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ABSTRACT

We consider the linear axisymmetric stability of a differentially rotating collisionless plasma in the presence
of a weak magnetic field; we restrict our analysis to wavelengths much larger than the proton Larmor radius.
This is the kinetic version of the magnetorotational instability explored extensively as a mechanism for mag-
netic field amplification and angular momentum transport in accretion disks. The kinetic calculation is
appropriate for hot accretion flows onto compact objects and for the growth of very weak magnetic fields,
where the collisional mean free path is larger than the wavelength of the unstable modes. We show that the
kinetic instability criterion is the same as in MHD, namely that the angular velocity decrease outward. How-
ever, nearly every mode has a linear kinetic growth rate that differs from its MHD counterpart. The kinetic
growth rates also depend explicitly on �, i.e., on the ratio of the gas pressure to the pressure of the seed mag-
netic field. For � � 1 the kinetic growth rates are similar to the MHD growth rates, while for �41 they differ
significantly. For �41, the fastest growing mode has a growth rate �

ffiffiffi
3

p
� for a Keplerian disk, larger than

its MHD counterpart; there are also many modes whose growth rates are negligible,d��1=2�5�. We pro-
vide a detailed physical interpretation of these results and show that gas pressure forces, rather than just mag-
netic forces, are central to the behavior of the magnetorotational instability in a collisionless plasma. We also
discuss the astrophysical implications of our analysis.

Subject headings: accretion, accretion disks — instabilities — plasmas

1. INTRODUCTION

Balbus &Hawley (1991, hereafter BH91) showed that dif-
ferentially rotating accretion disks are linearly unstable in
the presence of a weak magnetic field (for a review, see Bal-
bus & Hawley 1998, hereafter BH98). This instability,
known as the ‘‘ magnetorotational instability ’’ (MRI), is
local and extremely powerful, with a growth rate compara-
ble to the rotation frequency of the disk. MHD turbulence
resulting from the MRI is the most promising source of the
efficient angular momentum transport needed in astrophysi-
cal accretion flows (e.g., Hawley, Gammie, & Balbus 1995;
Armitage 1998; Hawley 2000; Stone & Pringle 2001). The
MRI may also be important for the dynamo generation of
galactic and stellar magnetic fields.

In this paper we present a linear analysis of the MRI in a
collisionless plasma using kinetic theory. The kinetic calcu-
lation is appropriate whenever the wavelength of the unsta-
ble modes is shorter than the collisional mean free path.
This regime is astrophysically interesting for several
reasons:

1. In MHD, the most unstable mode of the MRI has a
wavelength � � vA=�, where vA ¼ B= 4��ð Þ1=2 is the Alfvén
speed and � is the rotation frequency of the disk. Thus, for
a very weak magnetic field, the fastest growing mode has a
very short wavelength, less than the collisional mean free
path in many cases. A kinetic treatment is therefore required
to determine whether the MRI can amplify very weak fields

(e.g., the ‘‘ first ’’ magnetic fields generated at high redshift
by a Biermann battery or analogous mechanism).
2. Radiatively inefficient accretion flows onto compact

objects provide a useful framework for interpreting obser-
vations of low-luminosity X-ray binaries and active galactic
nuclei (see, e.g., Ichimaru 1977; Rees et al. 1982 [the ion
torus model]; Narayan & Yi 1995 [ADAFs]; for a review see
Narayan, Mahadevan, & Quataert 1998 or Quataert 2001).
In such models, the accreting gas is a hot two-temperature
plasma in which the proton temperature (�1012 K near a
black hole) is much larger than the electron temperature
(�109–1011 K). In order to maintain such a two-temperature
configuration, the accretion flow must be effectively colli-
sionless in the sense that the timescale for electrons and pro-
tons to exchange energy by Coulomb collisions is longer
than the inflow time of gas in the accretion disk. In principle,
a kinetic treatment of the accretion flow structure, rather
than a fluid treatment, is therefore necessary. The calcula-
tions described in this paper represent a first step toward
understanding the physics of angular momentum transport
and the structure of the accretion flow using kinetic theory.

