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X-Point Collapse and Saturation in the Nonlinear Tearing Mode Reconnection
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We study the nonlinear evolution of the resistive tearing mode in slab geometry in two dimensions. We
show that, in the strongly driven regime (large �0), a collapse of the X point occurs once the island width
exceeds a certain critical value �1=�0. A current sheet is formed and the reconnection is exponential in
time with a growth rate / �1=2, where � is the resistivity. If the aspect ratio of the current sheet is
sufficiently large, the sheet can itself become tearing-mode unstable, giving rise to secondary islands,
which then coalesce with the original island. The saturated state depends on the value of �0. For small �0,
the saturation amplitude is / �0 and quantitatively agrees with the theoretical prediction. If �0 is large
enough for the X-point collapse to have occurred, the saturation amplitude increases noticeably and
becomes independent of �0.
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Magnetic reconnection is the breaking and rejoining of
magnetic field lines in a plasma. Solar flares are believed to
be a manifestation of this phenomenon [1]. Other classical
examples are reconnection between the solar and Earth’s
magnetic field in the magnetopause and the magnetotail [2]
and the sawtooth instability in tokamaks [3]. In some cases,
most notably the sawtooth, reconnection takes place in a
plane perpendicular to a strong magnetic field, in which
case it occurs via the tearing-mode instability. Linear
theory [4] shows that an MHD equilibrium is tearing-
mode unstable if the instability parameter �0 > 0. Analyti-
cal and numerical studies of the tearing mode have been
mostly restricted to low values of �0. However, it has been
shown that kinetic effects can change the instability thresh-
old to �0 >�0crit � 1 [5,6], and there is, indeed, experi-
mental evidence for �0 � 1 in the sawtooth (see, e.g., [7]
and references therein). The evolution of large-�0 (i.e.,
strongly driven) tearing modes, even in the simplest physi-
cal models, remains poorly understood. To address this
problem, we investigate the evolution of the tearing
mode in the broadest ranges of �0 and the resistivity �
achieved to date. We find that, for sufficiently large �0 and
sufficiently small �, the tearing mode goes through five
stages (Fig. 1): (I) linear instability [4], (II) algebraic
growth (Rutherford [8] stage), (III) X-point collapse fol-
lowed by current-sheet reconnection (Sweet-Parker [9,10]
stage), (IV) tearing instability of the current sheet resulting
in generation of secondary islands, and (V) saturation. The
traditional theory of the tearing mode, valid for small �0,
comprises just stages I, II, and V. A quantitative character-
ization of stages III–V is the subject of this Letter.

We solve the reduced MHD equations [11],

@t!� v? � r! � B? � rjk; (1)

@t � v? � r � �r2 ; (2)
05=95(23)=235003(4)$23.00 23500
in a two-dimensional periodic box Lx � Ly using a pseu-
dospectral code at resolutions up to 3072� 4096. The total
magnetic field is B � Bzez � B?, the in-plane magnetic
field is B? � ez � r , the in-plane velocity is v? � ez �
r�, and ! � ez � �r� v?� � r2�, jk � ez � �r� B� �
r2 . We impose the equilibrium configuration  �0� �
 0=cosh2�x� and ��0� � 0. By setting  0 � 3

���
3
p
=4, we

scale the units of field strength in such a way that the
maximum value of B�0�y � d �0�=dx is B�0�y;max � 1. All
lengths are scaled so that Lx � 2�. Time is, therefore,
scaled by the in-plane Alfvén time Lx=2�B�0�y;max. To the
equilibrium, we add an initial perturbation  �1� �  1�x��
cos�ky�, where k � Lx=Ly. Given a perturbation in this
form, the island width W and the reconnected flux ��t� �
	 �t; 0; 0� �  0 are related by

W � 4
������������������������
��t�= 000 �0�

q
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For our equilibrium, the instability parameter is [12]
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The equilibrium is tearing unstable if �0 > 0, k <
���
5
p

.
�0 is varied by changing k, i.e., Ly.

We now describe the evolution of the tearing-mode stage
by stage. During stages I–II, reconnection occurs via an
X-point configuration. In stage I, it is a linear instability
with the island width W growing exponentially in time [4].
Once W exceeds the resistive scale, this stage gives way to
the Rutherford [8] stage (stage II), during which the growth
is algebraic in time: dW=dt� ��0. Omitting further dis-
cussion of these stages, which have been studied before
[13], we proceed to stage III.

Stage III: X-point collapse and Sweet-Parker (SP) re-
connection.—Waelbroeck [14] predicted that when the
island widthW >Wc ’ 25=�0, the X point should collapse
3-1 © 2005 The American Physical Society
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FIG. 3 (color online). The critical island width for collapse vs
� at fixed �0 � 17:3; 30:3. Dashed lines are linear fits.

