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Abstract. The high-order accuracy of Fourier method makes it the method of choice in
many large scale simulations. We discuss here the stability of Fourier method for nonlinear
evolution problems, focusing on the two prototypical cases of the inviscid Burgers’ equa-
tion and the multi-dimensional incompressible Euler equations. The Fourier method for
such problems with quadratic nonlinearities comes in two main flavors. One is the spectral
Fourier method. The other is the 2/3 pseudo-spectral Fourier method, where one removes
the highest 1/3 portion of the spectrum; this is often the method of choice to maintain
the balance of quadratic energy and avoid aliasing errors.
Two main themes are discussed in this paper. First, we prove that as long as the underlying
exact solution has a minimal C1+α spatial regularity, then both the spectral and the 2/3
pseudo-spectral Fourier methods are stable. Consequently, we prove their spectral conver-
gence for smooth solutions of the inviscid Burgers equation and the incompressible Euler
equations. On the other hand, we prove that after a critical time at which the underlying
solution lacks sufficient smoothness, then both the spectral and the 2/3 pseudo-spectral
Fourier methods exhibit nonlinear instabilities which are realized through spurious oscilla-
tions. In particular, after shock formation in inviscid Burgers’ equation, the total variation
of bounded (pseudo-) spectral Fourier solutions must increase with the number of increas-
ing modes and we stipulate the analogous situation occurs with the 3D incompressible
Euler equations: the limiting Fourier solution is shown to enforce L2-energy conservation,
and the contrast with energy dissipating Onsager solutions is reflected through spurious
oscillations.
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1. Introduction

Spectral methods are often the methods of choice when high-resolution solvers are sought
for nonlinear time-dependent problems. Here, we are concerned with the stability and con-
vergence of Fourier method for PDEs with quadratic nonlinearities: we focus our attention
on the prototypical Cauchy problems for the inviscid Burgers’ equation and the incompress-
ible Euler equations.

The Fourier methods for problems involving quadratic nonlinearities come in two main
flavors: the spectral Fourier method and the 2/3 smoothing of pseudo-spectral Fourier
method. The spectral Fourier method is realized in terms of N -degree Fourier expansions,
uN (x, t) =

∑
|k|≤N ûk(t)eik·x, where ûk(t) are the Fourier moments of u(x, t)

ûk(t) =
1

(2π)d

∫

Td

u(x)e−ik·xdx, k := (k1, . . . , kd) ∈ Zd.

The computation of these moments in nonlinear problems is carried out by convolutions.
These can be avoided when the ûk’s are replaced by the discrete Fourier coefficients, sampled
at the (2N + 1)d equally spaced grid points

ũk(t) =

(
1

2N + 1

)d ∑

xν∈Td
#

u(xν, t)e
−ik·xν , xν =

2πν

2N + 1
,

where Td
# is the discrete torus,

Td
# :=

{
xν | xν =

2πν

2N + 1
, ν = (ν1, . . . , νd), 0 ≤ νj ≤ 2N

}
.

The pseudo-spectral Fourier method is realized in terms of the corresponding expansion,
uN (x, t) =

∑
|k|≤N ũk(t)eik·x. Here, we have the advantage that nonlinearities are computed

as exact pointwise quantities at the grid points {xν}ν, but new aliasing errors are intro-
duced. To avoid aliasing errors and their potential instabilities, high mode smoothing is im-
plemented, which results in the so-called 2/3-smoothing of pseudo-spectral Fourier method:
it is realized in terms of the 2N/3-degree expansion, uN(x, t) =

∑
|k|≤2N/3 σkũk(t)eik·x.

This is the spectral method of choice in many time-dependent problems with quadratic
nonlinearities.

To put our discussion into perspective we begin, in section 2, by recalling the linear setup
of standard transport equation. The spectral Fourier method is L2-stable. But the pseudo-
spectral Fourier method is not [GHT94]: it is only weakly stable, due to amplification
of aliasing errors when the underlying solution lacks sufficient smoothness. Strong L2-
stability is regained with the 2/3-smoothing of pseudo-spectral Fourier method, [Tad87];
in the linear setup, the de-aliasing in the 2/3-method introduces sufficient smoothness to
maintain convergence. This is one of the main two themes of our results on nonlinear
problems: sufficient smoothness guarantees stability and hence spectral convergence. In
section 3 we explore this issue in the context of inviscid Burgers equations, proving that as
long as the solution of the inviscid Burgers equation remains smooth, u(·, t) ∈ C1+α

x , then
both the spectral and the 2/3-pseudo-spectral Fourier approximations, uN (·, t), converge to
the exact solution. Moreover, they enjoy spectral convergence rate, namely, the convergence
rate grows with the increasing smoothness of u(·, t),

∫
|uN(x, t)− u(x, t)|2dx
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. e

∫ t

0
‖ux(·, τ)‖L∞dτ

·
(
N−2s‖u(·, 0)‖2

Hs +N
3
2
−s max

τ≤t
‖u(·, τ)‖Hs

)
, s >

3

2
.

A similar statement of spectral convergence holds for the spectral and 2/3 pseudo-spectral
Fourier approximations uN of the incompressible Euler equations: in section 5 we prove that
as long as u(·, t) remains sufficiently smooth solution of the d-dimensional Euler equations,
u(·, t) ∈ C1+α

x , then

‖uN(·, t)− u(·, t)‖2
L2

. e
2

∫ t

0
‖∇xu(·, τ)‖L∞dτ

·
(
N−2s‖u(·, 0)‖2

Hs +N
d
2
+1−s max

τ≤t
‖u(·, τ)‖Hs

)
, s >

d

2
+ 1.

These results support the superiority of spectral methods for problems with smooth solu-
tions. When dealing with solutions which lack smoothness, however, both the spectral and
2/3 pseudo-spectral Fourier methods suffer nonlinear instabilities. This is the other main
theme of the paper, explored in the context of the inviscid Burgers equation and the incom-
pressible Euler equations in the respective sections 4 and 6. In particular, we prove that
after shock formation, the spectral and 2/3 pseudo-spectral bounded approximations of the
inviscid Burgers solution must produce spurious oscillations as their total variation must
increase, ‖uN(·, t)‖TV &

4
√
N . This is deduced by contradiction: in theorem 4.1 below we

prove, using compensated compactness arguments, that an L2-weak limit of slowly growing
TV Fourier solutions, u = w limuN , must be an L2-energy conservative solution, which
cannot hold once shocks are formed.
A similar scenario arises with the Euler solutions where the spectral and the (2/3 pseudo-
)spectral approximations of Euler equations enforce conservation of the L2-energy. Al-
though there is no known energy dissipation-based selection principle to identify a unique
solution of Euler equations within the class of “rough” data (similar to the entropy dissi-
pation selection principle for Burgers’ equations), nevertheless we argue that the L2-energy
conservation of the (pseudo-)spectral approximations may be responsible to their unstable
behavior. While L2-energy conservation holds for weak solutions with a minimal degree
of 1/3-order of smoothness (Onsager’s conjecture proved in [Ey94, CET94, BT10]), there
are experimental and numerical evidence for the other part of Onsager’s conjecture that
anomalous dissipation of energy shows up for “physical-turbulent” L2-solutions of Euler
equations [Co07]. Whether this observed anomalous dissipation of energy should be due
to spontaneous appearance of singularities in smooth solutions of the Euler equation or to
the fact that physical initial data may be rough is a completely open problem. However
after several preliminary breakthrough [Sc93] and [Sh97] the following fact are now well
established. Indeed, there are infinitely many initial data (which of course are not regular)
leading to infinitely many weak Euler solutions with energy loss [DeLS12]. In particular
there are energy decaying solutions which for almost every time belong to the critical regu-

larity C
1
3
−ε [Buck13]. Thus, if the numerical method captures such “rough” solutions then

the “unphysical” conservation of energy which is enforced at the spectral level has to vanish
at the limit, leading to spurious oscillations.

We close this paper with two complementary results. The nonlinear instability results
in sections 4 and 6 emphasize the competition between spectral convergence for smooth
solutions vs. nonlinear instabilities for problems which lack sufficient smoothness. In section
7 we discuss the class of spectral viscosity (SV) methods which entertain both — spectral
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convergence and nonlinear stability, [Tad89, Tad93b, KK00, GP03, SS07, AX09]. This
is achieved by adding a judicious amount of spectral viscosity at the high-portion of the
spectrum without sacrificing the spectral accuracy at the lower portion of the spectrum.
Finally, we note that the above stability and instability results are not necessarily restricted
to quadratic nonlinearities: in section 8 we prove the stability of Fourier method for smooth
solutions of the nonlinear isentropic equations.

1.1. Spectral convergence. Expressed in terms of the Fourier coefficients, ŵ(k), the
spectral Fourier projection PN [w](x) of w ∈ L1[Td] is given by

PN [w](x) =
∑

|k|≤N

ŵ(k)eik·x, ŵ(k) :=
1

(2π)d

∫

Td

w(x)e−ik·xdx, k := (k1, . . . , kd) ∈ Zd.

The convergence rate of the truncation error,

(1.1) (I − PN )[w](x) :=
∑

|k|≥N

ŵ(k)eik·x,

is as rapid as the global smoothness of w permits (and observe that the degree of smoothness
is allowed to be negative),

‖(I − PN )[w]‖Ḣr ≤ N r−s‖w‖Ḣs, s > r ∈ R;

in particular,

(1.2) max
x

|(I − PN )[w](x)|. N
d
2
−s‖w‖Hs, s >

d

2
.

