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Abstract

The Doi model for the suspensions of rod-like molecules in a dilute regime

describes the interaction between the orientation of rod-like polymer molecules

on the microscopic scale and the macroscopic properties of the fluid in which

these molecules are contained (cf. Doi and Edwards[11]). The orientation distri-

bution of the rods on the microscopic level is described by a Fokker-Planck-type

equation on the sphere, while the fluid flow is given by the Navier-Stokes equa-

tions, which are now enhanced by an additional macroscopic stress σ reflecting

the orientation of the rods on the molecular level. Prescribing arbitrarily the

initial velocity and the initial orientation distribution in suitable spaces we es-

tablish the global-in-time existence of a weak solution to our model defined on

a bounded domain in the three dimensional space. The proof relies on a quasi-

compressible approximation of the pressure, the construction of a sequence of

approximate solutions and the establishment of compactness. In the sequel bet-

ter convergence results are obtained by employing suitable defect measures and

exploring their convergence.
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1 Introduction

Polymeric fluids arise in many practical applications in biotechnology, medicine, chem-

istry, industrial processes and atmospheric sciences. This article deals with the Doi

model for suspensions of rod-like molecules in a dilute regime. The Doi model de-

scribes the interaction between the orientation of rod-like polymer molecules at the

microscopic scale and the macroscopic properties of the fluid in which these molecules

are contained (cf. Doi and Edwards[11]). The macroscopic flow leads to a change of

the orientation and, in the case of flexible particles, to a change in shape of the sus-

pended microstructure. This process, in turn yields the production of a fluid stress.

As a first approximation, we view the identical liquid crystal molecules as inflexible

rods of a thickness b, which is much smaller than their length L. In the dilute regime

the rods are well separated, as expressed by b� L−3. The orientation distribution of

the rods f is described by a Fokker-Planck-type equation,

ft + u · ∇xf +∇τ · (Pτ⊥(∇xuτ)f)−Dr∆τf −D∆xf = 0,

with f describing the time-dependent orientation distribution that a rod with a center

mass at x has an axis τ in the area element dτ . Here u = u(t, x) represents the

velocity field, the term u · ∇xf characterizes the change of f due to the displacement

of the center of the mass of the rods by advection, whereas the drift term on the

2



sphere ∇τ · (Pτ⊥(∇xuτ)f) represents the shear-forces acting on the rods. The terms

D∆xf,Dr∆τf describe the Brownian effects: translational diffusion and rotational

diffusion respectively; D, Dr denote the diffusivity parameters ([11, 22]). Diffusion

can be seen as a gradient flow of the entropy functional,

E[f ] := νkBT

∫
Ω

∫
S2

f ln fdτdx.

The fluid flow is given by the Navier-Stokes equations, which are now enhanced by an

additional macroscopic stress reflecting the orientation of the rods on the molecular

level,

(NS)

{
ut + u · ∇u− µ∆u+∇p = ∇ · σ,
∇ · u = 0,

where p denotes the pressure and σ the macroscopic stress tensor derived from the

orientation of the rods at the molecular level and is given by

σ(t, x) =

∫
S2

(3τ ⊗ τ − Id)f(t, x, τ)dτ. (1.1)

In this paper, we consider a model without the translational diffusion, D = 0. After

normalizing µ and Dr by 1, the system of equations now reads

ft + u · ∇xf +∇τ · (Pτ⊥(∇xuτ)f)−∆τf = 0 in (0, T )× Ω× S2, (1.2a)

σ =

∫
S2

(3τ ⊗ τ − Id)fdτ in (0, T )× Ω, (1.2b)

ut + u · ∇u−∆u+∇p = ∇ · σ in (0, T )× Ω, (1.2c)

∇ · u = 0 in (0, T )× Ω, (1.2d)

f(0, x, τ) = f0(x, τ) in Ω× S2, u(0, x) = u0(x) in Ω, (1.2e)

where

Pτ⊥(∇xuτ) = ∇xuτ − (τ · ∇xuτ)τ

is the projection of ∇uτ on the tangent space of the (d− 1)-dimensional space Sd−1

at τ ∈ Sd−1. With ∇τ and ∆τ we denote the gradient and the Laplace operator on

the unit sphere, while ∇ represents the gradient in R3 and

(divσ)i = (∇ · σ)i =

3∑
j=1

∂σij
∂xj

represents the forces due to the presence of microscopic insertions.

In this paper, we consider the problem in a bounded, open, and connected domain

Ω ⊂ R3 in x variables. We assume that the boundary is impermeable, and the
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fluid does not completely adhere to the boundary, but rather exhibits a partial slip

boundary condition. That is,

u · n̂ = 0, utan + (D(u)n̂)tan = 0, on ∂Ω (1.3)

where tan means the tangential component a vector field at the boundary, n̂ is the

outer normal vector at the boundary, and D(u) is the symmetric part of the matrix

∇u. The second condition in (1.3) is called Navier’s slip boundary condition, which

allows that all the integrals in Definition 2.1 are finite.

The boundary condition of f in the x variables is the Dirichlet boundary condition,

f(t, x, τ) = 0 on ∂Ω for almost all (t, τ) ∈ (0, T )× S2, (1.4)

which implies the stress tensor σ also satisfies the Dirichlet boundary condition,

σ = 0 on ∂Ω. (1.5)

Prescribing arbitrarily the initial velocity and the initial orientation distribution

in suitable spaces, we establish long-time and large data existence of a weak solution.

Since the definition of a weak solution and the main result are rather complicated,

we will state them in Section 2 (Definition 2.1 and Theorem 2.1).

Related results on the Doi Model for the suspensions of rod-like molecules are

presented by Otto and Tzavaras in [22], where the existence of strong solutions was

established in the case of perturbations of stationary homogeneous flows. The gov-

erning equations in that context involve a Fokker-Plank equation coupled with the

stationary Stokes equation. The result is obtained by establishing a novel estimate

for the Smoluchowski equation. Global existence of solutions in three dimensions of a

model involving a Fokker-Planck equation coupled with the stationary Stokes equa-

tion is also presented by Constantin in [5]. Both articles treat a stationary Stokes

equation, which allows the control of the term ∇xu in terms of σ. In (cf. Constantin

et al. [6], [7]) the global well-posedness for a Fokker-Planck equation coupled with

the Navier-Stokes equations in two dimensions is established. In the heart of analysis

lies the use of the Littlewood-Paley decomposition method for the estimation of the

∇xu in L∞. In [16], the global existence of a weak solution in the whole space was

established using the propagation of compactness argument. Linear stability analysis

for a kinetic model for the sedimentation of rod-like particles is presented in [12].

The paper is organized as follows. In Section 2, we introduce the notion of a weak

solution of the system (1.2) and function spaces on which weak solutions are defined.