FIG. 1 (color online). Effective growth rate at the X point
�eff � d ln�=dt vs time for a strongly driven (large �0) tearing
mode. FKR stands for Furth-Killeen-Rosenbluth, after the au-
thors of Ref. [4].
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to a current sheet. Indeed, in simulations with large �0, the
X-point configuration eventually collapses and a current
sheet is formed (Fig. 2) accompanied by a dramatic speed
up of the island growth (Fig. 1). A clear numerical dem-
onstration of this was recently reported by Jemella et al.
[15] (see also earlier results [16]). In our simulations, we
have varied � and �0 to verify Waelbroeck’s transition
criterion. We define Wc as the island width at which
d�eff=dt � 0 after the Rutherford-like algebraic stage
(e.g., at t 
 315 in Fig. 1). In Fig. 3, we plot �0Wc vs �
for two different values of �0. The dependence of �0Wc

on � appears to be linear and extrapolates in the limit of
�! 0 to �0Wc ’ 8:2 for both values of �0 used. Thus, the
transition criterion is

�0Wc ’ 8:2� f��0��; (5)

where f��0� is undetermined but is seen in Fig. 3 to
increase with �0. Equation (5) confirms Waelbroeck’s scal-
ing of Wc with �0, but not his numerical prefactor. The
numerical determination of the scaling (5) is a new result.

Figure 4(a) shows that, in this stage, the reconnected flux
(measured at x � y � 0) grows exponentially in time:
ln��	�c� � �SP�t	 tc�, where tc is the time at which
the collapse begins, �c � ��tc�, and �SP is the growth rate
[17]. Varying �0, we have ascertained that �SP is indepen-
dent of �0. Its dependence on � is plotted in Fig. 4(b). The
scaling �SP / �

1=2 appears to hold.
(a) t = 314 (b) t = 440

FIG. 2 (color online). Contours of  at the beginning and end
of stage III in Fig. 1. The boundaries of these plots are not the
boundaries of the computational box.
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We think that what we observe is an exponential-in-time
SP reconnection that proceeds qualitatively in the way
described in [9,10] but with the outflow velocity vout and
the current-sheet length LCS growing with time. Since the
reconnected flux � changes at the SP rate / �1=2, we can
assume that the evolution is quasistatic, so that the system
passes through a sequence of ideal equilibria, in each of
which LCS and the configuration outside (but not inside)
the current sheet are fully determined by the instantaneous
value of �. Let us assume that, in these equilibria, the
vicinity of the current sheet is described by the Syrovatskii
solution with a unidirectional current [18]. In this solution,
the magnetic field immediately outside the sheet is Bin �
B0���LCS���=Lx, where � � ��t� is the reconnected flux
and B0 is the field away from the sheet. Then the recon-
nected flux grows according to (cf. [15,19,20])

d�=dt� vinBin � �
1=2�B0���=Lx�

3=2LCS���; (6)

where we have used the SP expression for the inflow
velocity, vin � ��vout=LCS�

1=2 and taken the outflow ve-
locity to be Alfvénic, vout � Bin. Equation (6) implies that
the growth of � must speed up compared to � / ���0t�2

in the Rutherford [8] stage (stage II). When � is close to its
value �c at the beginning of the collapse, we may approxi-
mate B0��� � B0��c� � const. This implies vout=LCS �
Bin=LCS � B0=Lx � const, a conclusion confirmed by
Fig. 5(a). Since LCS��c� � 0, LCS should be a growing
function of �	�c. Indeed, Eq. (6) is consistent with the
(a) (b)

FIG. 4 (color online). (a) Growth of the reconnected flux �
during the SP stage for fixed �0 � 17:3 and various values of �.
(b) Slopes of these lines vs � during the exponential growth.
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(a) (b)

FIG. 5. The exponential stage (370< t < 450) of the run of
Fig. 1: (a) maximum outflow velocity vout vs the current-sheet
length LCS; (b) LCS vs ��	�c�=B0, where B0 is defined as the
maximum value of By along the x axis. These curves do not
extrapolate to the origin because the full-width-half-maximum
definition used for LCS correctly reflects the growth of the
current-sheet length but not its true length (thus, it formally
gives LCS > 0 for the X-point reconnection).

(a) (b) (c)
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numerically observed exponential SP reconnection if
LCS � ��	�c�=B0 [cf. Fig. 5(b)].

The elongation of the current sheet ceases when LCS

reaches a significant fraction of the box size. Reconnection
can still proceed in a SP fashion, but the growth of the
reconnected flux slows down (see Fig. 1). Indeed, in the
right-hand side of Eq. (6), LCS no longer increases with �
and B0��� starts to decrease as the initial reconnectable
flux is used up. In Fig. 6, we show the current-sheet length
LCS and width �CS measured using a full-width-half-
maximum estimate at the time when the maximum LCS

is reached. We see that, for fixed �0, LCS is roughly
independent of �, while �CS � �

1=2, in agreement with
the SP prediction. On the other hand, for fixed �, both LCS

and �CS grow with �0 (cf. [21]). Note that for �0 � 1 we
have �0 ’ 15=k2 / L2

y [see Eq. (4)]. Since LCS cannot
exceed the box length Ly, it must, at large �0, grow no
faster than

������
�0
p

.
Stage IV: Secondary-island generation.—When the as-

pect ratio of the current sheet A � LCS=�CS * 50, the
sheet becomes unstable and generates secondary islands.
We expect that this critical value is independent of either
�0 or �, but due to resolution constraints, we do not yet
have a numerical confirmation of this conjecture.
(a) (b)

FIG. 6 (color online). The current-sheet length LCS and width
�CS (a) vs � and (b) vs �0.

