8, 4, 5, 6, 3](The
periodic version of the nontopological solutions are studied in [16, 14, 13]).
Our aim in this paper is to construct solutions of (P ). Moreover, our con-
struction provides very precise information of the qualitative properties of
solutions, including the asymptotes of u, η near infinity. The following is our
main Theorem.

Theorem 1.1 Suppose {nj}m
j=1 ⊂ N ∪ {0}, and {zj}m

j=1 ∈ R2 be given. We
set N =

∑m
j=1 nj. Assume

1 ≤ N <
1

4πG
, (1.1)

and b > 1. Then, there exists a constant ε1 > 0 such that for any ε ∈ (0, ε1)
there exists a family of solutions to (P ), (u1, u2). Moreover, the solutions we
constructed have the following representations:

u(z) = ln ρI
ε,δ∗ε (z) + ε2w1(ε|z|) + ε2u∗1,ε(εz), (1.2)

η(z) = ln ρII
ε,δ∗ε (z) + ε2w2(ε|z|) + ε2u∗2,ε(εz) (1.3)
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with

ρI
δ,ε(z) =

ε2N+2
∏m

j=1 |z − zj|2nj

(1 + |εz + δ|2) 2
a

, (1.4)

ρII
δ,ε(z) =

4ε2

aλ1(1 + |εz + δ|2)2
, δ = δ1 + iδ2 ∈ C, (1.5)

where and hereafter we denote

a = 8πG. (1.6)

In (1.2) and (1.3), the function ε 7→ δ∗ε is a continuous function in a neigh-
borhood of 0, and |δ∗ε | → 0 as ε → 0. The radial functions w1, w2 have the
following asymptotic behaviors.

w1(|z|) = −C1 ln |z|+ O(1), (1.7)

w2(|z|) = −C2 ln |z|+ O(1) (1.8)

as |z| → ∞ with the constants C1, C2 defined by

C1 =
8[(a + 1)λ1 + λ2]N !(1− aN)

a2λ1

∏2
k=1−N

(
2
a

+ k
) (1.9)

C2 =
8[(a + 1)λ1 + λ2]N !(1− aN)

aλ1

∏2
k=1−N

(
2
a

+ k
) (= aC1). (1.10)

The functions u∗1,ε, u
∗
2,ε satisfy

sup
z∈R2

|u∗1,ε(εz)|+ |u∗2,ε(εz)|
ln(e + |z|) ≤ o(1) as ε → 0. (1.11)

Remark 1.1: From the second equation of (P ) we obtain

∆

[
η + 8πG(eu − u) + 8πG

m∑
j=1

nj ln |z − zj|2
]

= 0.

Hence,

η = 8πG(u− eu)− 8πG

m∑
j=1

nj ln |z − zj|2 + h(z),

where h(z) is a harmonic function. Under the boundary conditions for u and
η, we can assume h(z) ≡ c0 for a constant c0. Hence,

eη = c0

(
m∏

j=1

|z − zj|nj

)−16πG

e8πG(u−eu).
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Thus, substituting the asymptotic formula from (1.2)

u(z) =

[
2N − 4

a
− C1ε

2 + o(ε2)

]
ln |z|+ O(1) as |z| → ∞ and ε → 0

we obtain

eη(z) = O
(
|z|−4−C2ε2+o(ε2)

)
as |z| → ∞ and ε → 0, (1.12)

which is consistent with (1.3), and shows extremely weak dependence(via
C1) on the total vortex number N of decay properties near infinities of the
conformal factor eη. This is in contrast with the case of broken vacuum
symmetry boundary condition, eu → 1 and eη → 0 as |z| → ∞[23], where
we have the decay of the conformal factor,

eη(z) = O(|z|−16πGN) as |z| → ∞,

which shows strong dependence of the decay on the total string number N .

Remark 1.2: We recall the result in Section 10.5 of [23] that the 2 surface
M2 = (R2, eηδjk) is complete if and only if

∫

R2

e
1
2
ηdx = ∞.

According to the representation formula (1.3), this, in turn, is equivalent to
∫ ∞

0

(1 + r)−1−C2
2

ε2+o(ε2)dr = ∞.

