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Abstract

We establish analyticity of the subcritical and critical quasi-geostrophic equations in critical
Besov spaces. The main method is so-called Gevrey estimates, which is motivated by the work
of Foias and Temam [23]. We show that mild solutions are Gevrey regular, i.e. they satisfy
the estimate

sup
t>0

‖eαt
1/γ

Λ1θ(t)‖L <∞

for a suitably chosen α > 0 and a scaling invariant Besov space L.

1 Introduction and statement of main results

In this paper, we study analyticity properties of the dissipative quasi-geostrophic equations. These
equations are derived from the more general quasi-geostrophic approximation for a rapidly rotat-

ing non-homogeneous fluid flow with small Rossby and Ekman numbers. For the case of special
solutions with constant potential vorticity in the interior and constant buoyancy frequency (nor-

malized to one), the general quasi-geostrophic equations reduce to the evolution equations for
the temperature on the two-dimensional boundary. For more details on physical properties and

derivation of these equations, see [12, 13, 35]. Here we consider the initial value problem given by
the following system of equations in two space dimensions:

θt + v · ∇θ + κΛγθ = 0, (1.1a)

v = (−R2θ,R1θ) , (1.1b)

θ(t = 0, x) = θ0(x), (1.1c)

where the scalar function θ is the potential temperature, v is the fluid velocity, and κ is the
viscosity coefficient. R = (R1,R2) are the Riesz transforms whose symbols are given by iξl/|ξ| for

l = 1, 2, and Λγ is a Fourier multiplier whose symbol is given by |ξ|γ. The cases γ > 1, γ = 1, and
γ < 1 are called respectively the subcritical, critical and supercritical quasi-geostrophic equations.
In this paper, we study the subcritical and critical cases (i.e. γ ≥ 1) and for simplicity we will set

κ = 1. Formally, we can express a solution θ in the integral form:

θ(t) = e−tΛγ
θ0 −

∫ t

0

[
e−(t−s)Λγ

(v · ∇θ)(s)
]
ds. (1.2)
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Any solution satisfying this integral equation is called a mild solution, which can be obtained by

using a fixed point argument. An invariant space for solving this integral equation corresponds
to a scaling invariance property of the equation. This can be stated as follows. Assume that

(θ, v) ∈
(
L , (−R2L ,R1L )

)
solves (1.1) for a Banach space L . Then, the same is true for

rescaled functions:

θλ(t, x) := λγ−1θ (λγt, λx) , vλ(t, x) := λγ−1v (λγt, λx) ∀λ > 0. (1.3)

Under these scalings, L = L
2

γ−1 (γ ≥ 1), Ḣ2−γ , and Ḃ
2

p
+1−γ

p,q are critical spaces for initial data, i.e.,

the corresponding norms are invariants under these scalings. One can find various well-posedness
results for small initial data in these critical spaces in [2, 3, 9, 11, 27, 28, 39, 40]. There are also

several well-posedness results for large data; in the Lebesgue space L
2

γ−1 for γ > 1 ([8]), in the

energy space H1 ([18]), and in Besov spaces ([1, 20, 37]).
The goal of this paper is to show space analyticity of mild solutions and to provide explicit

estimates for the analyticity radius as a function of time. In fluid-dynamics, the space analyticity
radius has an important physical interpretation: at this length scale the viscous effects and the

(nonlinear) inertial effects are roughly comparable. Below this length scale, the viscous effects
dominate the inertial effects and the Fourier spectrum decays exponentially ([15, 22, 25, 26]).
This fact can be used to show that the finite dimensional Galerkin approximations converge expo-

nentially fast in these cases ([16]). Other applications of analyticity radius occur in establishing
sharp temporal decay rates of solutions in higher Sobolev norms ([4, 34]), establishing geometric

regularity criteria for the Navier-Stokes equations, and in measuring the spatial complexity of fluid
flow (see [24, 30, 31]).

We follow here the Gevrey class approach pioneered by Foias and Temam ([23]) for estimating
space analyticity radius for the Navier-Stokes equations and which was subsequently used by

many authors ([4, 5, 6, 7, 21], and the references there in). More precisely, we will show that mild
solutions of (1.1) are Gevrey regular, i.e. they satisfy the estimate

sup
t>0

∥∥∥eαt1/γΛ1θ
∥∥∥
L
<∞,

where L is a critical Besov space (which will be specified below) and α is a suitably chosen
parameter (namely, α = 1 for γ > 1 and α = 1

4 for γ = 1). This approach enables one to avoid

cumbersome recursive estimation of higher order derivatives. We emphasize that the symbol of
Λ1 is given by the l1 norm |ξ|1 = |ξ1| + |ξ2| rather than the usual Λ =

√
−∆.

Before stating our main results, let us explain the main idea of the paper for the subcritical
case (γ > 1). The same approach will be used for the critical case. To this end, we define

Θ =: et
1/γΛ1θ, V = (V1, V2) =: et

1/γΛ1 (v1, v2) . (1.4)

Then, V = (−R2Θ,R1Θ) and (Θ, V ) satisfies the following equation:

Θ(t) = et
1/γΛ1−tΛγ

θ0 −
∫ t

0

[
et

1/γΛ1−(t−s)Λγ
(
e−s1/γΛ1V · ∇e−s1/γΛ1Θ

)
(s)

]
ds

= et
1/γΛ1−tΛγ

θ0 −
∫ t

0

[
e(t

1/γ−s1/γ )Λ1∇e−(t−s)Λγ · es1/γΛ1

(
e−s1/γΛ1V e−s1/γΛ1Θ

)
(s)

]
ds,

(1.5)

where, we have used the fact that V is divergence free and ∇ commutes with any Fourier multi-
plier in order to obtain the last equality. Since et

1/γ |ξ|1 is dominated by e−t|ξ|γ , the linear term,
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et
1/γΛ1−tΛγ

1 θ0, closely resembles that of θ, namely, e−tΛγ
1 θ0. The estimates of the nonlinear term

are similar to those of θ due to the boundedness property of the following bilinear operator Bs:

Bs(f, g) := es
1/γΛ1

(
e−s1/γΛ1fe−s1/γΛ1g

)
. (1.6)

(For details, see Section 3.2).
As noticed from the above argument, the existence result of θ is crucial in establishing Gevrey

regularity. Thus, in Section 3 (for γ > 1) and Section 4 (for γ = 1), we will first show the existence

of a mild solution and then proceed to explain how to modify the existence proof to obtain Gevrey
regularity. We now present our existence/analyticity statements for γ > 1 and γ = 1 separately.

For notational simplicity, we will suppress the dependence on p, q and other relevant indices when
we define norms below.

1.1 Subcritical Case: γ > 1

1.1.1 Existence in Besov spaces

We begin with the existence result in critical Besov spaces. Let us take initial data θ0 in Ḃ
2

p
+1−γ

p,q ∩
Lp1, with

1 ≤ q ≤ ∞, p1 =
2

γ − 1
and p <

2

γ − 1
. (1.7)

Since the dissipation rate γ > 1 dominates the derivative in the advection term, we can follow

Weissler’s idea ([38]) to define a function space Eγ,T = Kγ,T ∩Gγ,T , with

‖θ‖Kγ,T
:= sup

0<t≤T

[
‖θ(t)‖

Ḃ
2
p +1−γ

p,q

+ tα/γ‖θ(t)‖
Ḃ

2
p +1−γ+α

p,q

]
,

‖θ‖Gγ,T
:= sup

0<t<T

[
‖θ(t)‖Lp1 + tβ‖θ(t)‖Lr

]
.

We note that the time weights tα/γ and tβ indicate the gain in regularity and integrability of the

solution through the dissipation operator Λγ :

|ξ|ae−t|ξ|γ . t−
a
γ .