23500
Instability of the current sheets is a (numerically) known
phenomenon [13,22,23], but no mathematical theory of it
exists. In Fig. 7, we give the most detailed view of the
instability affordable at current resolutions. As predicted in
[24], a secondary island first appears as a long-wavelength
linear perturbation to the current sheet, with two X points
forming at the ends of the sheet [Fig. 7(b)]. This suggests
that the theory of [24], while not mathematically rigorous,
nevertheless captures the essential physics. Reconnection
proceeds in a manner analogous to stages I–III discussed
above: as the secondary island grows, the two secondary X
points collapse, giving rise to two current sheets, while the
island is circularized [Fig. 7(c)]. The primary and the
secondary islands exert attracting forces on each other.
When the secondary island is sufficiently large, this causes
it to split into two parts, which then coalesce with the
primary island [Figs. 7(d)–7(f)] (the splitting of the sec-
ondary island into two is a result of the exact symmetry of
our configuration about the x axis: even a slight asymmetry
causes the entire secondary island to move either upwards
or downwards to coalesce with the primary [25]).

Given small enough �, the secondary current sheets
should be unstable to generation of tertiary islands, etc.
Also, if the initial flux is not yet exhausted after the
secondary island has coalesced with the primary, the pri-
mary current sheet can be regenerated via a second col-
lapse (Fig. 1, stage IVb). Given sufficiently large �0, the
cycle of current-sheet formation—secondary-island gen-
eration—coalescence may be repeated several times be-
fore saturation is reached.

Stage V: Saturation.—The saturated island width in the
limit of small �0 has recently been calculated by Escande
and Ottaviani [26] and by Militello and Porcelli [27], a
(d) (e) (f)

FIG. 7 (color online). Contours of  showing the current-sheet
instability (a)–(c) and the subsequent nonlinear evolution of the
secondary island (d)–(f) for a run with �0 � 40:6; � � 2:8�
10	4.
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(a) (b)

FIG. 8 (color online). (a) Saturated amplitude �sat vs �0 for
different values of �. The theoretical curves by POEM and
White et al. [28] are also shown. The island width formula (3)
has been used to convert Wsat calculated by these authors into
�sat. (b) �sat vs � for �0 � 8:2; 17:3. In both plots, open circles
are the cases where Wsat exceeded the box size.
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theory henceforth referred to, using a liberal permutation
of the first letters of the authors’ surnames, as POEM. They
found Wsat � 2:44a2�0, where a2 � 	 000 �0�= 

0000
0 �0� �

0:125 for our equilibrium. Figure 8 shows the dependence
of the numerically obtained saturated flux on �0 and �. We
plot �sat instead of Wsat because, for the largest �0 values,
the island width exceeds the box size Lx (in which case the
saturation is likely to be strongly dependent on the equi-
librium configuration). For �0 & 5, there is excellent
agreement with POEM, but not with the earlier theory of
White et al. [28]. Our study extends the previously pub-
lished numerical confirmations of POEM for small �0

[26,27] and traces the �0 dependence of �sat to and beyond
the values of �0 at which POEM breaks down. The occur-
rence of the X-point collapse, i.e., whether the saturation is
achieved via current-sheet or X-point reconnection,
changes the saturated state: Figure 8 shows a jump in
�sat at values of �0 and � for which the X-point collapse
took place in stage III. For sufficiently small �, the satu-
rated amplitude does not depend on � [Fig. 8(b)]. Also,
�sat appears to reach a plateau for large �0 [Fig. 8(a)], so
that Wsat� system size. Note that the collapse can occur
only if Wsat is larger than Waelbroeck’s critical value
(Fig. 3), Wsat >Wc. Using Eq. (5) and the POEM formula
for Wsat, this gives �0 * 5:2 in the limit of �! 0.

The new results reported above are the numerical iden-
tification of (i) the tearing-mode evolution as a five-stage
process, (ii) a criterion for the current-sheet formation
[Eq. (5)], (iii) exponential reconnection at the Sweet-
Parker rate during the current-sheet stage, (iv) secondary-
island generation as a long-wavelength instability of high-
aspect-ratio current sheets, followed by formation of sec-
ondary current sheets and then by coalescence of the
secondary and primary islands, and (v) transition from
the saturated state described by the small-island approxi-
mation [26,27] to a large-�0 regime.

A caveat is in order. While stable large-�0 configura-
tions are often encountered in fusion plasmas, the physics
that sets the critical �0 for instability is still a challenge.
This physics, along with a number of kinetic effects known
23500
to be important in various laboratory and astrophysical
contexts [29], must, strictly speaking, be a part of any
quantitative description of the tearing-mode reconnection
in real plasmas.
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