These are statements of spectral convergence rate: the smoother w is, the faster is the
convergence rate of (I − PN)[w] → 0. In practice, one recovers exponential convergence
which characterizes analytic regularity or at least root-exponential rate for typical compactly
supported Gevrey-regular data, [Tad07].

1.2. Aliasing. Set h := 2π
2N+1 as a discrete spacing. If we replace the integrals with quadra-

ture based on sampling w at the (2N+!)dequi-spaced points, xν := νh, ν := (ν1, . . . , νd) ∈
{0, 2N}d, we obtain the pseudo-spectral Fourier projection,

ψN [w](x) =
∑

|k|≤N

w̃(k)eik·x, w̃(k) :=

(
h

2π

)d ∑

xν∈Td
#

w(xν)e−ik·xν , |k| ≤ N.

Here, w̃(k), are the discrete Fourier coefficients1. The mapping w 7→ ψN [w] is a projection:
ψN [w](x) is the unique N -degree trigonometric interpolant of w at the (2N+1)-gridpoints,
ψN [w](xν) = w(xν), |ν| ≤ 2N . The dual statement of the last equalities is the Poisson
summation formula, which determines the discrete w̃(k)’s in terms of the exact Fourier
coefficients, ŵ(k)’s,

w̃(k) = ŵ(k) +
∑

6̀=0

ŵ(k + `(2N + 1)), |k| ≤ N,

1There is a slight difference between the formulae based on an even and an odd number of points; we
chose to continue with the slightly simpler notations associated with an odd number of points.
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where summation runs over all d-tuples, ` = (`1, . . . , `d) 6= 0. It shows that all the Fourier
coefficients with wavenumber k[mod(2N + 1)] are “aliased” into the same discrete Fourier
coefficient, w̃k. It follows that the interpolation error consists of two main contributions,

(I − ψN)[w] ≡ (I − PN )[w] + AN [w],

where in addition to the truncation error (I − PN )[w] in (1.1), we now have the aliasing
error,

(1.3) AN [w](x) :=
∑

|k|≤N

( ∑

|`|≥1

ŵ(k + `(2N + 1))
)
eik·x.

Both, (I − PN )[w] and AN [w], involve high modes, ŵ(p), |p| ≥ N . Consequently, if the
function w(·) is sufficiently smooth then they have exactly the same spectrally small size,
e.g. [Tad94, §2.2]

‖AN [w]‖Hs . ‖(I − PN )[w]‖Hs . N s−r‖w‖Hr, r > s >
d

2
.

Since the truncation error is orthogonal to the computational N -space whereas the aliasing
error is not the situation is different if w lacks smoothness. Then aliasing and truncation
errors may have a completely different influence on the question of computational stability.
One such case is encountered with the stability question of spectral vs. pseudo-spectral
approximations of hyperbolic equations.

2. Fourier method for linear equations — weak instability for L2-data

2.1. The spectral approximation: stability and convergence. We want to solve the
2π-periodic scalar hyperbolic equation

(2.1)
∂

∂t
u(x, t) +

∂

∂x

(
q(x)u(x, t)

)
= 0, x ∈ T([0, 2π)), q ∈ C1[0, 2π],

subject to prescribed initial conditions, u(·, 0), by the spectral Fourier method. To this
end we approximate the spectral projection of the exact solution, PNu(·, t), using an N -
degree polynomial, uN(x, t) =

∑
|k|≤N ûk(t)e

ikx, which is governed by the semi-discrete

approximation, [Or72, KO72, GO77]

(2.2)
∂

∂t
uN (x, t) +

∂

∂x
PN [q(x)uN(x, t)] = 0.

The approximation is realized as a convolution in Fourier space

d

dt
ûk(t) = ik

∑

|j|≤N

q̂(k − j)ûj(t), k = −N, . . . , N,

which amounts to a system of (2N+1) ODEs for the computed û(t) := (û−N (t), . . . , ûN(t))>.
The L2-stability of (2.2) is straightforward: though the truncation error which enters

(2.2), ∂x(I−PN )[q(x)uN(x)] need not be small, it is orthogonal to the N -space, and hence,

1

2

d

dt
‖uN (·, t)‖2

L2 = −
∫ 2π

0
uN

∂

∂x
PN [q(x)uN ]dx =

∫
∂uN

∂x
PN [q(x)uN ]dx

=

∫
∂uN

∂x
q(x)uNdx = −1

2

∫
q′(x)u2

Ndx(2.3)

≤ 1

2
max

x
|q′(x)| × ‖uN(·, t)‖2

L2.
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This yields the L2-stability bound,

(2.4) ‖uN(·, t)‖2
L2 ≤ eq

′
∞t‖uN(·, 0)‖2

L2, q′∞ := max
x

|q′(x)|.

To convert this stability bound into a spectral convergence rate estimate, consider the dif-
ference between the spectral method (2.2) and the PN projection of the underlying equation
(2.1): one finds that eN := uN − PNu, satisfies the error equation

∂

∂t
eN (x, t) +

∂

∂x
PN [q(x)eN(x, t)] = − ∂

∂x
PN

[
q(x)(I − PN)[u](x, t)

]
.

The L2-stability (2.4) implies the error estimate,
∫

|uN (x, t)− PNu(x, t)|2dx . eq
′
∞t

(
‖(I − PN )u(·, 0)‖2

L2 +N 2 max
τ≤t

‖(I − PN )[u](·, τ)‖2
L2

)
.

This quantifies the spectral convergence of the Fourier method (2.2): the convergence rate
increases together with the increasing order of smoothness of the solution,

(2.5) ‖uN(·, t)− u(·, t)‖L2 . e
1
2
q′∞t

(
N−s‖u(·, 0)‖Hs +N 1−s max

τ≤t
‖u(·, τ)‖Hs

)
, s > 1.

In practice, one recovers exponential convergence for analytic solutions (and root-exponential
convergence for more general Gevrey data).

2.2. The pseudo-spectral approximation: aliasing and weak stability. We now
consider pseudo-spectral Fourier approximation of (2.1). As before, we use an N -degree
polynomial, uN (x, t) =

∑
|k|≤N ûk(t)e

ikx, as an approximation for ψNu(·, t), which is gov-

erned by the semi-discrete approximation, [KO72, GO77],

(2.6)
∂

∂t
uN (x, t) +

∂

∂x
ψN [q(x)uN(x, t)] = 0.

This equation can be realized in physical space

d

dt
uN (xj, t) =

N∑

k=−N

ik(̃quN)ke
ikxj , (̃quN)k=

h

2π

2N∑

ν=0

q(xν)uN(xν)e
−ikxν .

It amounts to a system of (2N+1) ODEs for the computed gridvalues u(t) :=
(
u(x0, t), . . . , u(x2N , t)

)>

d

dt
u(t) = DQu(t), Djk =

(−1)j−k

2 sin
(

xj−xk

2

) , Q =




q(x0) 0 . . . 0

0
.. . 0

...
...

. . . 0
0 0 . . . q(x2N)




Here D is the Fourier differentiation matrix and Q signifies pointwise multiplication with
q(x).

To examine the stability of (2.6) we repeat the usual L2-energy argument for the spectral
approximation in (2.2): decompose ψN = PN +AN , to find

(2.7)
1

2

d

dt
‖uN(·, t)‖2

L2 =

a bounded term−(2.3)︷ ︸︸ ︷∫
uN

∂

∂x
PN [q(x)uN ]dx+

contribution of aliasing︷ ︸︸ ︷∫
uN

∂

∂x
AN [q(x)uN ]dx

The first term on the right consists of truncation error which, by (2.3), does not exceed
. ‖uN(·, t)‖2. Thus, the stability of the Fourier approximation (2.6) depends solely on the



ON THE STABILITY AND INSTABILITIES OF THE FOURIER METHOD 7

aliasing contributions, AN [q(x)uN ]: using (1.3) to expand the second term on the right, we
find

(2.8)

∫
uN

∂

∂x
AN [q(x)uN ]dx = 2πi

∑

|j|,|k|≤N

ûj(t)ûk(t) (j − k) ·
∑

6̀=0

q̂ (j − k + `(2N + 1)) .

Observe that the terms on the right,
∑

6̀=0 q̂ (j − k + `(2N + 1)), are of order O(N ) for

|j − k| ∼ 2N, ` = ±1, and this can occur only for high wavenumbers, |j| ∼ |k| ∼ N .
Thus, there is possible O(N ) amplification of the high Fourier modes, |ûj(t)|, |j| ∼ N .
Unfortunately, these Fourier modes need not be small due to lack of apriori smoothness,
and aliasing may render the Fourier method as unstable.

Indeed, when q(x) changes sign, the exact solution of (2.1) develops large gradients and
consequently, the Fourier method does experience spurious oscillations precisely because
of aliasing errors which are ignited due to lack of smoothness. To demonstrate the exact
mechanism of this type of instability2, we consider the example q(x) = sin(x),

(2.9)
∂

∂t
uN (x, t) +

∂

∂x
ψN [sin(x)uN(x, t)] = 0

The analysis follows [GHT94]. Fourier transform of (2.9) yields

d

dt
ûk(t) =

k

2
[ûk−1(t) − ûk+1(t)], k = −N, . . . , N,

and its imaginary part, bk(t) := =ũk(t), reads

(2.10)
d

dt
bk(t) =

k

2
[bk−1(t) − bk+1(t)] , bN+1 + bN = 0.