We also provide some auxiliary lemmas. In Section 3, the main result is presented.

The proof relies on a quasi-compressible approximation of the pressure which is here
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determined as a solution of the Neumann problem, namely p = −1

ε
∆−1(∇ · u), and

the mollification of the velocity field in the advection term by a suitable divergence-

free mollifier. Using this approach, we can construct an approximate sequence of{
u(ε,η), p(ε,η)

}
, which are bounded uniformly in energy spaces, yielding the existence

of a weak solution (u, p). For the establishment of uniform bounds for the pressure we

employ the multipliers technique of Lions [14], which involves identifying appropriate

test functions in the weak formulation of the Navier-Stokes equation as solutions of

a suitable Neumann problem. For the approximation of f we introduce a smoothing

operator R in the spirit of [5] and we obtain uniform bounds of the sequence
{
Rf (ε,η)

}
in L∞

(
0, T ;L4(Ω × S2)

)
∩ L2

(
0, T ;L2(Ω)L6(S2)

)
, from which we can gain enough

integrability to pass to the limit to the approximation sequence. Uniform bounds

on f are established by solving a mollified transport equation applying DiPerna-Lions

theory [10]. Starting from a linear model of a Fokker-Planck equation, the analysis

presented in Section 3 can accommodate more general models in the spirit of (cf.

Constantin [5]). An existence result for a more general model following similar line

of argument as in the proof of Theorem 2.1 is presented in Section 4. In Section 5

some future directions and concluding remarks are discussed.

Remark 1.1 Although we do not need to use the propagation of compactness ar-

gument ([15, 16]) to prove the existence of a weak solution, an argument involv-

ing defect measures in the spirit of [16] guarantees a better convergence of approx-

imate sequences. For example, a subsequence of
{
∇u(ε,η)

}
converges strongly in

L2
(
0, T ;L2(Ω)

)
, which is not the case when we only deal with the Navier-Stokes equa-

tions. This stronger result is derived taking advantage of the higher integrability of

Rf .

Notation: • A . B means there is a constant C such that A ≤ CB.

• C(T ) is a function in-time which only depends on the norms of initial data and T .

• We use a standard notation for a Bochner space. For example, u ∈ Lr(0, T ;X)

means that u is a Lr function in time with values in X. In particular, for the density

function f , Lr(0, T ;XY ) is a space of Lr functions in time with values in X for x ∈ Ω

and Y for τ ∈ S2.

• We write
(
u, v
)

Ω
and < u, v >Ω, instead of

∫
Ω

uvdx and the dual bracket, respec-

tively. We use the same notation for the set Ω× S2.

• QT = (0, T )× Ω, K = Ω× S2.

• ⇀,
?
⇀, → denote weak limit, weak star limit, and strong limit, respectively.
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2 Preliminaries

2.1 Function spaces, Helmholtz decomposition

Let Ω be a bounded domain with a Lipschitz boundary ∂Ω. The Navier boundary

condition requires to define a function space with zero normal components on the

boundary. Therefore, we choose a subspace of W 1,r(Ω) as follows.

W 1,r
n (Ω) =

{
v; v ∈W 1,r(Ω), (trv) · n̂ = 0 on ∂Ω

}
,

where tr denotes the trace operator onto the boundary. Since the velocity field is

incompressible, we define a subspace of W 1,r
n (Ω) such that

W 1,r
n,div(Ω) =

{
v ∈W 1,r

n (Ω);∇ · v = 0
}
,

and we define a subspace of L2(Ω) with the divergence free condition:

L2
n(Ω) = {v ∈W 1,2

n,div(Ω)}
‖·‖L2(Ω)

.

We also need the notion of the dual space to define function spaces for ut.

W−1,r′

n (Ω) =
(
W 1,r
n (Ω)

)′, W−1,r′

n,div (Ω) =
(
W 1,r
n,div(Ω)

)′,
where r′ is the conjugate of r.

Next, we recall the Helmholtz decomposition of a vector field. We will use it

later when we construct approximate sequences by a quasi-compressible method. Let

v ∈W 1,q
n (Ω). Let g be a solution of the following elliptic problem:

∆g = ∇ · v in Ω, ∇g · n̂ = 0 on ∂Ω,

∫
Ω

gdx = 0.

Then, we can define the divergence-free part of v as

vdiv = v −∇g.

By the elliptic regularity theory,

‖g‖W 2,q(Ω) . ‖∇ · v‖Lq(Ω), ‖vdiv‖W 1,q(Ω) . ‖v‖W 1,q(Ω),

‖g‖W 1,q(Ω) . ‖v‖Lq(Ω), ‖vdiv‖Lq(Ω) . ‖v‖Lq(Ω).
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2.2 Auxiliary lemmas

When we perform integration by parts aiming at obtaining uniform energy bounds

for the velocity field u, we only have control of the L2 norm of the symmetric part

D(u) of ∇u, not that of ∇u. In order to be able to control the full derivative ∇u in

terms of its symmetric part D(u), we need the following lemma.

Lemma 2.1 [Korn’s inequality] Let Ω be a bounded domain in C1,1 and 1 < q <

∞. Then, for all v ∈W 1,q(Ω) with trv ∈ L2(∂Ω),

‖v‖W 1,q(Ω) . ‖D(v)‖Lq(Ω) + ‖trv‖L2(∂Ω).

Proof. For the proof of this lemma we refer the reader to [4].

The next lemma provides compactness of traces for relevant Bochner spaces.

Lemma 2.2 Let q1 ≥ 1 and r, q2 ∈ (1,∞). Let S be defined as

S =
{
v ∈ L∞

(
0, T ;L2(Ω)

)
∩ Lr

(
0, T ;W 1,r

n (Ω)
)
, vt ∈ Lq1

(
0, T : W−1,q2

n,div (Ω)
)}
.

If
{
vi
}

is bounded in S and r ∈ ( 2d
d+2 , 2), then

{
trvi

}
is precompact in Lp

(
0, T :

Ls(∂Ω)
)
, where

s ∈
(2d− 2

d
,
r(d− 1)

d− r

)
, p < s

dr + 2r − 2d

sd− 2d+ 2
.

From this lemma, we can verify the following.

Lemma 2.3 Let
{
vi
}

be bounded in S with d = 3 and r = 2. Then,
{
trvi

}
is

precompact in L2
(
0, T ;L2(∂Ω)

)
and also in Lq

(
0, T ;L

4
3 (∂Ω)

)
for all q ∈ [1,∞).

The following interpolation inequality will be of use for the estimation of solutions

in terms of uniform quantities which are derived from the energy estimates.