We observe, however, from (1.10) that C2 > 0(< 0) if aN < (>)1. Thus
we conclude that the 2 surface M2 = (R2, eηδjk) is complete(incomplete) if
aN < (>)1. Since we do not know the sign of v∗2,ε, the case aN = 1 is
inconclusive for the completeness of M2.
After this work is completed the author find that there is an interesting paper
by F. Lin and Y. Yang[12] on the sigma model coupled with the Born-Infeld
system and the gravitation, for which the reduced semilinear elliptic system
is different from that of (P), and the corresponding mathematical analysis is
completely different from ours in the next section.

2 Proof of the Main Theorem

In (P ) the second equation added to the first equation times a = 8πG gives

∆(η + aeu) =
2aeη(eu − 1)√
1− 1

b2
(eu − 1)2

. (2.1)

4



Replacing the second equation of (P ) by (2.1), we obtain the following equiv-
alent system to (P ).

∆u =
2eη(eu − 1)√
1− 1

b2
(eu − 1)2

+ 4π
m∑

j=1

njδ(z − zj), (2.2)

∆(η + aeu) =
2aeη(eu − 1)√
1− 1

b2
(eu − 1)2

. (2.3)

We consider the following ‘principal part’ of the system, (2.2)-(2.3).

∆u0 = −λ1e
η0 + 4π

m∑
j=1

njδ(z − zj), (2.4)

∆η0 = −aλ1e
η0 , (2.5)

where λ1 is defined in (1.6). As a family of solution (2.5) we have

η0(z) = ln ρII
δ,ε(z) (2.6)

with ρII
δ,ε(z) defined in (1.5). In order to solve (2.4) we rewrite it as

∆

(
au0 − a

m∑
j=1

nj ln c0|z − zj|2
)

= −aλ1e
η0 , (2.7)

where c0 is an arbitrary positive constant. Comparing (2.7) with (2.5), we
find that

au0 − a

m∑
j=1

nj ln c0|z − zj|2 = η0 + h(z) (2.8)

for a harmonic function, h(z). We choose h(z) ≡ 0. Then, substituting η0 in
(2.6) into (2.8), and solving it for u0, and choosing the constant c0 in as

c0 =
ε2N

8
(aλ1)

1
a ,

we find that
u0(z) = ln ρI

δ,ε(z), (2.9)

with ρI
δ,ε(z) defined in (1.4). We set

gI
δ,ε(z) =

1

ε2
ρI

δ,ε

(z

ε

)
, gII

δ,ε(z) =
1

ε2
ρII

δ,ε

(z

ε

)
,

and define ρ1(r), ρ2)r) by

ρ1(r) =
r2N

(1 + r2)
2
a

= lim
ε+|δ|→0

gI
δ,ε(z), ρ2(r) =

8

aλ1(1 + r2)2
= lim

ε+|δ|→0
gII

δ,ε(z).
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We make transforms from (u, η) to (u1, u2) as follows

u(z) = ln ρI
δ,ε(z) + ε2w1(εz) + ε2u1(εz)

η(z) = ln ρII
δ,ε(z) + ε2w2(εz) + ε2u2(εz) (2.10)

where w1, w2 are the radial functions, wj(z) = wj(|z|), j = 1, 2 to be de-
termined below. Then, (2.2)-(2.3) can be transformed into the functional
equation, P = (P1, P2) = 0, where

P1(u1, u2, δ, ε) =

∆u1 −
2gI

δ,ε(z)gII
δ,ε(z)eε2(u1+u2+w1+w2) − 2gII

δ,ε(z)

ε2 eε2(u2+w2)

√
1− 1

b2
[ε2gI

δ,ε(z)eε2(u1+w1) − 1]2
− λ1g

II
δ,ε(z)

ε2
+ ∆w1,

P2(u1, u2, δ, ε) = ∆
[
u2 + agI

δ,ε(z)eε2(u1+w1)
]

−2agI
δ,ε(z)gII

δ,ε(z)eε2(u1+u2+w1+w2) − 2agII
δ,ε(z)

ε2 eε2(u2+w2)

√
1− 1

b2
[ε2gI

δ,ε(z)eε2(u1+w1) − 1]2
− aλ1g

II
δ,ε(z)

ε2
+ ∆w2.