The last set of ODEs is at the heart of matter. A straightforward energy estimate yields

the lower-bound
d

dt
‖b(t)‖2 ≥ −‖b(t)‖2+Nb2N(t) for b(t) := (b1(t), . . . , bN(t))>. Does bN(t)

grow? on the one hand, numerical simulations in Figure 2.1 show that it does. On the other
hand, if the solution is smooth enough, then aliasing errors are negligible: in Figure 2.2 for
example, the solution subject to initial data |ûk(0)| ∼ |k|−3 remain smooth and the spurious
mode, |bN(t)| ∼ N−2, decay sufficiently fast so that b(t) remains bounded.
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 (c) 

Figure 2.1. bk(t) = =ûk(t): Fourier method subject to ûk(0) = x3
k(π −

xk)3/20.
(a) (t, N ) = (0.1, 200); (b) (t, N ) = (1., 100); (c) (t, N ) = (1., 200).

2To demonstrate the instability of the Fourier method (2.6), one needs to consider q(x) which changes
sign. Otherwise, if q(x) is, say, positive, then DQ is similar to the anti-symmetric matrix A :=

√
QD

√
Q

and stability follows since exp(At) is unitary in C2N+1 for the scalar product (QUN , VN ) [KO72].
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Figure 2.2. =ûk(t) computed at t = 3: Fourier solution of ut =
(sin(x)u)x, ûk(0) ∼ k−3. (a) with N = 100; (b) with N = 200; (c)
with N = 800: bN(t) ∼ ±N−2.

In practice, however, even if the solution of (2.1) remains smooth, it develops large
gradients of order |û(t)| ∼ exp(q′∞t) when q(x) changes sign. These large gradients require
N � et modes in order to resolve these gradients; otherwise, the exact solution u(·, t)
remains under-resolved by the pseudo-spectral Fourier approximation. Observe that the
Fourier method requires an increasingly large number of modes before it can resolve the
underlying solution, u(·, t). Without it, the under-resolved Fourier approximation contains
O(1) high modes, |ûN(t)| ∼ |bN(t)|, amplified by a factor of order O(N ), yielding the
spurious oscillations noticeable in Figure 2.3. Thus, aliasing errors cause the Fourier solution
to grow due to lack of resolution. The precise growth is “encoded” in the Fourier equations
whose imaginary part is governed by (2.10). To this end, set vk(t) := (−1)kbk(t). Then
(2.10) is converted into

d

dt
vk(t) = xk

vk+1(t) − vk−1(t)

2∆x
, vN+1(t) = vN (t), xk := k∆x ∈ [0, 1], ∆x := h/π.

This can be viewed as an approximation to the linear equation ∂tv(x, t) = x∂xv(x, t), 0 ≤
x ≤ 1 augmented with the boundary condition ∂xv(1, t) = 0. This is an ill-posed problem
due to the extrapolation at the inflow boundary x = 1, and consequently, its numerical
approximation grows ‖bN(t)‖ = ‖vN(t)‖ ∼

√
N , e.g., [Tad83]. The detailed analysis carried

out in [GHT94] shows that there is a weak instability, where ∼ 1−e−t fraction of the highest
modes experience amplification of order O(N ), which ends with the stability estimate

‖uN(·, t)‖L2 . eCq′∞tN‖uN(·, 0)‖L2.

The corresponding error estimate for the pseudo-spectral approximation reads [GHT94,
theorem 4.1]

‖uN(·, t)− ψNu(·, t)‖L2 . eCsq′∞t

(
N 1−s‖u(·, 0)‖Hs +N 2−s max

τ≤t
‖u(·, τ)‖Hs

)
, s > 2,

reflecting the loss of power on N when compared with the spectral estimate (2.5).

2.3. De-aliasing: the 2/3 smoothing method and strong stability. One way to
regain the stability of the pseudo-spectral Fourier method in (2.9) is to set ûN (t) ≡ 0 which
prevents the growth of bN(t) ≡ 0. Thus, removing the last mode stabilize the pseudospectral
method in the special case of q(x) = sin(x). The hyperbolic equation (2.1) with a general
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Figure 2.3. =ûk(t = 0.4) of uN (·, t) with N = 64, N = 128 and N = 512 modes.

q(x) follows along the lines of [Tad87]. We return to the aliasing term (2.8),
∫
uN(x, t)

∂

∂x
AN [q(·)uN ](x, t)dx(2.11)

= 2πi
∑

|j|,|k|≤N

ûj(t)ûk(t) (j − k) ·
∑

6̀=0

q̂ (j − k + `(2N + 1)) .

As noted before, the O(N ) growth of the high Fourier modes, |ûj(t)|, |j| ∼ N , need not
be small due to lack of apriori smoothness. We can circumvent this difficulty if we remove
these modes by setting a fixed portion of the spectrum to be zero. For example, assume
that we truncate the last 1/3 of the modes of uN (any other fixed fraction of N will do).
To this end, we use a smoothing operator S which is activated only on the first 2

3N modes
while removing the top 1/3N of the modes. We up with the so-called 2/3 pseudo-spectral
Fourier method,

(2.12a)
∂

∂t
uN(x, t) +

∂

∂x
ψN [q(·)SuN ](x, t) = 0, SuN :=

∑

|k|≤ 2
3
N

σkûk(t)eikx;

To retain spectral accuracy, the smoothing factors σk ∈ (0, 1] do not change a fixed portion
of the lower spectrum

(2.12b) σk





≡ 1, |k| ≤ 1
3N

∈ (0, 1], 1
3N < |k| < 2

3N.

The L2-stability of the 2/3 method follows along the lines of the spectral stability in (2.3);
integrating (2.12a) against SuN we find

(2.13a)

∣∣∣∣
∫

(SuN)
∂

∂x
PN [q(·)SuN ]dx

∣∣∣∣ ≤
1

2
q′∞‖SuN(·, t)‖2

L2, q′∞ = max
x

|q′(x)|.
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The aliasing contribution in the 2/3 method is bounded (and in fact negligible for q ∈
Cs, s > 1): following (2.11)

∫
(SuN )

∂

∂x
AN [q(·)(SuN)]dx = 2πi

∑

|j|≤ 2
3
N

∑

|k|≤ 2
3
N

σkσjûj(t)ûk(t) (j−k)·
∑

6̀=0

q̂

|j−k+`(2N+1)|≥ 2
3
N

︷ ︸︸ ︷
(j − k + `(2N + 1));

observe that the terms involved in the inner summation on the right are now restricted to
high wavenumbers, |j − k + `(2N + 1)| ≥ 2

3N so that |q̂ (j − k + `(2N + 1)) | . ‖q‖CrN−r.
Hence

(2.13b)

∣∣∣∣
∫

(SuN )
∂

∂x
AN [q(·)(SuN)]dx

∣∣∣∣ . ‖q‖CrN 1−r × ‖SuN‖2, r ≥ 1.

Combining the last two inequalities (2.13a) and (2.13b) with r = 1, we arrive at

1

2

d

dt

∫
(SuN)(x, t)uN(x, t)dx = −

∫
(SuN)

∂

∂x
(PN+AN )[q(·)(SuN)]dx ≤ Cq′∞‖SuN (·, t)‖2

L2.

Thus, by activating the smoothing operator we removed aliasing errors and the resulting
2/3 de-aliased pseudo-spectral method (2.12) regained the weighted L2-stability

‖uN(·, t)‖2
L2
S

≤ e2Cq′∞t‖uN(·, 0)‖2
L2
S

, ‖w(·, t)‖2
L2
S

:=

∫
(Sw)(x, t)w(x, t)dx≡ 2π

∑

|k|≤ 2
3
N

σk|ŵk(t)|2.

The corresponding error equation for eN := SuN − Su reads (we skip the details)

∂

∂t
eN +

∂

∂x

(
S[qeN ]

)
= − ∂

∂x
S
[
q(x)(I − S)[u](x, t)

]
,

and the spectral convergence rate, (2.5), follows: for s > 1 there exists a constant, C = Cs

such that

‖uN − u‖L2
S

. eCsq′∞t

(
N−s‖u(·, 0)‖Hs +N 1−s max

τ≤t
‖u(·, τ)‖Hs

)
, s > 1.

2.4. Spectral accuracy and propagation of discontinuities. Hyperbolic equations
propagates Hs regularity: ‖u(·, t)‖Hs . eCst‖u(·, 0)‖Hs <∞. Thus, the convergence state-
ment in (2.5) implies spectral convergence of the spectral Fourier method and 2/3 Fourier
method for Hs-smooth initial data. However, when the initial data is piecewise smooth, the
exact solution propagates discontinuities along characteristics, and the (pseudo-)spectral ap-
proximations of jump discontinuities in u(·, t) produces spurious Gibbs oscillations, [Tad07].
Nevertheless, thanks to the Hs-stability of the spectral Fourier method and the 2/3 pseudo-

spectral methods, ‖uN(·, t)‖Ḣs . eCs|q|∞t‖uN(·, 0)‖Ḣs, measured in the weak topology of
s < 0, the (pseudo-)spectral approximations still propagate accurate information of the
smooth portions of the exact solution. This is realized in terms of the convergence rate (we
skip the details)

‖uN − u‖Hr . eCsq′∞t

(
N r−s‖u(·, 0)‖Hs +N 1+r−s max

τ≤t
‖u(·, τ)‖Hs

)
, r < s− 1 < −1.