Our analysis is restricted to wavelengths much larger than
the proton Larmor radius and frequencies below the proton
cyclotron frequency. To motivate why kinetic effects can be
important even on these ‘‘ large ’’ scales, consider a uniform
medium threaded by a weak magnetic field (�41, where � is
the ratio of the gas pressure to the magnetic pressure). There
are three long-wavelength waves in such a system: (1) the
sound wave, (2) the Alfvén wave, and (3) the slow magneto-
sonic wave. It is well known that the sound wave and the
slow wave are very different in a collisionless plasma than in
collisional plasmas described by MHD (e.g., Barnes 1966).
We shall see that the same is true for theMRI.

This paper is organized as follows. In the next section we
describe our basic equations and assumptions (x 2). In x 3
we discuss linear waves in a collisionless plasma, emphasiz-
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ing an important difference between MHD and kinetic
theory that is useful for understanding the kinetic MRI
results. In x 4 we numerically solve the kinetic MRI disper-
sion relation and discuss its physical interpretation. We also
show that a generalization of Balbus & Hawley’s (1992,
hereafter BH92) ‘‘ spring ’’ model of the MRI captures the
main results of the kinetic calculation. Finally, in x 5 we
summarize our results and discuss their astrophysical
implications.

2. BASIC EQUATIONS

In the limit that all fluctuations of interest have wave-
lengths much larger than the proton Larmor radius and fre-
quencies much less than the proton cyclotron frequency, a
collisionless plasma can be described by the following fluid
equations (e.g., Kulsrud 1983; Snyder, Hammett, & Dor-
land 1997):

@�

@t
þ

D

x ð�VÞ ¼ 0 ; ð1Þ

�
@V

@t
þ �ðV x

D

ÞV ¼ ð

D

� BÞ� B

4�
�
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xP þ Fg ; ð2Þ

@B

@t
¼

D

� ðV � BÞ ; ð3Þ

and

P ¼ p?I þ ðpk � p?Þb̂bb̂b ; ð4Þ

where � is the mass density, V is the fluid velocity, B is the
magnetic field vector, Fg is the force due to gravity,
b̂b ¼ B= Bj j is a unit vector in the direction of the magnetic
field, and I is the unit tensor. Equations (1)–(3) are identical
to the basic equations of (collisional) MHD except that the
pressure, P, is a tensor that is generally different perpendicu-
lar (p?) and parallel (pk) to the background magnetic field
(e.g., the temperature need not be isotropic in a collisionless
plasma). Formally, the pressure in equation (4) should con-
tain a sum over all particle species in the plasma (electrons,
protons, and ions). In what follows, however, we consider a
single fluid model in which only one contribution to the
pressure response is included. In practice, the ions dominate
the dynamics under consideration and so the pressure can
be interpreted as the ion pressure. This is particular true for
hot accretion flows in which Tp4Te.

In a collisionless plasma, the parallel and perpendicular
pressures satisfy separate ‘‘ equations of state ’’ given by
(e.g., Chew, Goldberger, & Low 1956)

�B
d

dt

p?
�B

� �
¼ �

D

x ðb̂bq?Þ � q?

D

x b̂b ð5Þ

and

�3

B2

d

dt

pkB
2

�3

� �
¼ �

D

x ðb̂bqkÞ � 2q?

D

x b̂b ; ð6Þ

where d=dt ¼ @=@tþ V x

D

is the Lagrangian derivative,
and q? and qk represent the flow of heat due to the motion
of particles along magnetic field lines. Note that although
there is no heat flow perpendicular to the magnetic field
because of the very small proton Larmor radius, the perpen-
dicular pressure/temperature can change because of heat

transport along the magnetic field and so q? 6¼ 0. If one
neglects the heat flux terms, equations (5) and (6) reduce to
‘‘ double adiabatic theory ’’ (Chew et al. 1956). Equation (5)
then describes the invariance of the average magnetic
moment of the plasma, l / T?=B / p?=ð�BÞ, where T? is
the perpendicular temperature, and equation (6) describes
adiabatic parallel pressure changes due to the expansion or
contraction of fluid elements (Kulsrud 1983).