Now we introduce the functions spaces used in [4]. Let us fix α ∈ (0, 1
2
)

throughout this paper. Following [1], we introduce the Banach spaces Xα

and Yα as

Xα = {u ∈ L2
loc(R2) |

∫

R2

(1 + |x|2+α)|u(x)|2dx < ∞}

equipped with the norm ‖u‖2
Xα

=
∫
R2(1 + |x|2+α)|u(x)|2dx, and

Yα = {u ∈ W 2,2
loc (R2) | ‖∆u‖2

Xα
+

∥∥∥ u(x)

1 + |x|1+α
2

∥∥∥
2

L2(R2)
< ∞}

equipped with the norm ‖u‖2
Yα

= ‖∆u‖2
Xα

+
∥∥ u(x)

1+|x|1+ α
2

∥∥2

L2(R2)
. We recall the

following propositions proved in [4].

Proposition 2.1 Let Yα be the function space introduced above. Then we
have the followings.

(i) If v ∈ Yα is a harmonic function, then v ≡ constant.

(ii) There exists a constant C1 > 0 such that for all v ∈ Yα

|v(x)| ≤ C1‖v‖Yα ln(e + |x|), ∀x ∈ R2.
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Proposition 2.2 Let α ∈ (0, 1
2
), and let us set

L = ∆ + ρ : Yα → Xα,

where ρ = 8
(1+r2)2

. We have

KerL = Span {ϕ+, ϕ−, ϕ0} , (2.11)

where we denoted

ϕ+ =
r

1 + r2
cos θ, ϕ− =

r

1 + r2
sin θ, ϕ0 =

1− r2

1 + r2
.

Moreover, we have

ImL = {f ∈ Xα|
∫

R2

fϕ± = 0}. (2.12)

We can check easily that P is a well defined continuous mapping from Bε0 ⊂
(Yα)2×C×R+ into (Xα)2, where Bε0 = {‖u1‖Yα +‖u2‖Yα + |δ| ≤ ε < ε0} for
sufficiently small ε0. In order to have gI

δ,ε(z) → O(1) as |z| → 0 we impose

aN < 2,

which is equivalent to (1.1).
We now extend continuously P (0, 0, 0, ε) to ε = 0 by imposing the condi-

tion that limε→0 P (0, 0, 0, ε) = 0. In order to compute the limit limε→0 P (0, 0, 0, ε)
we note the fact

2√
1− 1

b2
(x− 1)2

− λ1 =
2√

1− 1
b2

(x− 1)2
− 2√

1− 1
b2

= −λ2x + O(x2) (2.13)

as x → 0, where λ2 is defined in (1.6). Using this fact we obtain

lim
ε→0

P1(0, 0, 0, ε) = −(λ1 + λ2)ρ1ρ2 + λ1ρ2w2 + ∆w1,

and

lim
ε→0

P2(0, 0, 0, ε) = a∆ρ1 − a(λ1 + λ2)ρ1ρ2 + aλ1ρ2w2 + ∆w2.

Hence, the condition limε→0 P (0, 0, 0, ε) = 0 implies the following linear sys-
tem for w1, w2.

∆w1 + λ1ρ2w2 − (λ1 + λ2)ρ1ρ2 = 0, (2.14)

∆w2 + aλ1ρ2w2 − a(λ1 + λ2)ρ1ρ2 + a∆ρ1 = 0. (2.15)

We establish the following lemma about asymptotic behaviors of the solutions
w1, w2 ∈ Yα.
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Lemma 2.1 Let C1, C2 be the numbers introduced in (1.9), (1.10) respec-
tively. Then, there exist radial solutions w1(|z)), w2(|z|) of (2.14)-(2.15),
belong to Yα, and satisfy the asymptotic formula in (1.7) and (1.8) respec-
tively.

Proof: From (2.14)×a−(2.15) we obtain

∆(aw1 − w2 − aρ1) = 0.

We seek w1, w2 with aw1 − w2 − aρ1 ∈ Yα. Then, it follows that aw1 − w2 −
aρ1 =constant by ([1], Proposition 1.1). We choose this constant= 0. Then,
ρ2w2 = aρ2w1 − aρ1ρ2. Substituting this into (2.14) we obtain the following
reduced system for w1, w2.