It follows that one can pre- and post-process uN (·, t) to recover the pointvalues of u(·, t)
within spectral accuracy, away from the singular set of the solution, [MMO78, ML78,
AGT86]. The point to note here is that even the Fourier projections of the exact solu-
tion, PNu(·, t) and ψNu(·, t) are at most first-order accurate due to Gibbs oscillations; the
post-processing of the computed uN is realized by its smoothing using a proper σ-mollifier
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(2.12b) (or see (3.6c) below), which does both — retains the stability and recovers the
spectrally accurate resolution content of the Fourier method.

3. Fourier method for Burgers equation: convergence for smooth solutions

We now turn our attention to spectral and pseudo-spectral approximations of nonlinear
problems. Their spectral accuracy often make them the method of choice for simulations
where the highest resolution is sought for a given number of degrees of freedom. We begin
with the prototypical example for quadratic nonlinearities, the inviscid Bugers’ equation,

(3.1)
∂

∂t
u(x, t) +

1

2

∂

∂x
u2(x, t) = 0, x ∈ T([0, 2π)),

subject to 2π-periodic boundary conditions and prescribed initial conditions, u(x, 0). In this
section we show that as long as the solution of Burgers equation remains smooth for a time
interval t ≤ Tc, the spectral and 2/3 de-aliased pseudo-spectral approximations converge to
the exact solution with spectral accuracy.

3.1. The spectral approximation of Burgers equation. The spectral approximation
of (3.1), uN (x, t) =

∑
ûk(t)e

ikx, is governed by,

(3.2)
∂

∂t
uN(x, t) +

1

2

∂

∂x

(
PN

[
u2

N

]
(x, t)

)
= 0, 0 ≤ x ≤ 2π.

The evaluation of the quadratic term on the right is carried out using convolution and (3.2)
amounts to a nonlinear system of (2N + 1) ODEs for û(t) = (û−N (t), . . . , ûN(t))>.

Theorem 3.1 (Spectral convergence for smooth solutions of Burgers’ equations).
Assume that for 0 < t ≤ Tc, the solution of the Burgers equation (2.1) is smooth, u(·, t) ∈
L∞

(
[0, Tc], C

1+α(0, 2π]
)
. Then, the spectral method (3.2) converges in L∞

(
[0, Tc], L

2(0, 2π]
)
,

‖uN(·, t)− u(·, t)‖L2 → 0, 0 ≤ t ≤ Tc.

Moreover, the following spectral convergence rate estimate holds for all s > 3
2 ,

‖uN(·, t)−u(·, t)‖2
L2 . e

∫ t

0

|ux(·, τ)|∞dτ (
N−2s‖u(·, 0)‖2

Hs +N
3
2
−s max

τ≤t
‖u(·, τ)‖Hs

)
, s >

3

2
.

Proof. We rewrite the spectral approximation (3.1) in the form

∂

∂t
uN +

∂

∂x

u2
N

2
=

1

2

∂

∂x
(I − PN)[u2

N ].

The corresponding energy equation reads

(3.3)
∂

∂t

u2
N

2
+

∂

∂x

u3
N

6
=
uN

2

∂

∂x
(I − PN )[u2

N ].

Integration yields the energy balance

1

2

d

dt

∫
u2

N (x, t)dx =
1

2

∫
uN∂x(I − PN )[u2

N ]dx =: I1.

The term on the right vanishes by orthogonality, I1 = −1

2

∫
∂uN

∂x
(I −PN )[u2

N ]dx = 0, and

hence the solution is L2-conservative,

(3.4) ‖uN (·, t)‖L2 = ‖uN(·, 0)‖L2.
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Next, we integrate (uN − u)2 ≡ |uN |2 − |u|2 − 2u(uN − u): after discarding all terms
which are in divergence form, we are left with

1

2

d

dt

∫
(uN − u)2dx =

d

dt

∫ ( |uN |2
2

− |u|2
2

− u(uN − u)

)
dx

=
1

2

∫
uN∂x(I − PN)[u2

N ]dx−
∫
∂t(u(uN − u))dx =: I1 + I2.

Recall that I1 vanishes. As for the second term I2, we decompose it into two terms,

I2 =

∫
∂t

(
u(uN − u)

)
dx ≡

∫
ut(uN − u)dx+

∫
u(∂tuN − ∂tu)dx,

and using (3.1), (3.2) and (3.3) to convert time derivatives to spatial ones, we find

I2 = −
∫
uux(uN − u)dx−

∫
u∂x

(
u2

N

2
− u2

2

)
dx+

1

2

∫
u∂x(I − PN )[u2

N ]dx

= −
∫
uux(uN − u)dx+

∫
ux

(
u2

N

2
− u2

2

)
dx− 1

2

∫
ux(I − PN )[u2

N ]dx

=

∫
ux

(
u2

N

2
− u2

2
− u(uN − u)

)
dx− 1

2

∫
ux(I − PN )[u2

N ]dx.

Eventually, we end up with

(3.5a)
1

2

d

dt

∫
|uN (x, t)− u(x, t)|2dx ≤ |ux(·, t)|L∞

2

∫
|uN(x, t)− u(x, t)|2dx− 1

2
eN ,

where the error term, eN , is given by

(3.5b) eN :=

∫
u2

N(I − PN )[ux]dx

Observe that under the hypothesis ux ∈ L∞
t C

0,α
x , and hence by Jackson’s bound [DL93]

and the L2-bound (3.4) one has

|eN(t)| . max
x

|(I − PN )[ux(x, t)]| · ‖uN‖2
L2 .

lnN

Nα
‖uN(·, 0)‖2

L2 → 0.

With (3.5) one obtains,
∫

|uN(x, t)− u(x, t)|2dx ≤ eU
′
∞(t;0)

∫
|uN(x, 0)− u(x, 0)|2dx

+

∫ t

0
eU

′
∞(t;τ )|eN(τ)|dτ, U ′

∞(t; τ) :=

∫ t

s=τ
|ux(·, s)|∞ds.

and convergence follows. Moreover, with uN (·, 0) = PNu(·, 0) we end up with spectral
convergence rate estimate

∫
|uN (x, t)− u(x, t)|2dx

. e

∫ t

0
|ux(·, τ)|∞dτ (

N−2s‖u(·, 0)‖2
Hs +N

3
2
−s max

τ≤t
‖u(·, τ)‖Hs

)
, s >

3

2
.
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3.2. The 2/3 de-aliasing pseudo-spectral approximation of Burgers equation.
Convolutions can be avoided using the pseudo-spectral Fourier method, [KO72, GO77],

∂

∂t
uN (x, t) +

1

2

∂

∂x

(
ψN

[
u2

N

]
(x, t)

)
= 0, x ∈ T([0, 2π)).

Observe that (3.1) is satisfied exactly at the gridpoints xν ,

d

dt
uN (xν, t) +

1

2

∂

∂x

(
ψN

[
u2

N

]
(x, t)

)
∣∣x=xν

= 0, ν = 0, 1, . . . , 2N.

The resulting system of (2N+1) nonlinear equations for u(t) = (u(x0, t), . . . , u(x2N , t))
> can

be then integrated in time by standard ODE solvers. The pseudo-spectral approximation
introduces aliasing errors. To eliminate these errors, we consider the 2/3 de-aliasing Fourier
method, consult (2.12a)

(3.6a)
∂

∂t
uN (x, t) +

1

2

∂

∂x

(
ψN

[
(SuN )2

]
(x, t)

)
= 0, x ∈ T([0, 2π)),

where SuN denotes a smoothing operator of the form

(3.6b) SuN :=
∑

|k|≤ 2
3
N

σkûk(t)e
ikx, ûk(t) =

h

2π

2N∑

ν=0

uN (xν, t)e
−ikxν .

The smoothing operator S is dictated by the smoothing factors, {σk}|k|≤ 2
3
N , which truncates

modes with wavenumbers |k| > 2
3N while leaving a fixed portion — say, the first 1/3 of the

spectrum, viscous-free. This is the same smoothing operator SuN we considered already
in the linear 2/3 method (2.12a). In typical cases, one may employ a smoothing mollifier,
σ(·) ∈ C∞(0, 1), setting

(3.6c) σk = σ

( |k|
N

)
, σ(ξ)





≡ 1, ξ ≤ 1
3 ,

∈ (0, 1), 1
3 < ξ < 2

3 ,

≡ 0, 2
3 ≤ ξ ≤ 1.

This is the 2/3 de-aliasing Fourier method which is often advocated for spectral com-
putations,in particular those involving quadratic nonlinearities, [HL07, OHFS10, Kerr93,
Kerr05].

In what sense does the 2/3 method remove aliasing errors? to make precise the de-aliasing
aspect of (3.6), consider the 2/3 truncated solution um := SuN . Here we emphasize that we
are dealing with the smoothed solution, um, of degree m := 2

3N . Observing that truncation
commute with differentiation, we find

(3.7)
∂

∂t
um(x, t) +

1

2

∂

∂x
S
(
ψN [u2

m]
)
(x, t) = 0, deg(um) = m :=

2

3
N.

We now come to the key point behind the removal of aliasing in quadratic nonlinearities:

since ûm(k) = 0 for |k| > 2
3N then û2

m(k) = 0 for |k| > 4
3N hence û2

m(k + `(2N + 1)) = 0

for |k| ≤ 2
3N, ` 6= 0; consequently, since the smoothing operator S acts only on the first 2

3N

mode, S
(
ANu

2
m

)
≡ 0, and we conclude

S
(
ψN [u2

m]
)
(x, ·) ≡ S

(
(PN +AN ) [u2

m]
)
(x, ·) = S

(
PN [u2

m]
)
(x, ·) ≡ Su2

m(x, ·).
We summarize by stating the following.
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Corollary 3.2. Consider the 2/3 de-aliasing Fourier method (3.6) then its 2/3 smoothed
solution, um := SuN , satisfies

(3.8)
∂

∂t
um(x, t) +

1

2

∂

∂x
S[u2

m](x, t) = 0, Sw =
∑

|k|≤m

σkŵke
ikx, m =

2

3
N.

Thus, by truncating the top 1/3 of the modes, we de-aliased the Fourier method, (3.6a), in
the sense that (3.8) does not involve any aliasing errors: only truncation errors, (I−S)[u2

m]
are involved. Indeed, the formulation of 2/3 method in (3.8) resembles the m-mode spectral
method (3.2). The only difference is due to the fact that unless σk ≡ 1, the smoothing
operator S is not a projection3

The following theorem shows that as long as the Burgers solution remains smooth, the
2/3 de-aliasing Fourier method is stable and enjoys spectral convergence.