‖v‖Lq(Ω) . ‖v‖
6−q
2q

L2(Ω)‖v‖
3q−6

2q

L6(Ω) . ‖v‖
6−q
2q

L2(Ω)‖v‖
3q−6

2q

W 1,2(Ω), 2 ≤ q ≤ 6. (2.1)

Finally, we need three simple, but necessary properties of the operator R = (1 −
∆τ )−

s
2 . Roughly speaking, the operator R does not affect the advection term in the

Fokker-Plank equation and it regularizes f in the τ variable so that we can deal with

the Lp norm of the shear forces ∇τ · (Pτ⊥(∇xuτ)f) in terms of the total mass of f .
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Lemma 2.4 The operator R = (1−∆τ )−
s
2 , s > 5

2 , satisfies the following properties:

[R,∇x] = 0, (2.2)

R∇τ : L1(S2)→ Lp(S2) is bounded for any p > 1. (2.3)

R : L2(S2)→ Hs(S2) is bounded. (2.4)

For details of the proof of this lemma, see [5].

2.3 Main result

2.3.1 Definition of weak solutions

First, we introduce the assumptions on the initial data.

u0 ∈ L2(Ω), ∇ · u0 = 0, Rf0 ∈ L4(K), R = (1−∆τ )−
s
2 , s >

5

2
,

ρ0(x) =

∫
S2

f0(x, τ)dτ ∈ L∞(Ω).
(2.5)

Now, we define the notion of weak solution to (1.2).

Definition 2.1 Let Ω be a bounded domain in C1,1. Assume that u0 and f0 satisfy

(2.5). We say that (u, p, f) is a weak solution to (1.2), with the boundary conditions

(1.3), (1.4), and (1.5) if

u ∈ C
(
[0, T ];L2

weak(Ω)
)
∩ L2

(
0, T ;W 1,2

n,div(Ω)
)
, vt ∈ L

5
3

(
0, T ;W

−1, 53
n (Ω)

)
, (2.6a)

p ∈ L 5
3

(
0, T ;L

5
3 (Ω)

)
, (2.6b)

Rf ∈ L∞
(
0, T ;L2(K)

)
∩ L2

(
0, T ;L2(Ω)W 1,2(S2)

)
. (2.6c)

and the following integral relations hold.∫ T

0

[〈
ut, ψ

〉
Ω
−
(
u⊗ u,∇ψ

)
Ω

+
(
D(u), D(ψ)

)
Ω

+
(
u, ψ

)
∂Ω

]
dt

=

∫ T

0

[(
p,∇ · ψ

)
Ω

+
〈
∇ · σ, ψ

〉
Ω

]
dt for all ψ ∈ L2

(
0, T ;W 1,2

n (Ω)
)
.

(2.7)

∫ T

0

[〈
Rft,Ψ

〉
K
−
(
R(f)u,∇Ψ

)
K
−
(
R(Pτ⊥∇uτf),∇τΨ

)
K

+
(
R∇τf,∇τΨ

)
K

]
dt = 0 for all Ψ ∈ L∞

(
0, T ;L2(Ω)W 1,2(S2)

)
.

(2.8)

Before formulating the main results, we provide several remarks related to the above

definition.

Remark 2.1 As one can see from the definition of weak solution of the density term
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f in (2.8), we apply the operator R on the equation of f and deal with Rf instead of

f . Especially, the nonlinear term
(
R(Pτ⊥∇uτf),∇τΨ

)
K

can be expressed by

∫
Ω

∫
S2

[
R
(
∂iujτjf

)
∂τiΨ

]
dτdx−

∫
Ω

∫
S2

[
R
(
τi∂iujτjf

)
τ · ∇τΨ

]
dτdx

=

∫
Ω

∂iuj

∫
S2

(
τjfR

(
∂τiΨ

))
dτdx−

∫
Ω

∂iuj

∫
S2

(
τiτjfR

(
τ · ∇τΨ

))
dτdx

=

∫
Ω

∂iuj

∫
S2

(
RfR−1

(
τjR(∂τiΨ)

))
dτdx

−
∫

Ω

∂iuj

∫
S2

(
RfR−1

(
τiτjR(τ · ∇τΨ)

))
dτdx.

In the sequel, we require to take the limit to
{
Rf (m)

}
and not

{
f (m)

}
. In Section 3, we

will obtain uniform bounds of
{
Rf (m)

}
in L∞

(
0, T ;L2(K)

)
∩L2

(
0, T ;L2(Ω)W 1,2(S2)

)
,

which is enough to pass to the limit to the nonlinear term
(
R(Pτ⊥∇uτf),∇τΨ

)
K

.

Remark 2.2 We can split (2.7) into two separate equations of u and p. First, we

take a test function ψ such that ∇ · ψ = 0. Then,∫ T

0

[〈
ut, ψ

〉
Ω
−
(
u⊗ u,∇ψ

)
Ω

+
(
D(u), D(ψ)

)
Ω

+
(
u, ψ

)
∂Ω

]
dt

=

∫ T

0

[〈
∇ · σ, ψ

〉
Ω

]
dt for all ψ ∈ L2

(
0, T ;W 1,2

n,div(Ω)
)
.

Next, we insert ψ = ∇ζ into (2.7), where

∆ζ = h, ∇ζ · n = 0,

∫
Ω

ζ = 0.

Then, we obtain the equation of the pressure, namely(
p, h
)

Ω
=
(
D(u)− u⊗ u,∇2(∆−1h)

)
Ω

+ α
(
u,∇(∆−1h)

)
∂Ω
−
〈
∇ · σ,∇(∆−1h)

〉
Ω

for a.e. t ∈ (0, T ), all h ∈ L∞(Ω),

∫
Ω

h = 0.

Remark 2.3 By the Navier boundary condition, all integrals in the definition of weak

solution are finite. Moreover, Lemma 2.3 together with (2.6a) yields

tru ∈ L2
(
0, T ;L2(∂Ω)

)
so that all boundary integrals make sense.

Now, we state the main theorem of the paper.
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Theorem 2.1 Let Ω be a three dimensional bounded domain in C1,1. Assume that

u0 and f0 satisfy (2.5). Then, there exists a weak solution (u, p, f) to (1.2), with the

boundary conditions (1.3), (1.4), and (1.5), satisfying all conditions in Definition 2.1.

Remark 2.4 A smooth solution of (1.2) satisfies the free energy dissipation:

d

dt

[
‖u‖2L2(Ω) +

∫
K

(f log f − f + 1)dτdx
]

+ 4

∫
K

|∇τ
√
f |2dτdx+ ‖D(u)‖2L2(Ω) + α‖u‖2L2(∂Ω) = 0.

By the lower semi-continuities of functionals in the integrands, we can prove the

entropy inequality under suitable conditions on initial data.