∆w1 + aλ1ρ2w1 = [(a + 1)λ1 + λ2]ρ1ρ2, (2.16)

w2 = aw1 − aρ1. (2.17)

Let us set f(r) = [(a + 1)λ1 + λ2]ρ1ρ2.
Then, it is found in [1, 4] that the ordinary differential equation(with

respect to r), (2.16) has a solution w1(r) ∈ Yα given by

w1(r) = ϕ0(r)

{∫ r

0

φf (s)− φf (1)

(1− s)2
ds +

φf (1)r

1− r

}
(2.18)

with

φf (r) :=

(
1 + r2

1− r2

)2
(1− r)2

r

∫ r

0

ϕ0(t)tf(t)dt,

where φf (1) and w1(1) are defined as limits of φf (r) and w1(r) as r → 1.
From the formula (2.18) we find that

w1(r) = ϕ0(r)

∫ r

2

(
1 + s2

1− s2

)2
I(s)

s
ds + (bounded function of r) (2.19)

as r →∞, where

I(s) = [(a + 1)λ1 + λ2]

∫ s

0

ϕ0(t)tρ1(t)ρ2(t)dt.

Since ϕ0(r) → −1 as r →∞, (1.7) follows if we show

I = I(∞) = [(a + 1)λ1 + λ2]

∫ ∞

0

ϕ0(r)rρ1(r)ρ2(r)dr

=
8[(a + 1)λ1 + λ2]N !(1− aN)

a2λ1

∏2
k=1−N

(
2
a

+ k
) = C1.
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Indeed, substituting r2 = t in the integrand of I, we have

I =
4[(a + 1)λ1 + λ2]

aλ1

∫ ∞

0

(1− t)tN

(1 + t)3+ 2
a

dt

=
4[(a + 1)λ1 + λ2]

aλ1

[∫ ∞

0

tN

(1 + t)3+ 2
a

dt−
∫ ∞

0

tN+1

(1 + t)3+ 2
a

dt

]

=
4[(a + 1)λ1 + λ2]

aλ1

[
N !∏2

k=2−N

(
2
a

+ k
) − (N + 1)!∏2

k=1−N

(
2
a

+ k
)
]

=
4[(a + 1)λ1 + λ2]N !

aλ1

∏2
k=1−N

(
2
a

+ k
)

[
2

a
+ 1−N − (N + 1)

]

=
8[(a + 1)λ1 + λ2]N !(1− aN)

a2λ1

∏2
k=1−N

(
2
a

+ k
) = C1. (2.20)

The formula (1.8), on the other hand, follows from (2.18), observing C2 =
aC1, since ρ1(r) = O(1) as r →∞. This completes the proof of Lemma 2.1.
¤

Now we compute the linearized operator of P . By direct computation we
have

lim
ε→0

∂gI
δ,ε(z)

∂δ1

∣∣∣∣∣
δ=0

= −4

a
ρ1ϕ+, lim

ε→0

∂gI
δ,ε(z)

∂δ2

∣∣∣∣∣
δ=0

= −4

a
ρ1ϕ−,

lim
ε→0

∂gII
δ,ε(z)

∂δ1

∣∣∣∣∣
δ=0

= −4ρ2ϕ+, lim
ε→0

∂gII
δ,ε(z)

∂δ2

∣∣∣∣∣
δ=0

= −4ρ2ϕ−.

Let us set P ′
u1,u2,δ(0, 0, 0, 0) = A. Then, using the above preliminary compu-

tations and 2.13, we obtain

A1[v1, v2, β] = ∆v1 + λ1ρ2v2

+4

[
(1 +

1

a
)(λ1 + λ2)ρ1ρ2 − λ1ρ2w2

]
(ϕ+β1 + ϕ−β2),

and

A2[v1, v2, β] = ∆v2 + aλ1ρ2v2

+4 [(1 + a)(λ1 + λ2)ρ1ρ2 − aλ1ρ2w2] (ϕ+β1 + ϕ−β2)

−4∆[ρ1(ϕ+β1 + ϕ−β2)].

For the linearized operator A[·] we will establish the following key lemma.
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Lemma 2.2 The operator A : Y 2
α × R2 → X2

α defined above is onto. More-
over, the kernel of A is given by

KerA = Span{(1, 0); (
ϕ±
a

, ϕ±); (
ϕ0

a
, ϕ0)} × {(0, 0)}. (2.21)

Thus, if we decompose Y 2
α ×R2 = Uα⊕KerA, where we set Uα = (KerA)⊥,

then A is an isomorphism from Uα onto X2
α.