The parameters r, α and β are chosen to satisfy

1 < r <∞,
2

r
< min

{
γ − 1,

2

p
− (γ − 1)

}
, α < 1 +

2

r
and β = 1 − 1/γ − 2

rγ
. (1.8)

It is possible to choose r and α as in (1.8) due to the fact that γ > 1 and the restriction on the
parameters given in (1.7). With the above mentioned choices, we must have the relations

(i) 0 <
2

r
< γ − 1, (ii)

2

p
+ 1 − γ − 2

r
> 0, (iii) 0 < β < 1 − α

γ
. (1.9)

(Since the condition (1.9) (or equivalently, (1.7)) will be used to prove the existence and analyticity
results stated below (Theorems 1.2-1.4), we will assume it for these results.) Condition (i) implies

β > 0, and conditions (ii) and (iii) in (1.9), which lead to the restriction p < 2
γ−1 in (1.7), are

necessary to estimate the quadratic term vθ in the high frequency part, while, as in [8], the

condition p1 = 2
γ−1 is required to control the low frequency part. To prove the existence of a

solution in Eγ,T , we first need the existence of a solution in Gγ,T .
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Theorem 1.1 [8] For any initial data θ0 ∈ Lp1 with p1 = 2
γ−1 , there exists a global-in-time

solution θ in Gγ,T . Moreover, for any time interval [t, t+ τ ],

lim
τ→0

[
τβ‖θ(t+ τ)‖Lr

]
= 0 uniformly in t.

We now state our first existence result of this paper.

Theorem 1.2 (Existence) For any initial data θ0 ∈ Ḃ
2
p
+1−γ

p,q ∩Lp1, there exists a global-in-time
solution θ ∈ Kγ,T such that

‖θ‖Kγ,T
. 2T ‖θ0‖

Ḃ
2
p +1−γ

p,q

. (1.10)

As one can see in Section 3, the main step is to show

‖θ‖Kγ,T
. ‖θ0‖

Ḃ
2
p +1−γ

p,q

+ sup
0<τ≤T

[
τβ‖θ(τ)‖Lr

]
‖θ‖Kγ,T

.

Therefore, Theorem 1.1 is crucial to prove the following result. We note that the size of initial
data is arbitrary.

1.1.2 Analyticity in Besov spaces

As we use the existence of θ inGγ,T to show the existence proof of θ inKγ,T , the proof of analyticity
of the solution of Theorem 1.2 exactly consists of two parts. We first show the existence of Θ in

Gγ,T (Theorem 1.3) which provides the smallness of τβ‖Θ(t+ τ)‖Lq as τ → 0. Then, we show the
existence of Θ in Kγ,T (Theorem 1.4) by obtaining

‖Θ‖Kγ,T
. ‖θ0‖

Ḃ
2
p +1−γ

p,q

+ sup
0<τ≤T

[
τβ‖Θ(τ)‖Lr

]
‖Θ‖Kγ,T

.

We note that the proof of these results is based on the boundedness property of the bilinear
operator Bs defined in (1.6).

Theorem 1.3 (Existence) For any initial data θ0 ∈ Lp1 with p1 = 2
γ−1 , there exists a global-in-

time solution Θ(t) ∈ Gγ,T . Moreover, for any time interval [t, t+ τ ],

lim
τ→0

[
τβ‖Θ(t+ τ)‖Lr

]
= 0 uniformly in t.

Theorem 1.4 (Analyticity) For any initial data θ0 ∈ Ḃ
2

p
+1−γ

p,q ∩Lp1 , there exists a global-in-time

solution Θ ∈ Kγ,T such that

‖Θ‖Kγ,T
. 2T ‖θ0‖

Ḃ
2
p +1−γ

p,q

. (1.11)

Remark 1.1 Theorem 1.3 provides a new proof of the results in [19], where they prove analyt-

icity of solutions of the subcritical quasi-geostrophic equations by recursive estimation of higher
order derivatives which involves a sophisticated combinatorial argument. By contrast, we provide

analyticity directly from the mild solution setting and the proof is significantly reduced. Moreover,
our method is more flexible and can be applied to other function spaces as Theorem 1.4.
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1.2 Critical case γ = 1

1.2.1 Existence in critical spaces

We now consider the critical case. Unlike to the subcritical case where the dissipation is strong
enough to overcome the derivative in the advection term, main ingredients for proving the global

well-posedness for the critical case are the commutator estimates and the modulus of continuity
argument ([1, 18, 20, 37].) However, we cannot apply Gevrey regularity approach to these work

because the exponential operator eαtΛ1 does not commute with the advection term v · ∇. Thus,
we need a result which does not rely on commutator estimates, which is the case of [3]. We will

use this result to establish Gevrey regularity.

Theorem 1.5 (Existence [3]) There exists a constant ε0 > 0 such that for all initial data θ0 ∈
L∞ ∩ Ḣ1 ∩ Ḃ

2
p
p,q and v0 ∈ L∞, with

‖θ0‖L∞ + ‖v0‖L∞ + ‖θ0‖Ḣ1 < ε0,

there exists a global-in-time solution θ ∈ L∞
t (L∞ ∩ Ḣ1) ∩ L2

t Ḣ
3

2 ∩E1, where

‖θ‖E1
:= ‖θ‖

L̃∞
t Ḃ

2
p
p,q

+ ‖θ‖
L̃1

t Ḃ
2
p +1

p,q

. (1.12)

The proof of Theorem 1.5 consists of two parts. We first show the existence of small solutions

in L∞
t (L∞∩Ḣ1)∩L2

t Ḣ
3

2 with small initial data in L∞∩Ḣ1. Since the Riesz transforms R defining
v do not map L∞ to L∞, we thus need to assume v0 ∈ L∞ as well. To estimate v in L∞, we will
use the Oseen kernel representation. (The definition of the Oseen kernel and its property will be

presented in Section 4). Then, using this smallness condition in L∞ ∩ Ḣ1, we prove the existence
of a solution in E1. We note that depending on the ranges of p and q, we have different restrictions

on the size of θ0 in Ḃ
2

p
p,q. If Ḃ

2

p
p,q ⊂ Ḣ1, the size of ‖θ0‖

Ḃ
2
p
p,q

can be arbitrary, while if Ḣ1 ⊂ Ḃ
2

p
p,q,

the size of ‖θ0‖
Ḃ

2
p
p,q

need to be small.

1.2.2 Analyticity in critical spaces

To show that solutions in Theorem 1.5 are analytic, we need to define the Gevrey operator more

carefully because Λ and Λ1 are equivalent as a Fourier multiplier. Let

Θ = e
1
4
tΛ1θ(t), V = e

1
4
tΛ1v(t).

Then, Θ and V satisfy the following equation;

Θ(t) = e
1

4
tΛ1−tΛθ0 −

∫ t

0

[
e

1

4
tΛ1−(t−s)Λ

(
e−

1

4
sΛ1V · ∇e− 1

4
sΛ1Θ

)
(s)

]
ds. (1.13)

As we will see in Section 4, the fact 1
4 |ξ|1 < 1

2 |ξ| allows that (1.13) is equivalent to the integral
equation of θ. Therefore, we can prove the following result along the lines of the proof of Theorem

1.4 and Theorem 1.5.

Theorem 1.6 (Analyticity) There exists a constant ε0 > 0 such that for all initial data θ0 ∈
L∞ ∩ Ḣ1 ∩ Ḃ

2

p
p,q and v0 ∈ L∞, with

‖θ0‖L∞ + ‖v0‖L∞ + ‖θ0‖Ḣ1 < ε0,

there exists a global-in-time solution Θ ∈ L∞
t (L∞ ∩ Ḣ1) ∩ L2

t Ḣ
3
2 ∩ E1.
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Theorem 1.6 in fact provides the decay estimates of the solution in Theorem 1.5.