3 Proof of Theorem 2.1

3.1 Definition of (ε, η) approximations and their solutions

In the heart of the analysis lies the quasi-compressible approximation of the incom-

pressibility condition ∇ · u = 0. Namely,

ε∆p = ∇ · u in Ω, ∇p · n = 0 on ∂Ω,

∫
Ω

pdx = 0. (3.1)

This approximation yields the increase of the regularity of the pressure. The second

key ingredient of our approach is the regularization of the convective velocity field as

follows

uη =
(
(ληu) ? wη

)
div
,

where ?wη denotes the standard mollification with kernel w, and div means the di-

vergent part of a vector field. Here, λη is a cut-off function such that

λη(x) =

{
0 if dist(x, ∂Ω) ≤ 2η

1 elsewhere.

Note that if un → u in Lq
(
Ω× (0, T )

)
and ∇ · u = 0, then, unη → u in Lq

(
Ω× (0, T )

)
.

Now, we consider the following regularized system of equations. For the simplicity of
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the notation, we will not specify the (ε, η) dependence of functions.

ft + uη · ∇xf +∇τ · (Pτ⊥(∇xuτ)f)−∆τf = 0 in (0, T )× Ω× S2, (3.2a)

σ =

∫
S2

(3τ ⊗ τ − Id)fdτ in (0, T )× Ω, (3.2b)

ut + uη · ∇u−∆u+∇p = ∇ · σ in (0, T )× Ω, (3.2c)

ε∆p = ∇ · u in (0, T )× Ω, (3.2d)

f(0, x, τ) = f0(x, τ) in Ω× S2, u(0, x) = u0(x) in Ω. (3.2e)

Definition 3.1 Let Ω be a bounded domain in C1,1. Assume that u0 and f0 satisfy

(2.5). We say that a triple
(
u(ε,η), p(ε,η), f (ε,η)

)
= (u, p, f) is a weak solution to (3.2),

with the boundary conditions (1.3), (1.4), and (1.5) if

u ∈ C
(
[0, T ];L2

weak(Ω)
)
∩ L2

(
0, T ;W 1,2

n,div(Ω)
)
, vt ∈ L2

(
0, T ;W−1,2

n (Ω)
)
, (3.3a)

p ∈ L2
(
0, T ;W 1,2(Ω)

)
, (3.3b)

Rf ∈ L∞
(
0, T ;L2(K)

)
∩ L2

(
0, T ;L2(Ω)W 1,2(S2)

)
. (3.3c)

and the following integral relations hold.

− ε
(
∇p,∇π

)
Ω

=
(
π,∇ · u

)
Ω

for all π ∈W 1,2(Ω) for a.e. t ∈ [0, T ]. (3.4)

∫ T

0

[〈
ut, ψ

〉
Ω
−
(
uη ⊗ u,∇ψ

)
Ω

+
(
D(u), D(ψ)

)
Ω

+
(
u, ψ

)
∂Ω

]
dt

=

∫ T

0

[(
p,∇ · ψ

)
Ω

+
〈
∇ · σ, ψ

〉
Ω

]
dt for all ψ ∈ L2

(
0, T ;W 1,2

n (Ω)
) (3.5)

∫ T

0

[〈
Rft,Ψ

〉
K
−
(
R(f)uη,∇Ψ

)
K
−
(
R(Pτ⊥∇uτf),∇τΨ

)
K

+
(
R∇τf,∇τΨ

)
K

]
dt = 0 for all Ψ ∈ L∞

(
0, T ;L2(Ω)W 1,2(S2)

)
.

(3.6)

Lemma 3.1 There exists a weak solution to the system (3.2).

Proof. The existence of a solution to the (ε, η) approximation will be established

using a Galerkin approximation method. We present here the main steps of the

approach and we refer the reader to [3] where similar line of argument was used in

the context of elasticity.

Step 1. First, we define a linear mapping F that assigns to any u ∈ W 1,2
n (Ω) the

solution p ∈ W 2,2(Ω) of the problem (3.1). Taking into consideration that Ω ∈ C1,1,

the regularity theory for the Neumann problem (3.1) yields that the mapping F :

W 1,2
n (Ω)→W 2,2(Ω) is continuous.
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Step 2. Let
{
wj
}∞
j=1

be a orthonormal basis of W 1,2
n (Ω) that is orthonormal in

L2(Ω). For the construction of this basis we refer the reader to [17]. We construct the

Galerkin approximations
{
u(N), p(N)

}∞
N=1

being of the form

u(N) :=

N∑
i=1

dNi (t)wi, p(N) := F(u(N)),

where d(N) = (dN1 , . . . , d
N
N ) solves the system of ordinary differential equation:

d

dt

(
u(N), wj

)
−
(
uη

(N) ⊗ u(N),∇wj
)

+
(
D(u(N)),∇wj

)
+
(
u(N), wj

)
∂Ω

−
(
F(u(N)),∇ · wj

)
=
(
∇ · σ(N), wj

)
, j = 1, 2, . . . , N.

(3.7)

Here, σ(N) =

∫
S2

(3τ ⊗ τ − Id)f (N)(t, x, τ)dτ , and f (N) will be defined in step 3. We

require that u(N) satisfy the initial condition: u(N)(·, 0) = u
(N)
0 =

N∑
j=1

dN0 wj .

Step 3. We proceed constructing the Galerkin approximations
{
f (N)

}∞
N=1

. Let{
yj
}∞
j=1

be a orthonormal basis of W 1,2
0 (Ω) that is orthonormal in L2(Ω). We need

the zero boundary condition on the basis because σ vanishes at the boundary. Let{
vj
}∞
j=1

be a orthonormal basis of W 1,2
n (S2) that is orthonormal in L2(S2). We

construct the Galerkin approximations
{
Rf (N)

}∞
N=1

being of the form

Rf (N)(t, τ, x) :=

N∑
i,j=1

cNij (t)vi(τ)yj(x),

where c(N) = (c11
N , . . . , c

N
N1, c

N
N2, . . . c

N
NN ) solves the system of ordinary differential

equation

d

dt

(
Rf (N), viyj

)
−
(
uη

(N) · ∇Rf (N), viyj

)
+
(
R(Pτ⊥∇u(N)τf (N)),∇τ (viyj)

)
+
(
R∇τf (N),∇τ (viyj)

)
dt = 0, j = 1, 2, . . . , N.

(3.8)

We require thatRf (N) satisfy the initial condition: Rf (N)(·, 0) = Rf
(N)
0 =

N∑
i,j=1

cN0 viyj .