Equations (1)–(6) can be rigorously derived by expanding
the Vlasov equation in the long-wavelength, low-frequency
limit, and taking velocity moments (e.g., Kulsrud 1983).
They face, however, the usual problem that the heat fluxes
q? and qk depend on the third moments of the particle distri-
bution function, and so additional equations are needed to
‘‘ close ’’ the moment hierarchy. In Kulsrud’s kinetic MHD
one avoids this closure problem by solving the drift-kinetic
equation, which is the low-frequency, long-wavelength limit
of the Vlasov equation (see Kulsrud 1983). By taking
moments of the resulting distribution function, one calcu-
lates p? and pk for use in equation (2). For linear problems
this approach is not too difficult, and is the one employed
here (see eqs. [14] and [15] below). For nonlinear problems,
however, it is much more involved. Snyder et al. (1997)
developed fluid approximations for q? and qk that model
kinetic effects such as Landau damping and phase mixing.
In this approach one solves equations (5) and (6) instead of
solving for the full distribution function. For nonlinear
problems, this is computationally more efficient and is a
possible way of using MHD codes to extend the linear
results of this paper to the nonlinear regime.4

2.1. Linear Perturbations

We assume that the background (unperturbed) plasma is
described by a nonrelativistic Maxwellian distribution func-
tion with equal parallel and perpendicular pressures (tem-
peratures). Although the equilibrium pressure is assumed to
be isotropic, the perturbed pressure will not be, which is a
crucial difference between the kinetic and MHD problems.
We take the plasma to be differentially rotating, but other-
wise uniform (e.g., we neglect temperature and density gra-
dients). Thus, the velocity is given by V ¼ V0 þ �v, where
V0 ¼ R�}̂} and �ðRÞ is the rotation rate. We consider
a weak (subthermal) magnetic field with vertical
(Bz ¼ B0 sin �) and azimuthal (B� ¼ B0 cos �) components,
where � ¼ tan�1ðBz=B�Þ is the angle between the magnetic
field vector and the � direction, and B0 is the magnitude of
the seed field. In a differentially rotating plasma, a finite BR

leads to a time-dependent B�, which greatly complicates the
kinetic analysis (unlike in MHD, where a time-dependent
B� can be accounted for; e.g., BH91); we therefore set
BR ¼ 0. Finally, we consider fluctuations of the form
exp �i!tþ ik xxð Þ, with k ¼ kRR̂Rþ kzẑz, i.e., axisymmetric
modes; we also restrict our analysis to local perturbations
for which jkjR41. Writing � ¼ �0 þ ��, B ¼ B0 þ �B,
p? ¼ p0 þ �p?, and pk ¼ p0 þ �pk, and working in cylindri-
cal coordinates, the linearized versions of equations (1)–(3)

4 Although we use the full drift-kinetic equation to calculate p? and pk,
we have also found that the closures in Snyder et al. (1997) provide an excel-
lent approximation for the linear problems considered here.
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become:

!�� ¼ �0k x �v ; ð7Þ

�i!�0�vR � �02��v� ¼�ikR
4�

Bz�Bz þ B��B�

� �
þ ikzBz�Br

4�
� ikR�p? ; ð8Þ

�i!�0�v� þ �0�vR
�2

2�
¼ ikzBz�B�

4�

� ikz sin � cos � �pk � �p?
� �

; ð9Þ

�i!�0�vz ¼
�ikzB��B�

4�
� ikz sin2 ��pk þ cos2 ��p?

� �
; ð10Þ

!�Br ¼ �kzBz�vR ; ð11Þ

!�B� ¼ �kzBz�v� �
ikzBz

!

d�

d lnR
�vR þ B�k x �v ; ð12Þ

!�Bz ¼ kRBz�vR ; ð13Þ

where �2 ¼ 4�2 þ d�2=d lnR is the epicyclic frequency.
Equations (7)–(13) are very similar to the analogous equa-
tions in BH91, except that we do not impose incompressibil-
ity and the pressure response is anisotropic. In particular,
note that even though we consider axisymmetric modes,
there is a pressure force in the �-momentum equation (eq.
[9]) because the perturbed pressure is anisotropic [i.e.,
}̂} x ð

D

xPÞ ¼ ikzPz� ¼ ikzð�pk � �p?Þ sin � cos �].
To complete our system of equations we need expressions

for �p? and �pk. These can be obtained by taking the second
moments of the linearized and Fourier-transformed drift-
kinetic equation and are given by (e.g., eqs. [23]–[25] of
Snyder et al. 1997)