Corollary 1.1 The solution in Theorem 1.5 satisfies the following decay rate of the solution;
∥∥∥∇kθ(t)

∥∥∥
L∞∩Ḣ1∩Ḃ

2
p
p,q

≤ Ckt
−k, ∀k > 0.

The proof is rather simple so we provide it here. Since L∞ ∩ Ḣ1 ∩ Ḃ
2

p
p,q is translation-invariant

and the operator ∇ke−tΛ1 is L1-bounded,
∥∥∥∇kθ(t)

∥∥∥
L∞∩Ḣ1∩Ḃ

2
p
p,q

=
∥∥∥∇ke−t1/γΛ1et

1/γΛ1θ(t)
∥∥∥

L∞∩Ḣ1∩Ḃ
2
p
p,q

≤
∥∥∥∇ke−t1/γΛ1

∥∥∥
L1

‖Θ(t)‖
L∞∩Ḣ1∩Ḃ

2
p
p,q

≤ C
∥∥∥∇ke−t1/γΛ1

∥∥∥
L1

(1.14)

where C = ‖Θ(t)‖
L∞∩Ḣ1∩Ḃ

2
p
p,q

. ‖θ0‖
L∞∩Ḣ1∩Ḃ

2
p
p,q

. Then, by rescaling ξ as ξ 7→ tξ,

∥∥∥∇ke−tΛ1

∥∥∥
L1

. Ckt
−k, Ck =

∥∥∥∇ke−Λ1

∥∥∥
L1
.

Remark 1.2 (1) In [20], the global well-posedness of the critical quasi-geostrophic equations is

proved for large data in Ḃ
2

p
p,q. However, analyticity of the solution was not proven; also the decay

estimates provided there were for short times only.
(2) In [12], they proved that for initial data θ0 ∈ H2(T2) with the smallness condition to ‖θ0‖L∞

there exists t0 > 0 such that the solutions of the critical quasi-geostrophic equations are analytic
for t > t0. Along the proof in [12], Dong proved in [17] that there exists a time t0 > 0 such that

the solution of the critical quasi-geostrophic equations is analytic for all t ≥ t0 for large data in
Ḣ1(T2). Although we need smallness condition in L∞ ∩ Ḣ1, the solution of Theorem 1.5 becomes

analytic instantaneously and it covers more spaces for initial data due to the range of p and q.

2 Notations: Littlewood-Paley decomposition and paraproduct

We begin with some notation.

(1) Let X be a Banach space. Lp(0, T ;X) denotes the Banach space of Bochner measurable

functions f from (0, T ) to X endowed with either the norm
(∫ T

0 ‖f(·, t)‖p
Xdt

) 1

p
for 1 ≤ p < ∞

or sup
0≤t≤T

‖f(·, t)‖X for p = ∞. For T = ∞, we use the notation Lp
tX instead of Lp(0,∞;X).

(2) For a sequence {aj}j∈Z, {aj}lq :=
( ∑

j∈Z

|aj|q
)1

q , with the usual modification for q = ∞.

(3) A . B means there exists a constant C > 0 such that A ≤ CB. Similarly, A ∼ B means that

there exist two constants C1, C2 > 0 such that A ≤ C1B and B ≤ C2A.

We next provide notation and definitions in the Littlewood-Paley theory. We take a couple of
smooth functions (χ, φ) supported on {ξ; |ξ| ≤ 1} with values in [0, 1] such that for all ξ ∈ Rd,

χ(ξ) +
∞∑

j=0

ψ(2−jξ) = 1, ψ(ξ) = φ (ξ/2) − φ(ξ).
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We set ψ(2−jξ) = ψj(ξ) and define the dyadic blocks and lower frequency cut-off functions by

∆ju = 2jd

∫

Rd

h(2jy)u(x− y)dy, Sju = 2jd

∫

Rd

h̃(2jy)u(x− y)dy, (2.1)

with h = F−1ψ and h̃ = F−1χ. We define the homogeneous Littlewood-Paley decomposition by

u =
∑

j∈Z

∆ju in S
′

h, (2.2)

where S
′

h is the space of tempered distributions u such that lim
j→−∞

Sju = 0 in S
′
. Using this

decomposition, we define homogeneous Besov spaces as follows:

Ḃs
p,q =

{
f ∈ S

′

h ; ‖f‖q

Ḃs
p,q

:=
∑

j∈Z

2jsq ‖∆jf‖q
Lp <∞

}
.

We also define time dependent homogeneous Besov spaces ;

Lr(0, T ; Ḃs
p,q) =





f ∈ S

′

h ; ‖f‖Lr(0,T ;Ḃs
p,q)

:=

∥∥∥∥∥∥∥




∑

j∈Z

2jsq‖∆jf‖q
Lp





1

q

∥∥∥∥∥∥∥
Lr(0,T )

<∞





,

L̃r(0, T ; Ḃs
p,q) =





f ∈ S

′

h ; ‖f‖L̃r(0,T ;Ḃs
p,q)

:=




∑

j∈Z

2jsq ‖∆jf‖q
Lr(0,T ;Lp)





1
q

<∞






(2.3)

with the usual modification for q = ∞.
The concept of paraproduct enables to deal with the interaction of two functions in terms of

low or high frequency parts, [10]. For two tempered distributions f and g,

fg = Tfg + Tgf + R(f, g),

Tfg =
∑

i≤j−2

∆if∆jg =
∑

j∈Z

Sj−1f∆jg, R(f, g) =
∑

|j−j
′
|≤1

∆jf∆j′g.
(2.4)

Then, up to finitely many terms,

∆j(Tfg) = Sj−1f∆jg, ∆jR(f, g) =
∑

k≥j−2

∆kf∆kg. (2.5)

We finally recall a few inequalities which will be used in the sequel.

Lemma 2.1 (1) Bernstein’s inequality [10]: For 1 ≤ p ≤ q ≤ ∞ and k ∈ N,

sup
|α|=k

‖∂α∆jf‖Lp ' 2jk ‖∆jf‖Lp , ‖∆jf‖Lq . 2
jd( 1

p
− 1

q
) ‖∆jf‖Lp . (2.6)

(2) Localization of the fractional heat kernel [27]:

∥∥∥e−tΛγ
1 ∆jf

∥∥∥
Lp

. e−t2γj ‖∆jf‖Lp . (2.7)
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3 Proof of Theorem 1.2, Theorem 1.3 and Theorem 1.4

In this section, we prove the existence and analyticity of the subcritical quasi-geostrophic equations

with large initial data in Ḃ
2
p
+1−γ

p,q ∩ Lp1 . As we already mentioned in the introduction, we need
Theorem 1.1 to show the existence of a solution in Kγ,T . We recall the definition of the norm of

Gγ,T and Kγ,T ;

‖θ‖Gγ,T
= sup

0<t<T

[
‖θ(t)‖Lp1 + tβ‖θ(t)‖Lr

]
, β = 1 − 1/γ − 2

rγ
> 0,

‖θ‖Kγ,T
= sup

0<t≤T

[
‖θ(t)‖

Ḃ
2
p +1−γ

p,q

+ tα/γ‖θ(t)‖
Ḃ

2
p +1−γ+α

p,q

]
.

(3.1)

In addition, we will use the following lemma repeatedly in the proof of Theorem 1.2.

Lemma 3.1 For any 0 < a < 1 and 0 < b < 1,

∫ t

0

[
(t− s)−as−b

]
ds . t1−a−b.