Theorem 3.3 (Spectral convergence of the 2/3 method for smooth solutions).
Assume that for 0 < t ≤ Tc, the solution of the Burgers equation (2.1) is smooth, u(·, t) ∈
L∞

(
[0, Tc], C

1+α(0, 2π]
)
. Then, the 2/3 de-aliasing method (3.6) converges in L∞

(
[0, Tc], L

2(0, 2π]
)
,

‖um(·, t)− u(·, t)‖L2 → 0, 0 ≤ t ≤ Tc,

and the following spectral convergence rate estimate holds

‖uN(·, t)−u(·, t)‖2
L2 . e

∫ t

0
|ux(·, τ)|∞dτ(

N−2s‖u(·, 0)‖2
Hs +N

3
2
−s max

τ≤t
‖u(·, τ)‖Hs

)
, s >

3

2
.

Proof. We start with (3.8)

∂

∂t
um(x, t) +

1

2

∂

∂x

(
S[u2

m](x, t)
)

= 0.

Since S need not be a projection, there is no L2-energy conservation for the 2/3 smoothed
solution um. Instead, we integrate against uN to find that the corresponding energy balance
reads

1

2

d

dt

∫
uN (x, t)um(x, t)dx = −1

2

∫
uN

∂

∂x
S[u2

m](x, t)dx

=
1

2

∫
∂

∂x
(SuN)u2

m(x, t)dx =
1

6

∫
∂

∂x
u3

mdx = 0,

and hence the solution conserve the weighted L2
S -norm,

(3.9)

‖um(·, t)‖2
L2
S

= ‖uN(·, 0)‖2
L2
S

, ‖uN(·, t)‖2
L2
S

:=

∫
(SuN )uNdx = 2π

∑

|k|≤ 2
3
N

σk|ûk(t)|2.

We proceed along the lines of the spectral proof in theorem 3.1, integrating |um − u|2 ≡
|um|2 − |u|2 − 2u(um − u): after discarding all terms which are in divergence form, we are

3When σk ≡ 1, then S = P 2

3
N and the 2/3 method coincides with the spectral Fourier method (3.2) with

m = 2

3
N modes,

∂

∂t
um(x, t) +

1

2

∂

∂x
Pm[u2

m](x, t) = 0, |k| ≤ 2

3
N.
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left with

1

2

d

dt

∫
(um − u)2dx =

d

dt

∫ ( |um|2
2

− |u|2
2

− u(um − u)

)
dx

=
1

2

d

dt

∫
|um|2dx−

∫
∂t(u(um − u))dx =: I1 + I2.

Unlike the L2 conservation of the spectral solution uN , consult (3.4), there is no L2-energy
conservation for the 2/3 smoothed solution um and we therefore leave I1 is left as perfect
time derivative. As for the second term

I2 =

∫
∂t

(
u(um − u)

)
dx ≡

∫
∂tu(um − u)dx+

∫
u(∂tum − ∂tu)dx,

we reproduce the same steps we had in the spectral case: using (3.1) and (3.8) to convert
time derivatives to spatial ones, we find

I2 = −
∫
uux(um − u)dx−

∫
u∂x

(
u2

m

2
− u2

2

)
dx+

∫
u∂x(I − S)[u2

m]dx

= −
∫
uux(um − u)dx+

∫
ux

(
u2

m

2
− u2

2

)
dx− 1

2

∫
ux(I − S)[u2

m]dx

=

∫
ux

(
u2

m

2
− u2

2
− u(um − u)

)
dx− 1

2

∫
ux(I − S)[u2

m]dx.

Eventually, we end up with

1

2

d

dt

∫
|um(x, t)−u(x, t)|2dx ≤ |ux|∞

2

∫
|um(x, t)−u(x, t)|2dx+1

2
eN (t)+

1

2

d

dt

∫
|um(x, t)|2dx,

where the error term, eN is given by eN (t) := −
∫
u2

m(I −S)[ux]dx. Integrating in time we

find ∫

x
|um(x, t)− u(x, t)|2dx−

∫

x
|um(x, 0)− u(x, 0)|2dx(3.10)

≤ |ux|∞
∫ t

τ=0

∫
|um(x, t)− u(x, t)|2dxdτ +

∫ t

0
eN (τ)dτ + fN (t),

with the additional error term, fN (t), given by

fN (t) :=

∫
|um(x, t)|2dx−

∫
|um(x, 0)|2dx.

The error term eN (t) can be estimated as before: observe that under the hypothesis ux ∈
L∞

t C
0,α
x , one has

(3.11) |eN(t)| . max
x

|(I − S)[ux(x, t)]| · ‖um‖2
L2 .

lnN

Nα
‖uN(·, 0)‖2

L2 → 0.

To address the new error term, fN(t), we observe by the L2
S -energy conservation (3.9),

∫
|um(x, t)|2dx =

∑

|k|≤ 2
3
N

σ2
k|ûk(t)|2 ≤

∑

|k|≤ 2
3
N

σk|ûk(t)|2 =
∑

|k|≤ 2
3
N

σk|ûk(0)|2

=
∑

|k|≤ 2
3
N

σ2
k|ûk(0)|2 + (σk − σ2

k)|ûk(0)|2
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=

∫
|um(x, 0)|2 +

∑

|k|≤ 2
3
N

(
σk − σ2

k

)
|ûk(0)|2.

Since σk ≡ 1 for |k| < N/3, consult (3.6c), we conclude

fN (t) :=

∫
|um(x, t)|2 −

∫
|um(x, 0)|2(3.12)

≤
∑

1
3
N≤|k|≤ 2

3
N

(
σk − σ2

k

)
|ûk(0)|2 ≤

∥∥(P 2
3
N − P 1

3
N

)
u(·, 0)

∥∥2

L2 → 0.

With (3.10), (3.12) and (3.11) in place, one obtains an estimate on the error integrated in
space-time

1

2

d

dt
Em(t) ≤ |ux|∞

2
Em(t)+

1

2

∫ t

0
eN(τ)dτ+

1

2
fN (t), Em(t) :=

∫ t

0

∫
|um(x, τ)−u(x, τ)|2dxdτ.

Convergence follows by Gronwall’s inequality,
∫

|um(x, t)− u(x, t)|2dx

. e

∫ t

0
|ux(·, τ)|∞dτ(

‖um(·, 0)− u(·, 0)‖2
L2

+ max
x,τ≤t

|(I − S)ux(x, τ)|+
∥∥(P 2

3
N − P 1

3
N

)
u(·, 0)

∥∥2
L2

)
.

Moreover, with uN (·, 0) = PNu(·, 0) we end up with spectral convergence rate estimate
∫

|um(x, t)− u(x, t)|2dx

. e

∫ t

0

|ux(·, τ)|∞dτ (
N−2s‖u(·, 0)‖2

Hs +N
3
2
−s max

τ≤t
‖u(·, τ)‖Hs

)
, s >

3

2
.

4. Fourier method for Burgers equation: instability for weak solutions

In this section we discuss the spectral and the 2/3 de-aliased pseudo-spectral Fourier
approximations of Burgers’ equation, (3.1), after the formation of shock discontinuities.
We show that both methods are unstable after the critical time, t > Tc. Recall that the
spectral method is a special case of the 2/3 de-aliased method when we set the smoothing
factors σk ≡ 1, see corollary 3.2. It will therefore suffice to consider the 2/3 de-aliasing
pseudo-spectral Fourier method (3.8). We begin with its L2

S -conservation (3.9), which we
express as

(4.1) ‖S1/2uN (·, t)‖L2 = ‖S1/2uN (·, 0)‖L2, S1/2uN :=
∑

|k|≤m

√
σk ûk(t).

Since the quadratic energy associated with S1/2uN is bounded, it follows that, after ex-
tracting a subsequence if necessary4 that S1/2uN (·, t) and hence um = SuN has a L2-weak

4Here and below we continue to label such subsequences as uN .
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limit, u(x, t). But u cannot be the physically relevant entropy solution of (2.1). Our next
result quantifies what can go wrong.

Theorem 4.1 (The 2/3 method must admit spurious oscillations). Let Tc be the
critical time of shock formation in Burgers’ equation (3.1). Let um = SuN denote the
smoothed 2/3 de-aliasing Fourier method, (3.6). Assume the L6-bound, ‖um(·, t)‖L6 ≤
Const holds. Then, for t > Tc, there exists a constant c0 > 0 (independent of N) such that5

(4.2) max
x

|um(x, t)| × ‖um(·, t)‖2
TV ≥ c0

√
m.