In order to prove the above lemma we need the following:

Proposition 2.3 Let w2 ∈ Yα solve (2.14)-(2.15), then

I± =

∫

R2

[(1 + a)(λ1 + λ2)ρ1ρ2 − aλ1ρ2w2] ϕ
2
+dx

−
∫

R2

∆(ρ1ϕ+)ϕ±dx 6= 0. (2.22)

Proof: Integrating by part, we obtain

I± =

∫

R2

{
[(a + 1)(λ1 + λ2)ρ1ρ2 − aλ1w2ρ2]ϕ

2
± − ρ1ϕ±∆ϕ±

}
dx

=

∫

R2

[((2a + 1)λ1 + (a + 1)λ2)ρ1ρ2 − aλ1w2ρ2]ϕ
2
±dx, (2.23)

where we used (2.21 ∆ϕ± = −aλ1ρ2ϕ±. (Note that L = ∆ + aλ1ρ2.) Below
we list useful formulas, which can be checked by elementary computations.

ϕ2
±ρ2 =

1

16
L2ρ2

{
cos2 θ
sin2 θ

}
, (2.24)

ϕ2
± =

aλ1

8
r2ρ2

{
cos2 θ
sin2 θ

}
, (2.25)

∆ρ2 = aλ1(2r
2 − 1)ρ2

2, (2.26)

Also, from (2.15), we have

Lw2 = a(λ1 + λ2)ρ1ρ2 − a∆ρ1. (2.27)

Using (2.24)-(2.27), and integrating by parts, we transform the integral suc-
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cessively as follows.

I± =

∫

R2

[(2a + 1)λ1 + (a + 1)λ2]ρ1ρ2ϕ
2
±dx− a

16

∫ ∞

0

∫ 2π

0

w2(L2ρ2)

{
cos2 θ
sin2 θ

}
dθrdr

=

∫ ∞

0

∫ 2π

0

{
aλ1[(2a + 1)λ1 + (a + 1)λ2]

8
r2ρ1ρ

2
2 −

aλ1

16
(Lw2)ρ2

}{
cos2 θ
sin2 θ

}
dθrdr

= π

∫ ∞

0

{
aλ1[(2a + 1)λ1 + (a + 1)λ2]

8
r2ρ1ρ

2
2 −

aλ1

16
[a(λ1 + λ2)ρ1ρ2 − a∆ρ1]ρ2

}
rdr

= π

∫ ∞

0

{
aλ1[(2a + 1)λ1 + (a + 1)λ2]

8
r2ρ1ρ

2
2 −

a2λ1(λ1 + λ2)

16
ρ1ρ

2
2 +

a2λ1

16
ρ1∆ρ2

}
rdr

= π

∫ ∞

0

{
aλ1[(2a + 1)λ1 + (a + 1)λ2]

8
r2ρ1ρ

2
2 −

a2λ1(λ1 + λ2)

16
ρ1ρ

2
2

+
a3λ2

1

16
(2r2 − 1)ρ1ρ

2
2

}
rdr

=
λ1a[λ1(a + 1) + λ2]π

16

∫ ∞

0

[2(a + 1)r2 − a]ρ1ρ
2
2rdr

=
4[λ1(a + 1) + λ2]π

aλ1

∫ ∞

0

[2(a + 1)r2 − a]r2N+1

(1 + r2)
2
a
+4

dr (Setting r2 = t)

=
2[λ1(a + 1) + λ2]π

aλ1

∫ ∞

0

[
2(a + 1)tN+1

(1 + t)
2
a
+4

− atN

(1 + t)
2
a
+4

]
dt

=
2[λ1(a + 1) + λ2]π

aλ1

[
2(a + 1)(N + 1)!∏3

k=2−N

(
2
a

+ k
) − aN !∏3

k=3−N

(
2
a

+ k
)
]

=
2[λ1(a + 1) + λ2]πN !

aλ1

∏3
k=2−N

(
2
a

+ k
)

[
2(a + 1)(N + 1)− a

(
2

a
+ 2−N

)]

=
2[λ1(a + 1) + λ2]π(3a + 2)N ·N !

aλ1

∏3
k=2−N

(
2
a

+ k
) > 0. (2.28)

This completes the proof of Proposition 2.3. ¤.

We are now ready to prove Lemma 3.1.