3.1 Proof of Theorem 1.2

We first show that a priori estimate

‖θ‖Kγ,T
. ‖θ0‖

Ḃ
2
p +1−γ

p,q

+ sup
0<τ≤T

[
τβ‖θ(τ)‖Lr

]
‖θ‖Kγ,T

(3.2)

is enough to prove Theorem 1.2. The proof comes as follows. We take T1 such that on [0, T1]

τβ‖θ(τ)‖Lr ≤ 1

2
=⇒ ‖θ‖Kγ,t . 2‖θ0‖

Ḃ
2
p +1−γ

p,q

.

By Theorem 1.1, we can take the next step by taking T2 = 2T1. Then, (3.2) implies that

‖θ(t)‖
Ḃ

2
p +1−γ

p,q

. 4‖θ0‖
Ḃ

2
p +1−γ

p,q

on [T1, 2T1]. Inductively, we can obtain that for t ∈ [nT1, (n+ 1)T1]

‖θ‖Kγ,t . 2(n+1)‖θ0‖
Ḃ

2
p+1−γ

p,q

which leads to (1.10). To prove (3.2), we express a solution θ in the integral form:

θ(t) = e−tΛγ
θ0 −

∫ t

0

[
∇e−(t−s)Λγ · (vθ)(s)

]
ds := e−tΛγ

θ0 − B(v, θ). (3.3)

We note that the definition of the space Kγ,T is based on the linear behavior of the solution. So,
it is easy to show that

∥∥e−tΛγ
θ0

∥∥
Kγ,T

. ‖θ0‖
Ḃ

2
p +1−γ

p,q

. (3.4)
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Therefore, it is enough to estimate B(v, θ) in Kγ,T . Let us decompose vθ as a paraproduct:

vθ = Tvθ + Tθv +R(v, θ). Then,

B(v, θ) =

∫ t

0

[
∇e−(t−s)Λγ · (vθ)(s)

]
ds

=

∫ t

0

[
∇e−(t−s)Λγ · (Tvθ + Tθv +R(v, θ))

]
ds

:= B1(v, θ) + B2(v, θ) + B3(v, θ).

In the sequel, we will treat v as θ in the estimations of Bi(v, θ)’s in Kγ,T because v = (−R2θ,R1θ)

and the Riesz transforms are bounded in Lp for all p ∈ (1,∞).

3.1.1 Estimation of B1(v, θ) and B2(v, θ)

We take the dyadic operator ∆j to B1(v, θ) and take the Lp norm. By (2.5) and (2.7), we have

‖∆jB1(v, θ)(t)‖Lp .

∫ t

0

[
2je−(t−s)2γj ‖Sj−1θ(s)‖L∞ ‖∆jθ(s)‖Lp

]
ds. (3.5)

We first estimate ‖Sj−1θ‖L∞ :

‖Sj−1θ(s)‖L∞ .

j−1∑

k=−∞

2
2k
r ‖∆kθ(s)‖Lr . 2

2j
r s−βsβ ‖θ‖Lr , (3.6)

where we use (2.6) for the first inequality. Thus, the right-hand side of (3.5) can be bounded by

‖∆jB1(v, θ)(t)‖Lp .

∫ t

0

[
2je−(t−s)2γj ‖Sj−1θ(s)‖L∞ ‖∆jθ(s)‖Lp

]
ds

. sup
0<τ≤t

[
τβ‖θ(τ)‖Lr

] ∫ t

0

[
2j(1+ 2

r
)e−(t−s)2γj

s−β‖∆jθ(s)‖Lp

]
ds.

(3.7)

Since

2j(1+ 2
r
)e−(t−s)2γj

. (t− s)−1/γ(1+ 2
r
),

we have

‖∆jB1(v, θ)(t)‖Lp . sup
0<τ≤t

[
τβ‖θ(τ)‖Lr

] ∫ t

0

[
(t− s)−1/γ(1+ 2

r
)s−β ‖∆jθ(s)‖Lp

]
ds. (3.8)

We multiply (3.8) by 2
j
“

2

p
+1−γ

”

and take the lq norm. Then,

‖B1(v, θ)(t)‖
Ḃ

2
p +1−γ

p,q

. sup
0<τ≤t

[
τβ‖θ(τ)‖Lr

]
sup

0<τ<t

[
‖θ(τ)‖

Ḃ
2
p +1−γ

p,q

]∫ t

0

[
(t− s)−1/γ(1+ 2

r
)s−β

]
ds

. sup
0<τ≤t

[
τβ‖θ(τ)‖Lr

]
‖θ‖Kγ,t

∫ t

0

[
(t− s)−1/γ(1+ 2

r
)s−β

]
ds

. sup
0<τ≤t

[
τβ‖θ(τ)‖Lr

]
‖θ‖Kγ,t

,

(3.9)
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where we use β = 1− 1/γ − 2
γr and Lemma 3.1 to bound the time integration.

We next estimate ‖B1(v, θ)‖
Ḃ

2
p +1−γ+α

p,q

. From (3.8),

2
j
“

2

p
+1−γ+α

”

‖∆jB1(v, θ)(t)‖Lp

. sup
0<τ≤t

[
τβ‖θ(τ)‖Lr

] ∫ t

0

[
(t− s)−1/γ(1+ 2

r
)s−β2

j( 2
p
+1−γ+α) ‖∆jθ(s)‖Lp

]
ds

= sup
0<τ≤t

[
τβ‖θ(τ)‖Lr

] ∫ t

0

[
(t− s)−1/γ(1+ 2

r
)s−βs

−α
γ s

α
γ 2

j( 2

p
+1−γ+α) ‖∆jθ(s)‖Lp

]
ds.

(3.10)

By taking the lq norm, we have

‖B1(v, θ)(t)‖
Ḃ

2
p +1−γ+α

p,q

. sup
0<τ≤t

[
τβ‖θ(τ)‖Lr

]
sup

0<τ<t

[
τ

α
γ ‖θ(τ)‖

Ḃ
2
p +1−γ+α

p,q

] ∫ t

0

[
(t− s)

−1/γ(1+ 2
q
)
s−βs

−α
γ

]
ds

. sup
0<τ≤t

[
τβ‖θ(τ)‖Lr

]
‖θ‖Kγ,t

∫ t

0

[
(t− s)−1/γ(1+ 2

q
)s−βs−

α
γ

]
ds

. sup
0<τ≤t

[
τβ ‖θ(τ)‖Lr

]
‖θ‖Kγ,t

· t−
α
γ ,

(3.11)

where we use β + α
γ < 1 to apply Lemma 3.1 to bound the time integration by t

−α
γ . By (3.9) and

(3.11), for any time interval [0, T ] we have

‖B1(v, θ)‖Kγ,T
. sup

0<τ≤T

[
τβ‖θ(τ)‖Lq

]
‖θ‖Kγ,T

. (3.12)

Since B2(v, θ) has the same structure as B1, we also obtain that

‖B2(v, θ)‖Kγ,T
. sup

0<τ≤T

[
τβ‖θ(τ)‖Lr

]
‖θ‖Kγ,T

. (3.13)

3.1.2 Estimation of B3(v, θ)

We take the Lp norm to ∆jB3(v, θ).

‖∆jB3(v, θ)(t)‖Lp .

∫ t

0



2je−(t−s)2γj
∑

k≥j−2

‖∆kθ(s)‖Lp ‖∆kθ(s)‖L∞



 ds

.