�p?
p0

¼ ��

�0
þD1

�B

B0

� �
ð14Þ

and

�pk

p0
¼ ��

�0
þD2

��

�0
� �B

B0

� �
; ð15Þ

where jBj ¼ B0 þ �B, �B ¼ b̂b0 x �B is the parallel magnetic
field perturbation, and

D1 ¼ 1� Rð	Þ; D2 ¼
1þ 2	2Rð	Þ � Rð	Þ

Rð	Þ

� �
: ð16Þ

Note that the second terms on the right-hand side of equa-
tions (14) and (15) are the perpendicular and parallel tem-
perature perturbations. In equation (16), Rð	Þ ¼ 1þ 	Zð	Þ
is the plasma response function,

Zð	Þ ¼ 1ffiffiffi
�

p
Z

dx
exp �x2ð Þ
x� 	

ð17Þ

is the plasma dispersion function (e.g., Stix 1992), and
	 ¼ !=ð

ffiffiffi
2

p
c0jkkjÞ, where kk ¼ b̂b xk is the wavevector along

the magnetic field and c0 ¼ T=mð Þ1=2 is the isothermal
sound speed of the particles (we have absorbed Boltzmann’s
constant into T so as to not cause confusion with the
wavevector).

Because equations (14) and (15) are rather different from
theMHD equation of state, it is worth discussing their phys-
ical interpretation. Consider first fluctuations for which

	41, in which case Zð	Þ � �	�1 � 0:5	�3 � 0:75	�5,
Rð	Þ � �0:5	�2 � 0:75	�4, D1 � 1, and D2 � 2. Equation
(14) thus reduces to

�p?
p0

� ��

�0
þ �B

B0
; ð18Þ

and equation (15) reduces to

�pk

p0
� 3

��

�0
� 2

�B

B0
: ð19Þ

These are the linearized double adiabatic equations (eqs. [5]
and [6] with q? ¼ qk ¼ 0). Not surprisingly, the adiabatic
limit requires !4kkc0, i.e., that the fluctuation timescale is
much less than the time it takes particles to stream across
the wavelength of the mode.

In the opposite limit, 	5 1, Zð	Þ � i
ffiffiffi
�

p
� 2	 and

Rð	Þ � 1þ i
ffiffiffi
�

p
	 � 2	2, so that D1 � D2 � �i

ffiffiffi
�

p
	. Equa-

tions (14) and (15) thus reduce to

�p?
p0

� ��

�0
� i

ffiffiffi
�

p
	

�B

B0

� �
ð20Þ

and

�pk

p0
� ��

�0
� i

ffiffiffi
�

p
	

��

�0
� �B

B0

� �
: ð21Þ

These correspond to nearly isothermal fluctuations: the
temperature perturbation is smaller than its ‘‘ natural ’’
value by a factor of �	5 1. This is because !5 kkc0, i.e.,
particles stream across a wavelength on a timescale much
less than the fluctuation timescale and efficiently wipe out
temperature gradients. Equations (20) and (21) are the
appropriate limit for the MRI. This is because the MRI has
j!jdkzvA and �e1, and so 	d��1=2d1.

2.2. The Dispersion Relation

To obtain the dispersion relation, we eliminate all non-
velocity variables from the momentum equations. We first
calculate �B ¼ cos ��B� þ sin ��Bz using �B� from equation
(12) and �Bz from equation (13):

�B

B0
¼ cos2 �

k x �v

!
� sin � cos �

kz�v�
!

� i
d�

d lnR
sin � cos �

kz�vR
!2

þ sin2 �
kR�vR
!