Theorem 4.1 implies that either the solution of the 2/3 de-aliasing Fourier method, um =
SuN , grows unboundedly,

lim
N→∞

‖um(·, t)‖L∞ −→ ∞,

or it has an unbounded total variation of order ≥ O( 4
√
N ). Each one of these scenarios

implies that um contains spurious oscillations which are noticeable throughout the compu-
tational domain, in agreement with the numerical evidence observed in [Tad89]. We note
that this type of nonlinear instability applies to both, the 2/3 method and in particular,
the spectral Fourier method and we refer in this context to the recent detailed study in
[RFNM11, PNFS13] and the refernces therein.

Proof. We begin with (3.8)

(4.3)
∂

∂t
um(x, t) +

1

2

∂

∂x
u2

m(x, t) =
1

2

∂

∂x
(I − S)[u2

m](x, t).

Observe that the residual on the right tends to zero in H−1,
∣∣∣
∫

∂

∂x
ϕ(x)(I − S)[u2

m](x, t)dx
∣∣∣ =

∣∣∣
∫ (

(I − S)
∂

∂x
ϕ(x)

)
u2

m(x, t)dx
∣∣∣

≤ ‖um(·, t)‖2
L4 × ‖(I − S)ϕx(·)‖L2 → 0, ∀ϕ ∈ H1.

Next, we consider the L2-energy balance associated with (4.3). Multiplication by um

yields

(4.4)
1

2

∂

∂t
u2

m(x, t) +
1

3

∂

∂x
u3

m(x, t) =
1

2
um(x, t)

∂

∂x
(I − S)[u2

m](x, t).

We continue our argument by claiming that if (4.2) fails, then the energy production on the
right of (4.4) also tends weakly to zero in H−1. To this end, we examine the weak form of
the expression on the right which we rewrite as
∫
ϕ(x)um(x, t)

∂

∂x
(P2m − S)[u2

m](x, t)dx =

∫
(P2m − S)

(
ϕ(x)um(x, t)

) ∂
∂x
u2

m(x, t)dx.

It does not exceed
∣∣∣
∫
ϕ(x)um

∂

∂x
(I − S)[u2

m](x, t)dx
∣∣∣

=
∣∣∣
∫

(P2m − S)
(
ϕ(x)um(x, t)

)
um(x, t)

∂

∂x
um(x, t)dx

∣∣∣(4.5a)

≤
∥∥(P2m − S)

(
ϕ(x)um(x, t)

)∥∥
L∞ × ‖um(·, t)‖TV × ‖um(·, t)‖L∞.

5‖um‖TV denotes the total variation of um.
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To upper bound the first term we use standard decay estimate, |σjûN(j)(t)| . ‖um(·, t)‖TV /(1+

|j|). Noting that P2m−S annihilates the firstm/2 modes, namely, the multipliers P̂2m−S(k) =
0, |k| ≤ m/2 = N/3, we find
∥∥(P2m − S)

(
ϕ(x)um(x, t)

)∥∥
L∞

≤
∑

m
2
≤|k|≤2m

(1 − σk)
∣∣∣
∑

|j|≤m

ϕ̂(k − j)σjûN (j, t)
∣∣∣

.
∑

m
2
≤|k|≤2m

√∑

|j|≤m

(1 + |k − j|2)|ϕ̂(k − j)|2 ·
√√√√
∑

|j|≤m

1

(1 + |k − j|2)(1 + |j|2) × ‖um(·, t)‖TV

(4.5b)

. ‖ϕ‖H1‖um(·, t)‖TV × 1√
m
.

The last two inequalities (4.5) give us,
∣∣∣
∫
ϕ(x)um(x, t)

∂

∂x
(I − S)[u2

m](x, t)dx
∣∣∣ .

1√
m
‖um(·, t)‖2

TV × ‖um(·, t)‖L∞ × ‖ϕ‖H1.

We claim that (4.2) holds by contradiction. If it fails, then we can choose a subsequence,
umk

, such that
1

mk
‖umk

(·, t)‖2
TV × ‖umk

(·, t)‖L∞ ≤ ck, ck ↓ 0,

and the energy production on the right of (4.4) vanishes in H−1. By assumption ur
m(·, t) ∈

L2 for r = 1, 2, 3 and the div-curl lemma, [Mu78, Tar79, Tar87] applies: it follows that u is
in fact a strong L2-limit, umk

→ u. Passing to the weak limit in (4.3)mk
we have that u is

weak solution of Burgers’ equation (3.1),

∂

∂t
u(x, t) +

∂

∂x

(u2(x, t)

2

)
= 0.

Moreover, passing to the weak limit in the energy balance (4.4)mk
, we conclude that u

satisfies the quadratic entropy equality

∂

∂t

(u2(x, t)

2

)
+

∂

∂x

(u3(x, t)

3

)
= 0.

But, due to the uniqueness enforced with by the single entropy – in this case, the L2 energy,
[Pan94], there exists no energy conservative weak solution of Burgers equation (3.1) after
the critical time of shock formation.

Remark 4.2. The same result of instability holds if we employ the pseudo-spectral Fourier
method with a general smoothing operator beyond just the 2/3 smoothing, namely SuN =∑

|k|≤N σkûke
ikx and smoothing factors σk decay too fast as |k| ↑ N .

5. Fourier method for Euler equations: convergence for smooth solutions

Convergence of the spectral and pseudo-spectral approximation for the Burgers equation
made use of its quadratic flux, u2/2. The same approach can be pursued for the Euler
equations,

(5.1)
∂

∂t
u + P∇x(u⊗ u) = 0, x ∈ Td,
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where P := Id−∇x∆−1divx is the Leray projection into divergence free vector fields.

5.1. Convergence of spectral Fourier approximation for Euler equations. The
spectral method for the Euler equations reads

(5.2)
∂

∂t
uN + P∇xPN (uN ⊗ uN ) = 0.

Convergence for smooth solutions in this case, is in fact even simpler than in Burgers’
equation. Observe that for any divergence free vectors fields, v and u, the following identity
holds ∫ 〈(

v∇x(v ⊗ v)− v∇x(u⊗ u)
)
, v − u

〉
dx ≡

∫
〈(v − u), S[u] (v− u)〉 dx,

where S[u] is the symmetric part of the stress tensor S[u] := 1
2(∇xu+∇xu

>). We therefore
have,

∣∣∣∣
∫

〈P∇x(uN ⊗ uN ) − P∇x(u⊗ u), (uN − u)〉 dx
∣∣∣∣ ≤ ||∇xu||L∞||uN − u||2L2,

The error equation

∂

∂t
(uN − u) + P∇x(uN ⊗ uN ) − P∇x(u⊗ u) = (I − PN)P∇x(uN ⊗ uN ),

implies

1

2

d

dt
||uN − u||2L2

≤ ||∇xu||L∞ ||uN − u||2L2 +

∣∣∣∣
∫

〈(I − PN )[P∇x(uN ⊗ uN )],uN − u〉 dx
∣∣∣∣(5.3)

≤ ||∇xu||L∞ ||uN − u||2L2 +

∣∣∣∣
∫

〈((I − PN)∇u)uN ,uN〉 dx
∣∣∣∣ .

Arguing along the lines of our convergence statement for Burgers equations we conclude
that the following result holds.

Theorem 5.1 (Spectral convergence for smooth solutions of Euler equations).
Assume that for 0 < t < Tc, the solution of the Euler equations (5.1) is smooth, u(·, t) ∈
L∞

(
[0, Tc), C

1+α(0, 2π]
)
. Then its spectral Fourier approximation (5.2) converges in L∞

(
[0, Tc], L

2(Td)
)
,

‖uN(·, t)− u(·, t)‖L2 → 0, 0 ≤ t < Tc,

and the following spectral convergence rate estimate holds

‖uN(·, t)− u(·, t)‖2

. e
2

∫ t

0

|∇u(·, τ)|∞dτ(
N−2s‖u(·, 0)‖2

Hs +N
d
2
+1−s max

τ≤t
‖u(·, τ)‖Hs

)
, s >

d

2
+ 1.

Proof. Integrating (5.2) against uN we find the usual statement of L2 energy conservation,

‖uN (·, t)‖2
L2 = ‖uN(·, 0)‖2

L2.

Using (5.3), we conclude

‖uN(·, t)− u(·, t)‖2
L2 . e2U ′

∞(t;0)‖(I − PN )u(·, 0)‖2
L2
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+‖uN (·, 0)‖2
L2

∫ t

0
e2U ′

∞(t;τ )‖(I − PN )∇u(·, τ)‖L∞dτ, U ′
∞(t; τ) :=

∫ t

s=τ
‖∇xu(·, s)‖L∞ds,

which yields the spectral convergence rate estimate

‖uN (·, t)− u(·, t)‖2
L2(5.4)

. e2U ′
∞(t;0)

(
N−2s‖u(·, 0)‖2

Hs +N−s+d
2
+1 max

τ≤t
‖u(·, τ)‖Hs

)
, s >

d

2
+ 1.

Observe that the error estimate in the case of Euler equation depends on the truncation error
of ∇xu, corresponding to the dependence on the truncation error of ux in Burgers equation.
The additional loss factor of d/2 is due to the L∞(Td)-bound, maxx |(I−PN)w(x)| . ‖w‖Hs

for s > d/2, consult (1.2).