∫ t

0



2je−(t−s)2γj
∑

k≥j−2

‖∆kθ(s)‖Lp 2k 2

r ‖∆kθ(s)‖Lr



 ds

. sup
0<τ≤t

[
τβ‖θ(τ)‖Lr

] ∫ t

0



2je−(t−s)2γj
s−β

∑

k≥j−2

2k 2
r ‖∆kθ(s)‖Lp



ds,

(3.14)
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where we use (2.6) to replace ‖∆kθ(s)‖L∞ by 2k 2
r ‖∆kθ(s)‖Lr at the second inequality. We multiply

(3.14) by 2
j
“

2

p
+1−γ

”

. Then,

2
j
“

2

p
+1−γ

”

‖∆jB3(v, θ)(t)‖Lp

. sup
0<τ≤t

[
τβ‖θ(τ)‖Lr

]

×
∫ t

0



2j(1+ 2
r )e−(t−s)2γj

s−β
∑

k≥j−2

2
(j−k)

“

2

p
+1−γ− 2

r

”

2
k

“

2

p
+1−γ

”

‖∆kθ(s)‖Lp



 ds

. sup
0<τ≤t

[
τβ‖θ(τ)‖Lr

]

×
∫ t

0



(t− s)−1/γ(1+ 2

r )s−β
∑

k≥j−2

2
(j−k)

“

2

p
+1−γ− 2

r

”

2
k

“

2

p
+1−γ

”

‖∆kθ(s)‖Lp



 ds.

(3.15)

We take the lq norm to (3.15). Since 2
p + 1 − γ − 2

r > 0, by applying Young’s inequality to

∑

k≥j−2

ak−jbk, where aj = 2
−j

“

2

p
+1−γ− 2

r

”

and bj = 2
j
“

2

p
+1−γ

”

‖∆kθ(s)‖Lp ,

we have

‖B3(v, θ)(t)‖
Ḃ

2
p +1−γ

p,q

. sup
0<τ≤t

[
τβ‖θ(τ)‖Lr

]
sup

0<τ<t

[
‖θ(τ)‖

Ḃ
2
p +1−γ

p,q

]∫ t

0

[
(t− s)−1/γ(1+ 2

r
)s−β

]
ds

. sup
0<τ≤t

[
τβ‖θ(τ)‖Lr

]
‖θ‖Kγ,t

∫ t

0

[
(t− s)−1/γ(1+ 2

r
)s−β

]
ds . sup

0<τ≤t

[
τβ‖θ(τ)‖Lr

]
‖θ‖Kγ,t .

(3.16)

We next estimate B3(v, θ) in Ḃ
2

p
+1−γ+α

p,q . By multiplying (3.14) by 2
j
“

2
p
+1−γ+α

”

and following the
calculation in (3.15), we have

2
j
“

2
p
+1−γ+α

”

‖∆jB3(v, θ)(t)‖Lp

. sup
0<τ≤t

[
τβ‖θ(τ)‖Lr

]

×
∫ t

0



(t− s)−1/γ(1+ 2

r )s−β
∑

k≥j−2

2
(j−k)

“

2

p
+1−γ− 2

r
+α

”

2
k

“

2

p
+1−γ+α

”

‖∆kθ(s)‖Lp



 ds.

(3.17)

We take the lq norm to (3.17). Since 2
p + 1 − γ − 2

r + α > 0, by applying Young’s inequality to

∑

k≥j−2

ak−jbk, where aj = 2
−j

“

2

p
+1−γ− 2

r
+α

”

and bj = 2
j
“

2

p
+1−γ+α

”

‖∆kθ(s)‖Lp ,
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we have

‖B3(v, θ)(t)‖
Ḃ

2
p +1−γ+α

p,q

. sup
0<τ≤t

[
τβ‖θ(τ)‖Lr

]
sup

0<τ<t

[
τ

α
γ ‖θ(τ)‖

Ḃ
2
p +1−γ+α

p,q

] ∫ t

0

[
(t− s)−1/γ(1+ 2

r
)s−βs

−α
γ

]
ds

. sup
0<τ≤t

[
τβ‖θ(τ)‖Lr

]
‖θ‖Kγ,t

∫ t

0

[
(t− s)−1/γ(1+ 2

r
)s−βs

−α
γ

]
ds

. sup
0<τ≤t

[
τβ‖θ(τ)‖Lr

]
‖θ‖Kγ,t · t−

α
γ .

(3.18)

By (3.16) and (3.18), we conclude that for any time interval [0, T ]

‖B3(v, θ)‖Kγ,T
. sup

0<τ≤T

[
τβ‖θ(τ)‖Lr

]
‖θ‖Kγ,T

. (3.19)

In sum, by (3.12), (3.13), and (3.19), we finally have

‖B(v, θ)‖Kγ,T
. sup

0<τ≤T

[
τβ‖θ(τ)‖Lr

]
‖θ‖Kγ,T

. (3.20)

This completes the proof.

3.2 Proof of Theorem 1.3 and Theorem 1.4

The proof of Theorem 1.3 and Theorem 1.4, requires a couple of elementary bounded operators
which are summarized in the following two lemmas.

Lemma 3.2 Consider the operator

E := e−[(t−s)1/γ+s1/γ−t1/γ ]Λ1

for 0 ≤ s ≤ t. Then E is either the identity operator or has an L1 kernel whose L1 norm is

bounded independent of s, t.

Proof. Clearly,
a := (t− s)1/γ + s1/γ − t1/γ

is non-negative for s ≤ t. In case a = 0, E is the identity operator, while if a > 0, E = e−aΛ1 is a
Fourier multiplier with symbol

Ê(ξ) =

d∏

i=1

e−a|ξi|.

Thus, the kernel of E is given by the product of one dimensional Poisson kernels

d∏

i=1

a

π(a2 + x2
i )
.

The L1 norm of this kernel is bounded by a constant independent of a.
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Lemma 3.3 The operator

E = ea
1/γΛ1−

1

2
aΛγ

with γ > 1, is a Fourier multiplier which maps boundedly Lp 7→ Lp, 1 < p <∞, and its operator
norm is uniformly bounded with respect to a ≥ 0.

Proof. When a = 0, E is the identity operator. When a > 0, then E is Fourier multiplier with
symbol

Ê(ξ) = ea
1/γ |ξ|1−

1

2
a|ξ|γ .

Since Ê(ξ) is uniformly bounded for all ξ and decays exponentially for |ξ| � 1, the claim follows
from Hormander’s multiplier theorem, e.g., [36].

3.2.1 Proof of Theorem 1.3

We are now ready to prove a large time existence of Θ in the Lp space. We first recall the equation
of (Θ, V );

Θ(t) = et
1/γΛ1−tΛγ

θ0 −
∫ t

0

[
et

1/γΛ1−(t−s)Λγ∇ ·
(
e−s1/γΛ1V e−s1/γΛ1Θ

)
(s)

]
ds

:= et
1/γΛ1−tΛγ

θ0 − B(Θ, V ).

(3.21)

By Lemma 3.3, it is easy to show that the linear part is equivalent to

e−
1

2
tΛγ
θ0.

As one can see at the end of the proof, the dependence on θ0 for the linear part is crucial to show
the global existence of Θ. If we show that the nonlinear part B(Θ, V ) is equivalent to

∫ t

0

[
e−

1
2
(t−s)Λγ∇ · (VΘ)(s)

]
ds, (3.22)

we can follow [8] to complete the proof. We rewrite B(V,Θ) as follows.

B(V,Θ)(t) =

∫ t

0

[
e(t

1/γ−s1/γ )Λ1−
1

2
(t−s)Λγ∇e− 1

2
(t−s)Λγ · es1/γΛ1

(
e−s1/γΛ1V e−s1/γΛ1Θ

)
(s)

]
ds.

We now express (t1/γ − s1/γ) as

−
(
(t− s)1/γ − t1/γ + s1/γ

)
+ (t− s)1/γ.

By Lemma 3.2, B(V,Θ) can be estimated by

‖B(V,Θ)(t)‖Lr

.

∫ t

0

∥∥∥
[
e(t−s)1/γΛ1−

1
2
(t−s)Λγ∇e− 1

2
(t−s)Λγ · es1/γΛ1

(
e−s1/γΛ1V e−s1/γΛ1Θ

)
(s)

]∥∥∥
Lr
ds.