Step 4. Next, we obtain uniform estimates on
{
u(N)

}
. Multiplying equation (3.7) by

dNj , summing over j = 1, . . . , N , integrating over (0, T ), and using the the identity

(
u(N)
η ⊗ u(N),∇u(N)

)
Ω

=
(
u(N)
η ,∇|u

(N)|2

2

)
Ω

= −
(
∇ · u(N)

η ,
|u(N)|2

2

)
Ω

= 0,
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we get

1

2
‖u(N)(t)‖2L2(Ω) +

∫ T

0

[
‖D(u(N))‖2L2(Ω) + ‖u(N)‖2L2(∂Ω) + ε‖∇p(N)‖2L2(Ω)

]
dt

≤
∫ T

0

〈
∇ · σ(N), u(N)

〉
Ω
dt+ ‖u(N)

0 ‖2L2(Ω)

≤
∫ T

0

‖σ(N)‖L2(Ω)‖u(N)‖W 1,2
n (Ω)dt+ ‖u0‖2L(Ω).

(3.9)

Applying Korn’s inequality and Young’s inequality to the last equation of (3.9) we

conclude that

sup
t∈(0,T )

‖u(N)(t)‖2L2(Ω) +

∫ T

0

[
‖u(N)‖W 1,2

n (Ω) + ε‖∇p(N)‖2L2(Ω)

]
dt

≤ C(T ) +

∫ T

0

‖σ(N)‖L2(Ω).

(3.10)

Step 5. Next, we obtain uniform estimates on
{
f (N)

}∞
N=1

. Multiplying equation

(3.8) by cNij , summing over i, j = 1, . . . , N , and integrating over (0, T ), we get

sup
t∈(0,T )

‖Rf (N)(t)‖2L2(K) +

∫ T

0

∫
K

|∇τRf (N)(t)|2dτdxdt ≤ C(T ). (3.11)

For details of this estimation, see Section 3.3. Since

|σ(N)(t, x)| =
∣∣∣ ∫
S2

(3τ ⊗ τ − Id)f (N)(t, x, τ)dτ
∣∣∣

≤
∫
S2

∣∣∣R−1(3τ ⊗ τ − Id)Rf (N)(t, x, τ)
∣∣∣dτ . ‖Rf (N)‖L2(S2),

(3.12)

we can control

∫ T

0

‖σ(N)‖L2(Ω)dt in (3.10) by (3.11).

Step 6. To obtain compactness of the velocity we estimate the norm of its time

derivative. Multiplying (3.7) by
d

dt
cNj , summing over j = 1, . . . , N and integrating

over time we obtain using (3.10)

∫ T

0

(
d

dt
cN
)2

dt ≤ C(T ).

By taking the limit N → ∞, we show that u(N) → u strongly in C
(
[0, T ];L2(Ω)

)
.

This implies in turn that p(N) → p strongly in L2
(
0, T ;W 1,2(Ω)

)
.

Step 7. To pass to the limits in the third term of (3.6), we need a strong convergence

of
{
Rf (N)

}∞
N=1

in L2
(
0, T ;L2(K)

)
, and this strong convergence can be achieved by

higher integrability of
{
Rf (N)

}∞
N=1

. We apply step 3 and step 5 to (Rf)2. Then, we

13



can easily obtain the following estimation:

sup
t∈(0,T )

‖Rf (N)(t)‖4L4(K) ≤ C(T ). (3.13)

For details of this estimation, see Section 3.3. From (3.11) and (3.13), Rf (N) ∈
L∞
(
0, T ;L4(K)

)
∩L2

(
0, T ;L2(Ω)L6(S2)

)
, which is enough to pass to the limit in the

third term of (3.6). �

Remark 3.1 Lemma 3.1 can be proved assuming only that Rf0 ∈ Lp(K) for any

p > 2. However, for the sake of simplicity here we take Rf0 in L4(K).

3.2 Uniform estimates of (u, p)

3.2.1 Uniform estimates of u

Here, and in what follows, we set
(
u, p, f

)
=
(
u(ε,η), p(ε,η), f (ε,η)

)
and we derive esti-

mates that are uniform with respect to both η and ε and also estimates uniform only

with respect to ε. The existence of a weak solution to the regularized system (3.2)

implies that we can take the solution as a test function to obtain uniform bounds of

solutions. First, we take ψ = u and π = p. Then,

1

2

d

dt
‖u‖2L2(Ω) + ‖D(u)‖2L2(Ω) + ε‖∇p‖2L2(Ω) + ‖u‖2L2(∂Ω) =

〈
∇ · σ, u

〉
Ω
. (3.14)

Using integration by parts in the right-hand side of (3.14) and with the aid of the

boundary condition of σ, we get

1

2

d

dt
‖u‖2L2(Ω) + ‖D(u)‖2L2(Ω) + ε‖∇p‖2L2(Ω) + ‖u‖2L2(∂Ω) ≤ ‖σ‖L2(Ω)‖∇u‖L2(Ω).(3.15)

By Young’s inequality and Korn’s inequality,

d

dt
‖u‖2L2(Ω) + ‖∇u‖2L2(Ω) + ε‖∇p‖2L2(Ω) + ‖u‖2

W 1,2
n (Ω)

. ‖σ‖2L2(Ω). (3.16)

Next, we need to estimate the stress tensor σ. By (3.12) and (3.11) without N , we

have

‖σ‖L2(QT ) ≤ C(T ). (3.17)

Therefore, for all t ∈ [0, T ],

‖u(t)‖2L2(Ω) +

∫ t

0

[
‖∇u(s)‖2L2(Ω) + ε‖∇p(s)‖2L2(Ω) + ‖u(s)‖2

W 1,2
n (Ω)

]
ds ≤ C(T ).(3.18)
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In particular, by the interpolation inequality (2.1), we have∫ T

0

‖u(t)‖
10
3

L
10
3 (Ω)

dt ≤ C(T ). (3.19)

3.2.2 Uniform estimates of p and ut

Higher integrability for the pressure p is established by employing the multipliers

technique of Lions [14]. This technique involves identifying appropriate test functions

in the weak formulation of the Navier-Stokes equations as solutions of a suitable

Neumann problem. In the sequel β ∈ (1, 2]


h = |p|β−2p− 1

|Ω|

∫
Ω

|p|β−2pdx in Ω

∇h · n = 0 on ∂Ω,

∫
Ω

hdx = 0.
(3.20)

By the elliptic regularity theory of the Neumann problem, we have that

‖∇h‖β
′

W 1,β′ (Ω)
. ‖p‖β

Lβ(Ω)
.

Taking ψ = ∇h in (3.5) we obtain∫ T

0

‖p‖β
Lβ(Ω)

dt = I1 + I2 + I3 + I4 + I5.

Using the notation QT = (0, T )× Ω, and the fact β ≤ 2, we get

I1 =

∫
QT

(
D(u) ·D(∇h)

)
dxdt .