5.2. The 2/3 pseudo-spectral approximation of Euler equations. The pseudo-spectral
Fourier method for the Euler equations reads

∂

∂t
uN + P∇xψN(uN ⊗ uN) = 0,

Observe that since ψN does not commute with P∇x, there is no L2-energy conservation. We
introduce the smoothing operator SuN :=

∑
|k|≤m σkûk(t) which acts on wavenumbers |k| ≤

m = 2
3N , while leaving the first 1/3 portion of the spectrum unchanged: σk = σ(|k|/N ),

where σ(1−σ) is supported in (1
3 ,

2
3 ). The resulting 2/3 de-aliasing pseudo-spectral method

reads

(5.5)
∂

∂t
uN + P∇xψN(SuN ⊗ SuN) = 0.

It is the 2/3 Fourier method which is being used in actual computations, e.g., [OHFS10,
KH89, Kerr93, Kerr05] and the references therein. Next, we act with the smoothing S:
arguing along the lines of the 2/3 method for the Burgers’ equation in corollary 3.2, we find
that the um := SuN satisfies the aliasing-free equation

(5.6)
∂

∂t
um + SP∇x(um ⊗ um) = 0.

Observe that since S commutes with differentiation, um retains incompressibility,

∂

∂t
um + P∇xS(um ⊗ um) = 0.

As before, we can integrate against uN to find by incompressibility of um,

1

2

d

dt

∫
〈uN(x, t),um(x, t)〉dx = −

∫
〈SuN , P∇x(um ⊗ um)〉 dx = 0,

which implies the weighted L2
S -energy conservation,

(5.7) ‖uN(·, t)‖2
L2
S

= ‖uN (·, 0)‖2
L2
S

, ‖uN (·, t)‖2
L2
S

:= (2π)d
∑

σk|ûk(t)|2.

Theorem 5.2 (Spectral convergence of 2/3 method for smooth Euler solutions).
Assume that for 0 < t < Tc, the solution of the Euler equations (5.1) is smooth, u(·, t) ∈
L∞

(
[0, Tc), C

1+α(0, 2π]
)
. Then, the smoothed solution um = SuN of its 2/3 de-aliasing

pseudo-spectral Fourier approximation (5.5) converges in L∞
(
[0, Tc], L

2(Td)
)
,

‖um(·, t)− u(·, t)‖L2 → 0, 0 ≤ t < Tc,
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and the following spectral convergence rate estimate holds

‖um(·, t)− u(·, t)‖2
L2

. e
2

∫ t

0
|∇u(·, τ)|∞dτ (

N−2s‖u(·, 0)‖2
Hs +N

d
2
+1−s max

τ≤t
‖u(·, τ)‖Hs

)
, s >

d

2
+ 1.

Proof. We rewrite (5.6) in the form

∂

∂t
um + P∇x(um ⊗ um) = (I − S) (P∇x(um ⊗ um)) .

Subtract the exact equation (5.1): using the identity (5.3) we find, as before

1

2

d

dt
‖um − u‖2

L2

≤ ‖∇xu‖L∞‖um − u‖2
L2 +

∣∣∣∣
∫

〈(I − S)[P∇x(um ⊗ um)],um − u〉 dx
∣∣∣∣(5.8)

≤ ‖∇xu‖L∞‖um − u‖2
L2 +

∣∣∣∣
∫

〈((I − S)∇xu)um,um〉 dx
∣∣∣∣

+

∣∣∣∣
∫

〈((I − S)∇xum)um,um〉 dx
∣∣∣∣ .

The last term on the right is due to the fact that (I − S) need not annihilate ∇xum.
However, since um is incompressible, we find

∫
〈((I − S)∇xum)um,um〉 dx =

∑

α,β

∫
umα∂αumβ(I − S)umβdx

=
∑

α,β

∫
umα

1

2
∂α

(
umβ(I − S)umβ

)
dx

= −1

2

∫ ∑

α

∂αumα

∑

β

(
umβ(I − S)umβ

)
dx = 0.

We end up with the error bound

‖um(·, t)− u(·, t)‖2
L2 . e2U ′

∞(t;0)‖(I − S)u(·, 0)‖2
L2

+‖um(·, 0)‖2
L2
S

∫ t

0
e2U ′

∞(t;τ )‖(I − S)∇xu(·, τ)‖L∞dτ, U ′
∞(t; τ) :=

∫ t

s=τ
‖∇xu(·, s)‖L∞ds,

and spectral convergence rate follows.

6. Fourier method for Euler equations: failure of convergence for weak
solutions?

We now consider the convergence of the 2/3 method (5.5) for weak solutions of Euler
equations. Its m-mode de-aliased solution is governed by (5.6)

(6.1)
∂

∂t
um + SP∇x (um ⊗ um) = 0.



22 C. BARDOS AND E. TADMOR

The method is energy preserving in the sense that S1/2uN is L2-conservative, (5.7), and
hence um = SuN has s a weak limit, u. The question is to characterize whether u(x, t) is
an energy conserving weak solution of Euler equations (5.1),

(6.2)
∂

∂t
u + P∇x(u⊗ u) = 0.

To this end we compare (5.5) and (6.2): since um tends weakly to u and ∂tum ⇀ ∂tu, then
comparing the remaining spatial parts of (5.5) and (6.2), yields that SP[um ⊗um](x, t) and
hence P[um⊗um](x, t) tends weakly to P[u⊗u](x, t). This, however, is not enough to imply
the strong convergence of uN , as shown by a simple counterexample of a 2D potential flow,
un = ∇⊥

x Φn where

Φn(x1, x2) =
1

n
Ξ(x1, x2)(sinnx1 + sinnx2)

with Ξ(x1, x2) ∈ D(R2) localized near any point (say (0, 0)) with weak limit u ≡ 0. In this
case w - limN→∞∇P(uN ⊗ uN) = ∇P(u⊗ u) = 0, yet

w - lim
N→∞

(uN1)
2 = w -lim

N→∞
(uN2)

2 =
Ξ(x1, x2)

2

2
6= 0.

Although u need not be a weak solution of Euler equations, it satisfies a weaker notion of a
dissipative solution in the sense of DiPerna-Lions [Lions96] To this end, let w a divergence-
free smooth solution of

(6.3) ∂tw + P(∇w ⊗w) = E(w), PE(w) = 0.

Now, compare it with the 2/3 solution (6.1): the same computation with Gronwall lemma
leads to,

‖(uN −w)(·, t)‖2
L2(Ω) ≤ e2W ′

∞(t;0)||(uN − w)(·, 0)||2L2(Ω)

+2‖uN (·, 0)‖2
L2(Ω)

∫ t

0
‖(PNw −w))(·, s)‖W 1,∞(Ω)

+2

∫ t

0
e2W ′

∞(t;τ )‖(E(w(τ)),uN(τ)− w(τ))‖dτ, W ′
∞(t; τ) :=

∫ t

s=τ
‖∇xw(·, s)‖L∞(Ω)ds.

Passing to the weak limit it follows that u is a dissipative solution, satisfying for all
divergence-free smooth solution of (6.3), the stability estimate

‖(u− w)(·, t)‖2
L2(Ω) ≤ e2W ′

∞(t;0)‖(u−w)(·, 0)‖2
L2(Ω)

+ 2

∫ t

0
e2W ′

∞(t;τ ) |(E(w(τ)),u(τ)− w(τ)))|dτ.

The notion of dissipative solution can be instrumental in the context of stability near
a smooth solution, w, or even in the context of uniqueness. However, the construction
of [DLSz10] does not exclude the existence of rough initial data for which the Cauchy
problem associated with Euler equations (5.1) have an infinite set of dissipative solutions.
In fact, it is observed in [DLSz10] that any weak solution with a non-increasing energy,
‖u(·, t)‖L2 ≤ ‖u(·, 0)‖L2, is a dissipative solution. These, so-called admissible solutions,
arise as solutions of the Cauchy problem for an infinite set of (rough) initial data, and can
be obtained as strong limit in C(0, T ;L2

weak(Ω)) of solutions for the problem

∂tuN + P(∇x(uN ⊗ uN ) = EN
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with w -limEN = 0, while

∫
〈EN ,uN〉dx does not converge to 0.

We summarize the above observations, by stating that as long as the solution of the
Euler equations remains sufficiently smooth, then its spectral and de-aliased pseudo-spectral
approximations converge in L2(Ω). Indeed, in theorems 5.1 and 5.2, we quantified the
convergence rate for Hs-regular solutions u. If u has a minimal smoothness such that the
vorticity ωN := ∇×uN is compactly embedded in C([0, T ], H−1(RN )), then by the div-curl
lemma, uN (·, t) converges strongly in L∞([0, T ], L2

loc(R
N)) to an energy-preserving limit

solution u, [LNT00].

The situation is different, however, when dealing with “rough” solutions of the underlying
Euler equations. In the absence of any information re:the smoothness of the underlying
Euler solutions (— as loss of smoothness for the 3D Euler equations is still a challenging open
problem), energy-preserving numerical method need not shed light on the question of global
regularity vs. finite-time blow-up. Recall that L2-energy conservation was conjectured by
Onsager [ON49] and verified in [Ey94, CET94, BT10] under the assumption of minimal
smoothness of u, but otherwise is not supported by the energy decreasing solutions of Euler
equation, [Co07, DeLS12, Buck13].

The similar scenario of quadratic entropy conservation in the context of Burgers’ equations,
is responsible for spurious oscillations, and its detailed analysis can be found in [La86]
after [vN63]. Here, enforcing energy conservation at the “critical” time when Euler solu-
tions seem to lose sufficient smoothness leads to nonlinear instability which manifests itself
through oscillations noticeable throughout the computational domain, in agreement with
the numerical evidence observed in [HL07], see Figure 6.4(a) below. The precise large-time
behavior of the (pseudo-) spectral approximations is intimately related to a proper albeit
yet unclear notion of propagating smoothness for solutions of Euler equations which, even
if they do not explicitly blow up, may exhibit spurious oscillations due to the amplification
factor in higher norms.