Proof of Lemma 2.2: Given (f1, f2) ∈ X2
α, we want first to show that there

exists (v, η) ∈ Y 2
α , β = (β1, β2) ∈ R2 such that

A(v1, v2, β) = (f1, f2), (2.29)

which can be rewritten as

∆v1 + λ1ρ2v2

+4

[
(1 +

1

a
)(λ1 + λ2)ρ1ρ2 − λ1ρ2w2

]
(ϕ+β1 + ϕ−β2) = f1, (2.30)

11



and

∆v2 + aλ1ρ2v2 + 4 [(1 + a)(λ1 + λ2)ρ1ρ2 − aλ1ρ2w2] (ϕ+β1 + ϕ−β2)

−4∆[ρ1(ϕ+β1 + ϕ−β2)] = f2. (2.31)

Let us set

β1 =
1

4I+

∫

R2

f2ϕ+dx, β2 =
1

4I−

∫

R2

f2ϕ−dx, (2.32)

where I± > 0 is defined in (2.22). We introduce f̃ by

f̃2 = f2 − β1ϕ+ − β2ϕ−. (2.33)

Using the fact
∫ 2π

0
ϕ+ϕ−dθ = 0, we find easily

∫

R2

f̃2ϕ±dx = 0. (2.34)

Hence, by (2.12) there exists v2 ∈ Yα such that ∆v2 +aλ1ρ2v2 = f̃2. Thus we
have found (v2, β1, β2) ∈ Yα × R2 satisfying (2.31). Given such (v2, β1, β2),
in order to construct v1 ∈ Yα satisfying (2.30), we consider the following
equation, obtained by (2.30)× a− (2.31),

∆(av1 − v2 + 4ρ1ϕ+β1 + 4ρ1ϕ−β2) = af1 − f2. (2.35)

For any harmonic function h1(x) the function

v1(x) =
1

2πa

∫

R2

ln(|x− y|)(af1(y)− f2(y))dy

+
1

a
(v2 − 4ρ1ϕ+β1 − 4ρ1ϕ−β2) + h1(x) (2.36)

satisfies (2.30). The requirement v1 ∈ Yα implies h1(x)(x) ≡Constant thanks
to Proposition 2.1(i).. We have just finished the proof that A : Y 2

α×R2 → X2
α

is onto.
Now it is easy to check that the restricted operator(denoted by the same
symbol), A : Uα → X2

α is one to one. We omit the details.
This completes the proof of the lemma.¤

We are now ready to prove our main theorem.
Proof of Theorem 1.1: Lemma 2.2 shows that P ′

(v,ξ,β)(0, 0, 0, 0) : Uα →
Xα×Xα is an isomorphism for α ∈ (0, 1

2
). Then, the standard implicit func-

tion theorem(See e.g. [24]), applied to the functional P : Uα × (−ε0, ε0) →
Xα ×Xα, implies that there exists a constant ε1 ∈ (0, ε0) and a continuous
function ε 7→ ψ∗ε := (v∗1,ε, v

∗
2,ε, δ

∗
ε) from (0, ε1) into a neighborhood of 0 in Uα

such that
P (u∗1,ε, u

∗
2,ε, δ

∗
ε , ε) = (0, 0), for all ε ∈ (0, ε1).
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This completes the proof of Theorem 1.1. The representation of solutions
u1, u2, and the explicit form of ρI

ε,δ∗ε
(z), ρII

ε,δ∗ε
(z), , together with the asymp-

totic behaviors of w1, w2 described in Lemma 2.1, the fact that u∗1,ε, u
∗
2,ε ∈ Yα,

combined with Proposition 2.1, implies that the solutions satisfy the bound-
ary condition in (P ). Now, from Proposition 2.1 we obtain that for each
j = 1, 2,

|u∗j,ε(x)| ≤ C‖u∗j,ε‖Yα(ln+ |x|+ 1) ≤ C‖ψε‖Uα(ln+ |x|+ 1). (2.37)

This implies then

|u∗j,ε(εx)| ≤ C‖ψε‖Uα(ln+ |εx|+ 1) ≤ C‖ψε‖Uα(ln+ |x|+ 1).

From the continuity of the function ε 7→ ψε from (0, ε0) into Uα and the fact
ψ∗0 = 0 we have

‖ψε‖Uα → 0 as ε → 0. (2.38)

The proof of (1.11) follows from (2.37) combined with (2.38). This completes
the proof of Theorem 1.1¤
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