∫
QT

|D(u)|βdxdt+
1

8

∫ T

0

‖p‖β
Lβ(Ω)

dt,

where we use (3.20) at the first inequality.

I2 =

∫ T

0

〈
∇ · σ,∇h

〉
Ω
dt .

∫ T

0

‖σ‖2L2(Ω) + C +
1

8

∫ T

0

‖p‖β
Lβ(Ω)

dt,

I3 = α

∫ T

0

(
u,∇h

)
∂Ω
dt .

∫ T

0

[
1 + ‖tru‖2L2(Ω)

]
dt+

1

8

∫ T

0

‖p‖β
Lβ(Ω)

dt,

I4 = −
∫
QT

((
uη ⊗ u

)
· ∇2h

)
dxdt .

∫
QT

|uη ⊗ u|βdxdt+
1

8

∫ T

0

‖p‖β
Lβ(Ω)

dt,
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I5 =

∫ T

0

〈
ut,∇h

〉
Ω
dt = −

∫ T

0

〈
(∇ · u)t, h

〉
Ω
dt

= −ε
∫ T

0

〈
pt, |p|β−2p− 1

|Ω|

∫
Ω

|p|β−2p
〉

Ω
dt

= − ε
β
‖p(T )‖β

Lβ(Ω)
+
ε

β
‖p(0)‖β

Lβ(Ω)
= − ε

β
‖p(T )‖β

Lβ(Ω)
,

where we use the fact that p(0) = −1

ε
∇ · u0 = 0. Collecting all terms,

∫ T

0

‖p‖β
Lβ(Ω)

dt . C(T ) +

∫
QT

|uη ⊗ u|βdxdt. (3.21)

Since

‖uη ⊗ u‖L2(Ω) ≤ ‖uη‖L∞(Ω)‖u‖L2(Ω) .
1

η
‖u‖L2(Ω),

the last inequality in (3.21) implies∫ T

0

‖p‖β
Lβ(Ω)

dt .
1

η
. (3.22)

If we use (3.19), instead, then∫ T

0

‖p‖
5
3

L
5
3 (Ω)

dt ≤ C(T ). (3.23)

Finally, from the momentum equation of u,

‖ut‖L2(0,T ;W−1,2
n (Ω)) .

1

η
, ‖ut‖

L
5
3 (0,T ;W

−1, 5
3

n (Ω))
. C. (3.24)

3.3 Uniform estimates of f

It is clear that the function ρ(t, x) =

∫
S2

f(t, x, τ)dτ satisfies the linear transport

equation

ρt + uη · ∇ρ = 0

in the sense of distributions. Taking into consideration the regularity properties of uη

DiPerna-Lions’ theory in [10] yields the existence of a solution of this linear transport

equation. In particular,

ρ ∈ L∞(0, T ;Lp(Ω)), p ∈ [1,∞],

which implies that

‖f‖L∞(0,T ;L∞(Ω)L1(S2)) ≤ C. (3.25)
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Next, we estimate Rf . The existence of a weak solution to (3.2) implies that we can

take Rf as a test function in (3.6). Let

N2(x, t) =

∫
S2

|Rf |2dτ, R = (1−∆τ )−
s
2 , s >

5

2
.

Then,

1

2

d

dt
N2(x, t) =

∫
S2

Rf ·Rftdτ. (3.26)

We calculate the right-hand side of (3.26) with the aid of the evolution equation of

f . First, we calculate the advection term. By (2.2),

−
∫
S2

Rf ·R(uη · ∇f)dτ = −1

2
uη · ∇x

∫
S2

|Rf |2dτ. (3.27)

Secondly, we calculate the rotational diffusion term.∫
S2

Rf ·R∆τfdτ = −
∫
S2

|∇τRf |2dτ. (3.28)

Finally, we calculate the drift term in τ .∫
S2

Rf ·R∇τ · (Pτ⊥(∇xuτ)f)dτ . ‖Rf‖L2(S2)‖R∇τ · (Pτ⊥(∇xuτ)f)‖L2(S2)

. |∇xu| · ‖Rf‖L2(S2)‖f‖L1 . |∇xu| · ‖Rf‖L2(S2),

(3.29)

where we use (2.3) in the second inequality and (3.25) in the last inequality. Com-

bining all terms, we have

d

dt
N2 + uη · ∇xN2 +

∫
S2

|∇τRf |2dτ . |∇xu|N. (3.30)

Integrating (3.30) over Ω we arrive at

d

dt

∫
Ω

N2dx+

∫
K

|R∇τf |2dτdx .
∫

Ω

|∇u|Ndx ≤ ‖∇u‖L2(Ω)

(∫
Ω

N2dx
) 1

2

. (3.31)

Since ∫ T

0

‖∇u(t)‖2L2
x(Ω)dt ≤ C(T ),

for all t ∈ [0, T ],

‖N2(t)‖L1(Ω) +

∫ t

0

∫
K

|R∇τf |2dτdxds ≤ C(T ), (3.32)

which means that Rf is bounded in L∞
(
0, T ;L2(K)

)
∩ L2

(
0, T ;L2(Ω)W 1,2(S2)

)
.
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We note that we can obtain (3.29) because R∇τ · (Pτ⊥(∇xuτ)f) is not a generic

quadratic term under the operator R. Therefore, we can avoid taking L∞(Ω) norm to

|∇u|. Following the same idea obtaining the energy bound of Rf in L∞
(
0, T ;L2(K)

)
∩

L2
(
0, T ;L2(Ω)W 1,2(S2)

)
, we can obtain higher integrability of Rf . Let

N4(x, t) =

∫
S2

|Rf |4dτ, R = (1−∆τ )−
s
2 , s >

5

2
.

Then,
1

4

d

dt
N4(x, t) =

∫
S2

(Rf)3 ·Rftdτ.

No further details will be provided in this step. Thus, we obtain the following estimate

on G = N4,

Gt + uη · ∇G . |∇u|G
3
4 ,

from which

sup
t∈(0,T )

‖G(t)‖L1(Ω) ≤ C(T ). (3.33)

Therefore, Rf ∈ L∞
(
0, T ;L4(K)

)
.

3.4 Passing to the limits

Now, we take the limit in (ε, η) to the sequence of approximate solutions which is

uniformly bounded. First, we take the limit in ε, and then will take the limit in η.

The limiting process in u follows similar line of argument to the one presented in [3].

For the completeness, we present the details here.