(3.23)

By Lemma 3.3, the right-hand side of (3.23) can be replaced by

‖B(V,Θ)(t)‖Lr .

∫ t

0

∥∥∥
[
∇e− 1

2
(t−s)Λγ · es1/γΛ1

(
e−s1/γΛ1V e−s1/γΛ1Θ

)
(s)

]∥∥∥
Lr
ds. (3.24)
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Using the fact that
∥∥∇e−tΛγ

f
∥∥

Lr . t
−1/γ− 2

γ

“

1
q
− 1

r

”

‖f‖Lq ,

we estimate (3.24) as

‖B(V,Θ)(t)‖Lr .

∫ t

0
(t− s)

−1/γ− 2
γ

“

1
q
− 1

r

” ∥∥∥es
1/γΛ1

(
e−s1/γΛ1V e−s1/γΛ1Θ

)
(s)

∥∥∥
Lq
ds. (3.25)

To estimate the right-hand side of (3.25), we introduce the bilinear operators Bt of the form

Bt(f, g) := et
1/γΛ1

(
e−t1/γΛ1fe−t1/γΛ1g

)

=

∫

R2

∫

R2

eix·(ξ+η)et
1/γ(|ξ+η|1−|ξ|1−|η|1)f̂(ξ)ĝ(η)dξdη.

(3.26)

Recall that for a vector ξ = (ξ1, ξ2), we denoted |ξ|1 = |ξ1|+ |ξ2|. For ξ = (ξ1, ξ2), η = (η1, η2), we

split the domain of integration of the above integral into sub-domains depending on the sign of
ξj, ηj and ξj + ηj. In order to do so, we introduce the operators acting on one variable (see page

253 in [32]) by

K1f :=
1

2π

∫ ∞

0
eıxξ f̂(ξ) dξ, K−1f :=

1

2π

∫ 0

−∞
eıxξf̂ (ξ) dξ.

Let the operators Lt,−1 and Lt,1 be defined by

Lt,1f = f, Lt,−1f =
1

2π

∫

R
eıxξe−2t|ξ|f̂(ξ) dξ.

For ~α = (α1, α2), ~β = (β1, β2) ∈ {−1, 1}2, denote the operator

Z
t,~α,~β

= Kβ1
Lt,α1β1

⊗ · · · ⊗Kβ2
Lt,α2β2

, K~α = kα1
⊗Kα2

.

The above tensor product means that the j−th operator in the tensor product acts on the j−th
variable of the function f(x1, x2). A tedious (but elementary) calculation now yields the following

identity:

Bt(f, g) =
∑

(~α,~β,~γ)∈{−1,1}2×2

Kα1
Kα2

(
Z

t,~α,~β
fZt,~α,~γg

)
. (3.27)

We note that the operatorsK~α, Z
t,~α,~β

defined above, being linear combinations of Fourier multipli-

ers (including Hilbert transform) and the identity operator, commute with Λ1 and Λ. Moreover,
they are bounded linear operators on Lp, 1 < p < ∞ and the corresponding operator norm of

Z
t,~α,~β

is bounded independent of t ≥ 0. Therefore,

‖Bt(f, g)‖Lq . ‖fg‖Lq . (3.28)

We apply the above argument to the right-hand side of (3.25) to conclude that

‖B(V,Θ)(t)‖Lr .

∫ t

0
(t− s)

−1/γ− 2
γ
( 1

q
− 1

r
) ‖V (s)Θ(s)‖Lq ds. (3.29)

We now follow the proof in [8] line by line to obtain

‖Θ‖Gγ,T
. ‖θ0‖

L
2

γ−1
+ sup

0<τ≤T

[
τβ‖Θ(τ)‖Lr

]
‖Θ‖Gγ,T

. (3.30)
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This a priori estimate implies a local existence of a solution in Gγ,T on [0, T0] for some T0 > 0.

Then, we restart the problem with initial data at T0/2. Since

‖θ (T0/2)‖
L

2
γ−1

≤ ‖θ0‖
L

2
γ−1

by the maximum principle ([14]), we have the solution on [T0/2, 3T0/2]. Repeating this process,
we can reach any pre-assigned Time T in finitely many steps.

3.2.2 Proof of Theorem 1.4

As for the proof of Theorem 1.2, we only need to obtain the following a priori estimate:

‖Θ‖Kγ,T
. ‖θ0‖

Ḃ
2
p +1−γ

p,q

+ sup
0<τ≤T

[
τβ‖Θ(τ)‖Lr

]
‖Θ‖Kγ,T

. (3.31)

By Lemma 3.3, the linear estimation is obvious. By repeating the argument in the proof of
Theorem 1.3, we can estimate the nonlinear term as of θ. For the reader’s convenience, we provide

a few lines. We take ∆j to B(V,Θ) in (3.21) and take the Lp norm. By Lemma 3.2 and 3.3,

∥∥∥∆je
t1/γΛ1B(V,Θ)

∥∥∥
Lp

.

∫ t

0

[
e−

1
2
(t−s)2γj

2j
∥∥∥es

1/γΛ1∆j

(
e−s1/γΛ1V e−s1/γΛ1Θ)(s)

)∥∥∥
Lp

]
ds. (3.32)

We decompose the product e−s1/γΛ1V e−s1/γΛ1Θ as paraproduct:

T“

e−s1/γΛ1V
”e−s1/γΛ1Θ + T“

e−s1/γΛ1Θ
”e−s1/γΛ1V + R

(
e−s1/γΛ1V, e−s1/γΛ1Θ

)
.

Then,

∥∥∥∆je
t1/γΛ1B(V,Θ)

∥∥∥
Lp

.

∫ t

0

[
e−

1
2
(t−s)2γj

2j
∥∥∥es

1/γΛ1

(
e−s1/γΛ1SjV e

−s1/γΛ1∆jΘ)(s)
)∥∥∥

Lp

]
ds

+

∫ t

0

[
e−

1
2
(t−s)2γj

2j
∥∥∥es

1/γΛ1

(
e−s1/γΛ1SjΘe

−s1/γ Λ1∆jV )(s)
)∥∥∥

Lp

]
ds

+

∫ t

0

∑

k≥j−2

[
e−

1
2
(t−s)2γj

2j
∥∥∥es

1/γΛ1

(
e−s1/γΛ1∆kV e

−s1/γΛ1∆kΘ)(s)
)∥∥∥

Lp

]
ds

(3.33)

By using (3.28), we can estimate (3.33) as

∥∥∥∆je
t1/γΛ1B(V,Θ)

∥∥∥
Lp

.

∫ t

0

[
e−

1

2
(t−s)2γj

2j
(
‖SjV (s)∆jΘ(s)‖Lp + ‖SjΘ(s)∆jV (s)‖Lp

)]
ds

+

∫ t

0

e−
1

2
(t−s)2γj

2j
∑

k≥j−2

[‖∆kV (s)∆kΘ(s)‖Lp ] ds

(3.34)

Therefore, we can follow the calculations line by line from (3.5) to (3.20) in the proof of Theorem
1.2 to complete the proof.
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4 Critical case: Proof of Theorem 1.5 and Theorem 1.6

To prove Theorem 1.5 and Theorem 1.6, we need several lemmas. First, we need the following
representation to estimate v in L∞.

Lemma 4.1 Oseen Kernel [32]: The operator Ot = RKt is a convolution operator whose kernel
K̃t satisfies

K̃t(x) =
1

td
K̃ (x/t)

for a smooth function K̃ such that for all α ∈ N
d,

(1 + |x|)d+α∂αK̃ ∈ L∞.

In particular, K̃ is in Lp for p > 1.

Next, we provide the Lp bounds of the Poisson kernel and its Oseen kernel in two dimensions.
The proof is easily obtained by their representation.