7. The spectral viscosity method: nonlinear stability and spectral
convergence

The nonlinear instability results in sections 4 and 6 emphasize the competition between
spectral convergence for smooth solutions vs. nonlinear instabilities for problems which
lack sufficient smoothness. One class of methods for nonlinear evolution equations which
entertain both — spectral convergence and nonlinear stability, is the class spectral viscosity
(SV) methods, introduced in [Tad89]. We demonstrate the SV method in the context of
Burgers equation,

(7.1a)
∂

∂t
uN(x, t) +

1

2

∂

∂x

(
ψN

[
u2

N

]
(x, t)

)
= SV [uN ](x, t), x ∈ T([0, 2π)).

On the right of (7.1a) we have added a judicious amount of spectral viscosity of order 2r:

(7.1b) SV [uN ](x, t) := −N
∑

|k|≤N

σ

( |k|
N

)
ûk(t)e

ikx, σ(ξ) .

(
|ξ|2r − 1

N

)

+

, r ≥ 1

Without it, the pseudo-spectral solution will develops spurious Gibbs oscillations after the
formation of shocks. Observe that the spectral viscosity term in (7.1b) adds a spectrally
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(a) (b)

Figure 6.4. A comparison of axial vorticity contours of 3D Euler computa-
tion [HL07] at t = 18 (top) and at t = 19 (bottom). On left(a): the solution
obtained by the energy preserving 2

3 de-aliasing method; on right (b): the
solution obtained by an energy decreasing smoothing of the Fourier method.
The resolution is 1024× 768× 2048.

small amount of numerical dissipation for high modes, k � 1 (in contrast for ”standard”
finite-order amount of numerical dissipation in finite-difference methods),

‖SV [w]‖Ḣα . N 1−(α−β)(1− 1
2r

)‖w‖Ḣβ, ∀β � α − 1 ∈ R.

Indeed, the low-pass SV filter on the right of (7.1a) vanishes for modes |k| ≤ N (2r−1)/2r,
which in turn leads to spectral convergence for smooth solutions. Arguing along the lines
of theorem 3.3 we state the following.

Theorem 7.1 (Spectral convergence for smooth solutions of Burgers’ equations).
Consider the Burgers equation, (3.1), with a smooth solution u(·, t) ∈ L∞

(
[0, Tc], C

1+α(0, 2π]
)
.

Then its spectral viscosity approximation (7.1),

d

dt
uN(xν, t) +

1

2

∂

∂x

(
ψN

[
u2

N

]
(x, t)

)∣∣x=xν
= SV [uN ](xν, t), ν = 0, 1, . . . , 2N.

converges, ‖uN (·, t) − u(·, t)‖L2 → 0 for 0 ≤ t ≤ Tc and the following spectral convergence
rate estimate holds for all s > 3

2 ,

‖uN(·, t)− u(·, t)‖2

. e

∫ t

0
|ux(·, τ)|∞dτ (

N−2s‖u(·, 0)‖2
Hs +N

2r−1
2r

( 3
2
−s) max

τ≤t
‖u(·, τ)‖Hs

)
, s >

3

2
.

At the same time, spectral viscosity is strong enough to enforce a sufficient amount
of L2 energy dissipation, which in turn implies convergence after the formation of shock
discontinuities. We quote below the convergence statement of the hyper-SV method.
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Theorem 7.2 (Convergence of the hyper-SV method for Burgers equation [Tad89,
Tad93b, Tad04]). Let u be the unique entropy solution of the inviscid Burgers equation,
(3.1), subject to uniformly bounded initial data u0, and let uN be the spectral viscosity ap-
proximation (7.1) subject to L∞ data uN(0) ≈ u0. Then, if uN remains uniformly bounded6

it converges to the unique entropy solution, ‖uN(·, t)− u(·, t)‖L2 → 0.

Remark 7.3. We note that unlike the 2/3 de-aliasing method, the SV method does not
completely remove the high-frequencies but instead, it introduces “just the right amount” of
smoothing for |k| � 1 which enables to balance spectral accuracy with nonlinear stability.
The SV method can be viewed as a proper smoothing which addresses the instability of
general smoothing of the pseudo-spectral Fourier method sought in remark 4.2. Moreover,
even after the formation of shock discontinuities, the SV solution still contains highly accu-
rate information of the exact entropy solution which can be extracted by post-processing,
[SW95].

Similar results of spectral convergence of SV methods hold in the context of incompress-
ible Euler equations, [KK00, SS07, AX09],

∂

∂t
uN + P∇xψN (SuN ⊗ SuN ) = SV [uN ],(7.2)

SV [uN ](x, t) := −N
∑

|k|≤N

σ

( |k|
N

)
ûk(t)eik·x.

In contrast to the spurious oscillations with the 2/3 methods shown in figure 6.4(a), the
oscillations-free results in 6.4(b) correspond to the proper amount of smoothing employed in
[HL07]. Thus, the issue of adding “just the right amount” of hyper-viscosity is particularly
relevant in this context of Large Eddy Simulation (LES) for highly turbulent flows, when one
needs to strike a balance between a sufficient amount of numerical dissipation for stability
without giving up on high-order accuracy for physically relevant Euler (and Navier-Stokes
solutions). The SV method in (7.2) adds this balanced amount of hyper-viscoisty, [KK00,
GP03, SK04, SS07, PSSBS07].

8. Beyond quadratic nonlinearities: 1D isentropic equations

We consider the one-dimensional isentropic equations in Lagrangian coordinate,

∂

∂t
u+

∂

∂x
q(v) = 0, q′(v) > 0(8.1a)

∂

∂t
v +

∂

∂x
u = 0,(8.1b)

which is approximated by the spectral method

∂

∂t
uN +

∂

∂x
q(vN) = (I − PN )q(vN),(8.2a)

∂

∂t
vN +

∂

∂x
uN = 0.(8.2b)

Denote by U the vector of conservative variables, U := (u, v)>, by F (U) the corresponding
flux, F (U) := (q(v), u)> and let η(U) be the entropy η(U) := 1

2 |u|2 +Q(v), Q′(v) = q(v).

6The question of uniform boundedness of uN was proved for the second order SV method, corresponding
to r = 1, in [Tad93a], but it remains open for the hyper SV case with r > 1.
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Multiplying the system by ∇Uη(U) and integrating gives:

d

dt

∫ ( |uN |2
2

+ uN∂xq(vN) + q(vN)∂xuN

)
dx =

∫
(I − PN )q(vN)uNdx = 0

and hence there the total entropy is conserved for both the exact an approximate solutions7

∂t

∫
η(U)dx = 0 and ∂t

∫
η(UN)dx = 0.

Continuing as in DiPerna-Chen [DiP83, Ch97, Daf79], we write

∂t

∫ (
η(UN) − η(U)−

〈
η′(U), Un − U

〉)
dx =

∫ 〈
η′′(U)Ut, (UN − U)

〉
dx−

∫ 〈
η′(U), (UN)t − Ut

〉
dx =(8.3)

−
∫ 〈

η′′(U)F (U)x, UN − U
〉
dx−

∫ 〈
η′(U), F (UN))x − F (U)x

〉
dx+ error term

=: I1 + I2 + I3

The first two terms on the right amount to

|I1 + I2| =
∣∣∣
∫ 〈

η′′(U)F (U)x, UN − U
〉
dx+

∫ 〈
η′(U), F (UN)x − F (U)x

〉
dx
∣∣∣

=
∣∣∣
∫ 〈

η′′(U)F ′(U)Ux, UN − U
〉
dx−

〈
η′′(U)Ux, F (UN )− F (U)

〉
dx
∣∣∣

=
∣∣∣
∫ 〈

η′′(U)F ′(U)Ux, UN − U
〉
dx−

〈
η′′(U)Ux, F

′(U)Ux + O‖UN − U‖2
〉
dx
∣∣∣.

Since the entropy Hessian symmetrize the system, one has η′′(U)F ′(U) = F ′(U)η′′(U), and
we conclude that the last expression does not exceed

|I1+I2| =
∣∣∣
∫ 〈

η′′(U)F ′(U)Ux, UN − U
〉
dx−

〈
η′′(U)Ux, F (UN) − F (U)

〉
dx
∣∣∣ . ‖U‖C1‖UN−U‖2

On the other hand

I3 = error term =

∫
(I − PN )qx(vN )(u− uN)dx =

∫
∂xq(vN )(I − PN )uxdx

which goes to zero for sufficiently smooth u ∈ C1+α. Inserting the last two bound into (8.3)
we find that

∂t

∫ (
η(UN) − η(U)−

〈
η′(U), Un − U

〉)
dx . ‖U‖C1‖UN − U‖2 + o(1).

By strict convexity, the integrand on the left is of order ∼ ‖UN −U‖2 and we conclude the
following.

Theorem 8.1. Assume that for 0 < t < Tc, the solution of the isentropic Euler equations
(8.1) is smooth, U(·, t) ∈ L∞

(
[0, Tc), C

1+α(0, 2π]
)
. Then, its spectral approximation (8.2)

converge in L∞
t L

2
x,

‖UN (·, t)− U(·, t)‖L2 → 0, 0 ≤ t < Tc.

7This intriguing property seems specific to the isentropic equation in Lagrangian coordinate.
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