3.4.1 Passing to the limit in u

First, we take the limit in ε. It follows from (3.18), (3.19), (3.22), and the first term

in (3.24). By the Aubin-Lions lemma, there exist subsequences (not labeled, without

indicating η dependence) and (u, p, σ) such that

uεt ⇀ ut in L2
(
0, T ;W−1,2

n (Ω)
)
,

uε ⇀ u in L2
(
0, T ;W 1,2

n (Ω)
)
,

uε
?
⇀ u in L∞

(
0, T ;L2(Ω)

)
,

uε → u in Lq
(
0, T ;Lq(Ω)

)
for 1 ≤ q < 10

3
,

∇uε ⇀ ∇u in L2
(
0, T ;L2(Ω)

)
,

pε ⇀ p in L2
(
0, T ;L2(Ω)

)
,

σε ⇀ σ in L2
(
0, T ;L2(Ω)

)
.
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Moreover, from Lemma 2.3,

truε → tru in L2
(
0, T ;L2(∂Ω)

)
.

We also observe that for ψ ∈ L2(0, T ;W 1,2(Ω)),

∣∣∣ ∫ T

0

(∇ · u, ψ)Ωdt
∣∣∣ = lim

ε→0

∣∣∣ ∫ T

0

(∇ · uε, ψ)Ωdt
∣∣∣ = lim

ε→0

∣∣∣ ∫ T

0

∫
Ω

(∇ψ · ∇pε)dxdt
∣∣∣

≤ lim
ε→0

√
ε
(∫

QT

|∇ψ|2
) 1

2
(∫

QT

ε|∇pε|2
) 1

2

= 0,

which implies ∇ · u = 0 a.e. in (0, T )× Ω. The above convergence is enough to take

the limit in (3.5) and
(
u, p, σ

)
=
(
uη, pη, ση

)
satisfies

∫ T

0

[〈
ut, ψ

〉
Ω
−
(
uη ⊗ u,∇ψ

)
Ω

+
(
D(u), D(ψ)

)
Ω

+
(
u, ψ

)
∂Ω

]
dt

=

∫ T

0

[(
p,∇ · ψ

)
Ω

+
〈
∇ · σ, ψ

〉
Ω

]
dt for all ψ ∈ L2

(
0, T ;W 1,2

n (Ω)
)
.

Secondly, we take the limit in η. We know that
(
uη, pη, ση

)
satisfies (3.5). From

(3.18), (3.19), (3.23), and the second term in (3.24), there exists a subsequence and

a limit (u, p, σ) such that

uηt ⇀ ut in L
5
3

(
0, T ;W

−1, 53
n (Ω)

)
,

uη ⇀ u in L2
(
0, T ;W 1,2

n (Ω)
)
,

uη
?
⇀ u in L∞

(
0, T ;L2(Ω)

)
,

uη → u in Lq
(
0, T ;Lq(Ω)

)
for 1 ≤ q < 10

3
,

∇uη ⇀ ∇u in L2
(
0, T ;L2(Ω)

)
,

truη → tru in L2
(
0, T ;L2(∂Ω)

)
,

pη ⇀ p in L
5
3

(
0, T ;L

5
3 (Ω)

)
,

σε ⇀ σ in L2
(
0, T ;L2(Ω)

)
.

Therefore, we can take the limit in (3.5).

3.4.2 Passing to the limit in f

In order to take the limit in (3.6), we employ the compactness of
{
Rf (N)

}∞
N=1

.

Since there are two indices
(
ε, η
)

involved, we need to use it twice. Here we only

present one step. Let, m denote either ε or η. From the boundedness of
{
Rf (m)

}
in

L∞
(
0, T ;L4(K)

)
∩ L2

(
0, T ;L2(Ω)L6(S2)

)
, we can extract a subsequence,

{
Rf (mj)

}
converging to Rf strongly in L2

(
0, T ;L2(K)

)
. Therefore, we can pass to the limit in
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(3.6), and this completes the proof of Theorem 2.1.

Remark 3.2 In fact, we can derive a stronger convergence result. In the spirit of

[16], we introduce the following defect measures:

|R(f (m) − f)|2 → ν, |∇u(m) −∇u|2 → β, |σ(m) − σ|2 → α. (3.34)

By (3.12) without N and (3.16),

|σ| . ‖Rf‖L2(S2), ‖∇u‖L2(QT ) . ‖σ‖L2(QT ), (3.35)

from which we deduce that

β . α .
∫
S2

νdτ. (3.36)

Since
{
Rf (mj)

}
converges strongly to Rf in L2

(
0, T ;L2(K)

)
,

∫
s2
νdτ = 0, and thus

β = α = 0. We note that
{
σ(m)

}
and

{
∇u(m)

}
converge strongly in L2

(
0, T ;L2(Ω)

)
,

and this strong convergence cannot be derived only from the energy bounds.

Related results have been obtained by Lions and Masmoudi in [16] where the exis-

tence of a weak solution of (1.2) on the whole space was obtained using the propagation

of compactness argument. Using an argument employing defect measures, it was de-

duced that
d

dt

∫
S2

νdτ + u · ∇x
∫
S2

νdτ .
(
1 + |∇u|

) ∫
S2

νdτ

which yields that

∫
S2

νdτ = 0 if

∫
S2

ν0dτ = 0.

4 A more general model

In the spirit of Constantin [5] we consider now more general models. More specifically,

the system of equations is given by

ft + u · ∇f +∇τ ·
(
Pτ⊥(∇xuτ)f +∇τUf

)
−∆τf = 0 in (0, T )× Ω× S2, (4.1a)

σ =

∫
S2

(3τ ⊗ τ − Id)fdτ in (0, T )× Ω, (4.1b)

ut + u · ∇u−∆u+∇p = ∇ · σ in (0, T )× Ω, (4.1c)

∇ · u = 0 in (0, T )× Ω, (4.1d)

f(0, x, τ) = f0(x, τ) in Ω× S2, u(0, x) = u0(x) in Ω, (4.1e)
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where the potential U is

U(t, x, τ) =

∫
S2

Z(τ, w)f(t, x, w)dw, (4.2)

with a kernel Z which is a smooth, time and space independent symmetric function

Z : S2 × S2 → R. The macroscopic stress tensor σ consists of two parts:

σ = σ(1) + σ(2),

where σ(1) is the same in (1.1), and σ(2) is

σ
(2)
ij (t, x) =

∫
S2

∫
S2

γ
(2)
ij (m,n)f(t, x,m)f(t, x, n)dmdn, (4.3)

where γ
(2)
ij are smooth, time independent, space independent, and do not depend on

f . Now, we define a weak solution of this system (4.1). Notice the presence of the

two extra terms ∇τUf and σ(2) in the following definition of a weak solution to (4.1).