Lemma 4.2 For any 1 < p <∞,

‖Pt‖Lp . t
−2

“

1− 1
p

”

, ‖RPt‖Lp . t
−2

“

1− 1
p

”

.

To deal with the time singularities appearing in Lemma 4.2, we need the following lemma.

Lemma 4.3 Hardy-Littlewood-Sobolev Inequality [33]: Let 0 < λ < d, 1
p + λ

d + 1
q = 2. Then,

∣∣∣∣

∫

Rd

∫

Rd

f(x)g(y)

|x− y|λ dydx
∣∣∣∣ . ‖f‖Lp‖g‖Lq.

In particular, for the one dimensional case,

sup
t>0

∣∣∣∣∣

∫ t

0

1

|t− s| 12
a(s)ds

∣∣∣∣∣ . ‖a‖L2.

4.1 Existence: Proof of Theorem 1.5

For the reader’s convenience, we will repeat the computation in [3].

4.1.1 Ḣ1 bound

By taking one derivative ∇ to (1.1),

∇θt + v · ∇∇θ + ∇v · ∇θ − Λ1∇θ = 0. (4.1)

We multiply (4.1) by ∇θ and integrate over R2. Then,

1

2

d

dt
‖∇θ‖2

L2 +
∥∥∥∇ 3

2 θ
∥∥∥

2

L2
≤

∫

R2

|∇v| |∇θ| |∇v| dx ≤ ‖∇θ‖L2 ‖∇v‖2
L4 . (4.2)

By the Sobolev embedding Ḣ1/2 ⊂ L4 in two dimensions, we can replace ‖∇v‖L4 in (4.2) by∥∥∥∇ 3
2 v

∥∥∥
L2

. Then,

d

dt
‖∇θ‖2

L2 +
∥∥∥∇

3

2 θ
∥∥∥

2

L2
. ‖∇θ‖L2

∥∥∥∇
3

2 v
∥∥∥

2

L2
.
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Since v = (−R2θ,R1θ), and the Riesz transforms are bounded in Hs, we have

d

dt
‖∇θ‖2

L2 +
∥∥∥∇ 3

2 θ
∥∥∥

2

L2
. ‖∇θ‖L2

∥∥∥∇ 3
2 θ

∥∥∥
2

L2
. (4.3)

Integrating (4.3) in time, we have

‖∇θ‖2
L∞

t L2 +
∥∥∥∇

3

2 θ
∥∥∥

2

L2
t L2

. ‖∇θ0‖2
L2 + ‖∇θ‖L∞

t L2

∥∥∥∇
3

2 θ
∥∥∥

2

L2
t L2

. (4.4)

4.1.2 L∞ bound

To obtain the L∞ bound of θ, we express θ as the integral form:

θ(t) = e−tΛθ0 −
∫ t

0

[
∇e−(t−s)Λ · (vθ) (s)

]
ds. (4.5)

By taking the L∞ norm, we have

‖θ(t)‖L∞ ≤ ‖θ0‖L∞ +

∫ t

0

∥∥∥e−(t−s)Λ(v · ∇θ)(s)
∥∥∥

L∞
ds

. ‖θ0‖L∞ +

∫ t

0

∥∥∥e−(t−s)Λ
∥∥∥

L
4
3

‖v(s)‖L∞ ‖∇θ(s)‖L4 ds.

(4.6)

By Lemma 4.2,

‖θ(t)‖L∞ . ‖θ0‖L∞ +

∫ t

0

1√
t− s

‖v(s)‖L∞ ‖∇θ(s)‖L4 ds. (4.7)

By Lemma 4.3 and the Sobolev embedding Ḣ1/2 ⊂ L4 in two dimensions, we finally have

‖θ(t)‖L∞ ≤ ‖θ0‖L∞ + ‖v‖L∞
t L∞ ‖∇θ‖L2

t L4 . ‖θ0‖L∞ + ‖v‖L∞
t L∞

∥∥∥∇ 3
2 θ

∥∥∥
L2

t L2
. (4.8)

We next estimate v in L∞. For simplicity, we set v = Rθ and take R to (4.5).

v(t) = e−tΛv0 −
∫ t

0

[
Re−(t−s)Λ(v · ∇θ)(s)

]
ds.

By following the estimates of θ obtained in (4.6) to (4.8), we have

‖v(t)‖L∞ . ‖v0‖L∞ +

∫ t

0

∥∥∥Re−(t−s)Λ
∥∥∥

L
4
3

‖v(s)‖L∞ ‖∇θ(s)‖L4 ds

. ‖v0‖L∞ +

∫ t

0

1√
t− s

‖v(s)‖L∞ ‖∇θ(s)‖L4 ds

. ‖v0‖L∞ + ‖v‖L∞
t L∞

∥∥∥∇
3

2 θ
∥∥∥

L2
t L2

.

(4.9)

In sum, by (4.4), (4.8), and (4.9), we obtain that

‖θ‖L∞
t L∞ + ‖v‖L∞

t L∞ + ‖θ‖L∞
t Ḣ1 +

∥∥∥∇
3

2 θ
∥∥∥

L2
t L2

. ‖θ0‖L∞ + ‖v0‖L∞ + ‖θ0‖Ḣ1 +

(
‖θ‖L∞

t L∞ + ‖v‖L∞
t L∞ + ‖θ‖L∞

t Ḣ1 +
∥∥∥∇

3

2 θ
∥∥∥

L2
t L2

)2

,

(4.10)

which implies that the existence of a global-in-time solution θ and v in L∞
t (L∞ ∩ Ḣ1) ∩ L2

t Ḣ
3

2

provided that ‖θ0‖L∞ + ‖v0‖L∞ + ‖θ0‖Ḣ1 is sufficiently small.
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4.1.3 Ḃ
2
p
p,q bound

We take ∆j to (4.5) and take the Lp norm. By (2.7), we have

‖∆jθ(t)‖Lp . e−t2j ‖∆jθ0‖Lp +

∫ t

0

[
e−(t−s)2j ‖∆j(v · ∇θ)(s)‖Lp

]
ds. (4.11)

By taking the L∞ norm in time, we obtain

‖∆jθ‖L∞
t Lp . ‖∆jθ0‖Lp + ‖∆j(v · ∇θ)‖L1

t Lp . (4.12)

We multiply (4.12) by 2
j 2

p and take the lq norm. Then,

‖θ‖
L̃∞

t Ḃ
2
p
p,q

. ‖θ0‖
Ḃ

2
p
p,q

+ ‖v · ∇θ‖
L̃1

t Ḃ
2
p
p,q

. (4.13)

Similarly, by taking the L1 norm in time to (4.12), multiplying by 2
j
“

2
p
+1

”

, and taking the lq

norm, we obtain

‖θ‖
L̃1

t Ḃ
2
p +1

p,q

. ‖θ0‖
Ḃ

2
p
p,q

+ ‖v · ∇θ‖
L̃1

t Ḃ
2
p
p,q

. (4.14)

By adding (4.13) and (4.14), we finally have

‖θ‖
L̃∞

t Ḃ
2
p
p,q

+ ‖θ‖
L̃1

t Ḃ
2
p +1

p,q

. ‖θ0‖
Ḃ

2
p
p,q

+ ‖v · ∇θ‖
L̃1

t Ḃ
2
p
p,q

. (4.15)

We now estimate the nonlinear term

‖v · ∇θ‖
L̃1

t Ḃ
2
p
p,q

by using the paraproduct of v and θ. By (2.5),

∆j(vθ) = Sjv∆jθ + Sjθ∆jv +
∑

k≥j−2

∆kv∆kθ. (4.16)

By taking the Lp norm to (4.16), we have

‖∆j(vθ)‖Lp . ‖Sjv‖L∞ ‖∆jθ‖Lp + ‖Sjθ‖L∞ ‖∆jv‖Lp +
∑

k≥j−2

‖∆kv‖L∞ ‖∆kθ‖Lp

= ‖Sjv‖L∞ ‖∆jθ‖Lp + ‖Sjθ‖L∞ ‖∆jv‖Lp

+
∑

k≥j−2

2
−k

“

2

p
+1

”

‖∆kv‖L∞ 2
k

“

2

p
+1

”

‖∆kθ‖Lp .