Definition 4.1 Let Ω be a bounded domain in C1,1. Assume that u0 and f0 satisfy

(2.5). We say that (u, p, f) is a weak solution to (4.1), with the boundary conditions

(1.3), (1.4), and (1.5) if

u ∈ C
(
[0, T ];L2

weak(Ω)
)
∩ L2

(
0, T ;W 1,2

n,div(Ω)
)
, vt ∈ L

5
3

(
0, T ;W

−1, 53
n (Ω)

)
, (4.4a)

p ∈ L 5
3

(
0, T ;L

5
3 (Ω)

)
, (4.4b)

Rf ∈ L∞
(
0, T ;L2(K)

)
∩ L2

(
0, T ;L2(Ω)W 1,2(S2)

)
. (4.4c)

and the following integral relations hold.∫ T

0

[〈
ut, ψ

〉
Ω
−
(
u⊗ u,∇ψ

)
Ω

+
(
D(u), D(ψ)

)
Ω

+
(
u, ψ

)
∂Ω

]
dt

=

∫ T

0

[(
p,∇ · ψ

)
Ω

+
〈
∇ · σ, ψ

〉
Ω

]
dt for all ψ ∈ L2

(
0, T ;W 1,2

n (Ω)
)
.

(4.5)

∫ T

0

[〈
Rft,Ψ

〉
K
−
(
R(f)u,∇Ψ

)
K
−
(
R(Pτ⊥∇uτf),∇τΨ

)
K

+
(
R(∇τUf),∇τΨ

)
K

+
(
R∇τf,∇τΨ

)
K

]
dt = 0

(4.6)

for all Ψ ∈ L∞
(
0, T ;L2(Ω)W 1,2(S2)

)
.

The following result can now be proved.

Theorem 4.1 Let Ω be a three dimensional bounded domain in C1,1. Assume that

u0 and f0 satisfy (2.5). Then, there is a weak solution (u, p, f) to (4.1), with the
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boundary conditions (1.3), (1.4), and (1.5), satisfying all conditions in Definition 4.1.

Proof. The proof of Theorem 4.1 follows a similar line of argument as the proof of

Theorem 2.1, hence we only provide the main outline of the proof and the estimates

of the extra terms.

Step 1. We construct the (ε, η) approximating scheme which now reads

ft + uη · ∇xf +∇τ · (Pτ⊥(∇xuτ)f +∇τUf)−∆τf = 0 in (0, T )× Ω× S2,

ut + uη · ∇u−∆u+∇p = ∇ · σ in (0, T )× Ω,

ε∆p = ∇ · u in (0, T )× Ω,

f(0, x, τ) = f0(x, τ) in Ω× S2, u(0, x) = u0(x) in Ω.

Step 2. Next we establish the existence of a weak solution to this system following

the line of argument in Section 3. In the heart of the analysis lie the establishment

of uniform estimates on {u, p}. This requires a uniform estimate of the stress tensor

σ. Here we focus on the quadratic component σ(2) of the stress tensor σ. Observe that

|σ(2)
ij (t, x)| ≤

∣∣∣ ∫
S2

f(t, x, n)

∫
S2

R−1γ
(2)
ij (m,n)Rf(t, x, n)dmdn

∣∣∣
. ‖f‖L1(S2)‖Rf‖L2(S2) . ‖Rf‖L2(S2).

(4.8)

Therefore both terms σ(1) and σ(2) and as a consequence the stress tensor σ can be

handled in the same fashion as (3.12).

Step 3. Next, we establish uniform estimates of f following the approach presented in

Section 3.3. For the sake of completeness we present here the estimate for the extra

drift term in τ, namely∫
S2

Rf ·R∇τ · (f∇τU)dτ . ‖Rf‖L2(S2)‖f∇τU‖L1(S2)

. ‖Rf‖L2(S2)‖f‖L1(S2)‖∇τU‖L∞(S2) . ‖Rf‖L2(S2)‖f‖2L1(S2) . ‖Rf‖L2(S2).

(4.9)

The uniform estimate on Rf can now be established following the line of argument

presented in Section 3.3.

5 Concluding remarks

The present article is part of a research program whose objective is the investigation

of general models for polymeric fluids in domains with complex geometries. Non-

linear Fokker-Planck-type equations coupled with Navier-Stokes equations in which

the added stresses σ depend in either linear or nonlinear fashion on the density of

particles are of great scientific interest. The quantity divσ represents the forces due
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to the presence of microscopic insertions. The insertions are objects parameterized

by a microscopic variable τ, which belongs to a general manifold M of dimension d.

In the case of rod-like particles (as the one in the present article) the manifold M is

the unit sphere in three dimensions, and τ ∈ S2 represents the director of the rods.

More complicated particles require more degrees of freedom for the space M. As men-

tioned in [5] articulated rods with several articulations, require a phase space which

is a product of spheres. Motivated by engineering applications which often involve

manifolds which fail to be connected (domains with holes and other deformations)

one of the goals of this project is the treatment of general manifolds M.

Among the models of great scientific interest are included the Finite Extensible

Nonlinear Elastic (FENE) dumbbell model of polymeric flows for a general class of

potentials and the investigation of relevant models in viscoelasticity of Oldroyd B-type

or Johnson-Segalman-type [20], [21]. In the FENE model, a polymer is idealized as an

elastic dumbbell consisting of two beads joined by a spring which can be represented

by a vector R (cf. Bird, Curtis, Amstrong and Hassager [1, 2], Doi and Edwards [11]

for some physical introduction to the models and Ottinger [23] for a mathematical

treatment and Owens and Phillips [24] for the computational aspects). We refer the

reader also to the recent work of Masmoudi [18] for results relevant to the existence

of weak solutions to such models.

Note that the investigation of singular limits of complex fluids for compressible

flows over bounded domains is of great scientific interest, physically relevant and

presents new challenges in the analysis. Unlike the cases involving the whole domain

or exterior domains where acoustic waves are damped locally due to dispersive effects

of the wave equation, the main obstacle in the treatment of bounded domains is the

persistency of the fast waves over these domains [8, 19, 25]. Therefore in general one

can only expect weak convergence of the solutions. It is worth noting [9] that there are

situations where strong convergence can be achieved due to the interaction of acoustic

waves with the boundary of the domain, where a thin boundary layer is created

to damp the energy carried by these fast oscillations. This phenomenon has been

observed for both asymptotics of fluid equations and hydrodynamic limits of kinetic

equations [9, 13]. It is therefore natural to ask whether similar phenomena happen

for models of polymeric fluids. Before attempting to answer this question, one needs

to know what are the physical boundary conditions that should be imposed on such

systems. These boundary conditions are typically derived from the underlying kinetic

equations so that they are compatible with the given boundary conditions for the

kinetic equations. Deriving admissible boundary conditions for models describing the

evolution of polymeric fluids, establishing the well-posedness theory of such systems

and investigating their asymptotics over bounded domains are some of the goals of

this program.
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