(4.17)

By taking the L1 norm in time to (4.17),

‖∆j(vθ)‖L1
t Lp . ‖Sjv‖L∞

t L∞ ‖∆jθ‖L1
t Lp + ‖Sjθ‖L∞

t L∞ ‖∆jv‖L1
t Lp

+
∑

k≥j−2

2
−k

“

2

p
+1

”

‖∆kv‖L∞
t L∞ 2

k
“

2

p
+1

”

‖∆kθ‖L1
t L∞ .

(4.18)
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We multiply (4.18) by 2
j
“

2

p
+1

”

. Then,

2
j
“

2

p
+1

”

‖∆j(vθ)‖L1
t Lp . 2

j
“

2

p
+1

” (
‖Sjv‖L∞

t L∞ ‖∆jθ‖L1
t Lp + ‖Sjθ‖L∞

t L∞ ‖∆jv‖L1
t Lp

)

+
∑

k≥j−2

2
(j−k)

“

2
p
+1

”

‖∆kv‖L∞
t L∞ 2

k
“

2
p
+1

”

‖∆kθ‖L1
t L∞

. ‖v‖L∞
t L∞ 2

j
“

2
p
+1

”

‖∆jθ‖L1
t Lp + ‖θ‖L∞

t L∞ 2
j
“

2
p
+1

”

‖∆jv‖L1
t Lp

+ ‖v‖L∞
t L∞

∑

k≥j−2

2
(j−k)

“

2

p
+1

”

2
k

“

2

p
+1

”

‖∆kθ‖L1
t L∞ .

(4.19)

We take the lq norm to (4.19). Since 2
p + 1 > 0, by applying Young’s inequality to

∑

k≥j−2

ak−jbk, where aj = 2
−j

“

2
p
+1

”

and bj = 2
j
“

2
p
+1

”

‖∆kθ‖L1
t Lp ,

we have

‖v · ∇θ‖
L̃1

t Ḃ
2
p
p,q

. ‖v‖L∞
t L∞ ‖θ‖

L̃1
t Ḃ

2
p +1

p,q

+ ‖θ‖L∞
t L∞ ‖v‖

L̃1
t Ḃ

2
p +1

p,q

. (4.20)

Since v = (−R2θ,R1θ), and Besov spaces are bounded under the Riesz transformations,

‖v · ∇θ‖
L̃1

t Ḃ
2
p
p,q

.
(
‖θ‖L∞

t L∞ + ‖v‖L∞
t L∞

)
‖θ‖

L̃1
t Ḃ

2
p +1

p,q

. (4.21)

Combining (4.15) and (4.21), we finally have

‖θ‖
L̃∞

t Ḃ
2
p
p,q

+ ‖θ‖
L̃1

t Ḃ
2
p +1

p,q

. ‖θ0‖
Ḃ

2
p
p,q

+
(
‖θ‖L∞

t L∞ + ‖v‖L∞
t L∞

)
‖θ‖

L̃1
t Ḃ

2
p +1

p,q

, (4.22)

which completes the a priori estimate of the solution in L̃∞
t Ḃ

2
p
p,q ∩ L̃1

t Ḃ
2
p
+1

p,q by using the smallness
of ‖θ‖L∞

t L∞ + ‖v‖L∞
t L∞ derived in (4.10).

4.2 Analyticity: Proof of Theorem 1.6

We first recall

Θ(t) = e
1
4
tΛ1θ(t), V (t) = e

1
4
tΛ1v(t) (4.23)

and the equation they satisfy:

Θ(t) = e
1
4
tΛ1−tΛθ0 −

∫ t

0

[
e

1
4
tΛ1−(t−s)Λ

(
e−

1
4
sΛ1V · ∇e− 1

4
sΛ1Θ

)
(s)

]
ds. (4.24)

In order to reduce (4.24) to

Θ(t) = e−
1

2
tΛ1θ0 −

∫ t

0

[
e−

1

2
(t−s)Λ1 (V · ∇Θ) (s)

]
ds (4.25)
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in terms of estimation, we need to show that the variation of Lemma 3.2 and Lemma 3.3 for γ = 1

works. Lemma 3.2 is identically applicable to the case γ = 1. Moreover,

e
1

4
tΛ1−

1

2
tΛ

is a Fourier multiplier which maps boundedly Lp 7→ Lp, 1 < p < ∞, and its operator norm is
uniformly bounded with respect to t ≥ 0. Therefore, along the lines of the estimation of θ in L∞

and Ḃ
2

p
p,q, we can find the following two bounds immediately from (4.25):

‖Θ‖L∞
t L∞ + ‖V ‖L∞

t L∞ . ‖θ0‖L∞ + ‖v0‖L∞ +
(
‖Θ‖L∞

t L∞ + ‖V ‖L∞
t L∞

) ∥∥∥∇ 3
2 Θ

∥∥∥
L2

t L2
,

‖Θ‖
L̃∞

t Ḃ
2
p
p,q

+ ‖Θ‖
L̃1

t Ḃ
2
p +1

p,q

. ‖θ0‖
Ḃ

2
p
p,q

+
(
‖Θ‖L∞

t L∞ + ‖V ‖L∞
t L∞

)
‖Θ‖

L̃1
t Ḃ

2
p +1

p,q

.
(4.26)

It remains to derive the Ḣ1 estimation of Θ, which will be obtained by the energy method.

1

2

d

dt

∫

R2

|∇Θ|2 dx =

∫

R2

[∇Θ · ∇Θt] dx =

∫

R2

[
∇Θ · ∇

(
e

1

4
tΛ1θ

)

t

]
dx

=

∫

R2

[
∇Θ · ∇

(
1

4
Λ1Θ − e

1
4
tΛ1(v · ∇θ) − ΛΘ

)]
dx

=

∫

R2

[
∇Θ · ∇

(
1

4
Λ1 − Λ

)
Θ

]
dx−

∫

R2

[
∇Θ · ∇e 1

4
tΛ1

(
e−

1

4
tΛ1V · ∇e− 1

4
tΛ1Θ

)]
dx.

(4.27)

By using 1
4 |ξ|1 < 1

2 |ξ| and the boundedness of Bt(V,Θ),

1

2

d

dt

∫

R2

|∇Θ|2dx . −1

2
‖∇ 3

2 Θ‖2
L2 + ‖∇ 3

2 Θ‖L2‖∇ 3
2 (ΘRΘ) ‖L2. (4.28)

By applying the product rule ([29]) to Λ
3

2

1 (ΘRΘ), we finally have

1

2

d

dt

∫

R2

|∇Θ|2 dx . −1

2

∥∥∥∇
3

2 Θ
∥∥∥

2

L2
+

∥∥∥∇
3

2 Θ
∥∥∥

2

L2
(‖Θ‖L∞ + ‖V ‖L∞) . (4.29)

Integrating (4.29) in time,

‖∇Θ‖2
L∞

t L2 +
∥∥∥∇ 3

2 Θ
∥∥∥

2

L2
t L2

. ‖∇θ0‖2
L2 +

(
‖Θ‖L∞

t L∞ + ‖V ‖L∞
t L∞

) ∥∥∥∇ 3
2 Θ

∥∥∥
2

L2
t L2

. (4.30)

By (4.26) and (4.30), we complete the proof.
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