: ð22Þ

Substituting equations (7) and (22) into equations (14) and
(15) then yields �p? and �pk as functions of �v, which we
substitute into the perturbed momentum equations (eqs.
[8]–[10]). Using the perturbed induction equations (eqs.
[11]–[13]), we can also eliminate �B from the momentum
equations in favor of �v. This yields the following versions
of the momentum equations:

0 ¼ �vR

�
!2 � k2v2Az � k2Rðv2A� þ c20Þ þ ikRkz

vAzvA�

!

d�

d lnR

þ ikRkzc
2
0

D1

!
sin � cos �

d�

d lnR
� k2Rc

2
0D1

�
þ �v� kRkzvAzvA� � 2i�!þ kRkzc

2
0D1 sin � cos �

� 	
� �vz kRkzðc20 þ v2A�Þ þ kRkzc

2
0 cos

2 �D1

� 	
; ð23Þ

526 QUATAERT, DORLAND, & HAMMETT Vol. 577



0 ¼ �vR
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where

v2Az �
B2
z

4��0
and v2A� �

B2
�

4��0
ð26Þ

are the Alfvén speeds associated with the vertical and azi-
muthal fields, respectively. Equations (23)–(25) define a
matrix equation of the form A�v ¼ 0. Setting detðAÞ ¼ 0
gives the dispersion relation. We have not found it particu-
larly illuminating to write out the entire dispersion relation,
nor have we made much progress solving it analytically, so
instead we proceed to discuss its numerical solution. We
also present a simple model problem that captures the essen-
tial physics of the kinetic MRI.

The MHD dispersion relation for the MRI, including the
effects of compressibility, can be obtained from equations
(23)–(25) by setting D1 ¼ D2 ¼ 0. Equations (14) and (15)
show that, for D1 ¼ D2 ¼ 0, �p? ¼ �pk ¼ ��c20, i.e., the per-
turbations are isothermal and the perturbed pressure is iso-
tropic. Our basic linear perturbation equations (eqs. [7]–
[13]) reduce to their MHD analogs in this limit. In particu-
lar, note that in MHD the MRI is independent of whether
the perturbations are adiabatic or isothermal; this is because
it is an incompressible instability, so the precise form of the
sound speed is irrelevant for �41 (e.g., BH91). Thus, the
key simplification to the kinetic equations obtained by set-
ting D1 ¼ D2 ¼ 0 is that the perturbed pressure becomes
isotropic, as it is inMHD.

3. LINEAR WAVES IN DOUBLE ADIABATIC THEORY

Before considering the full kinetic MRI problem, it is
instructive to consider the simpler problem of linear waves
in a uniform medium. In particular, we show that the slow
magnetosonic wave is very different in kinetic theory than in
MHD. This is important for understanding the kinetic MRI
because the slow wave, along with the Alfvén wave, is cen-
tral to the dynamics of the MRI. We use double adiabatic
theory throughout this section. Although double adiabatic
theory does not include collisionless damping, which is quite
strong for the slowmode and would alter some of the results
in this section, it does show the significant differences intro-

duced by the anisotropic pressure in a collisionless plasma.
Since our interpretation of the kinetic MRI in x 4 focuses on
the importance of this anisotropic pressure, it is useful to see
its implications first in a simpler problem. In x 4 and the
Appendix we show that the qualitative conclusions drawn
in this section carry over to the full kinetic analysis.

Double adiabatic theory in a uniform medium corre-
sponds to setting � ¼ � ¼ 0 and 	41 in equations (23)–
(25), in which case D1 ¼ 1 and D2 ¼ 2. Without loss of gen-
erality we can take B� ¼ 0 so that cos � ¼ 0 and sin � ¼ 1.
To make contact with standard notation, we also write
kr ¼ k?, kz ¼ kk, and vAz ¼ vA. The dispersion relation is
then given by

!2 � k2kv
2
A


 �h
ð!2 � k2v2A � 2k2?c

2
0Þð!2 � 3k2kc

2
0Þ � k2?k

2
kc

4
0

i
� DADMS ¼ 0 : ð27Þ

The analogousMHD dispersion relation is

!2 � k2kv
2
A


 �
�
h
ð!2 � k2v2A � k2?v

2
s Þð!2 � k2kv

2
s Þ � k2?k

2
kv

4
s

i
¼ 0 ; ð28Þ

where v2s ¼ 
c20 is the adiabatic sound speed and 
 ¼ 5=3 is
the adiabatic index.

Equation (27) shows that, as in MHD, the double adia-
batic dispersion relation factors into two parts: an Alfvén
wave branch (DA ¼ 0) and a magnetosonic branch
(DMS ¼ 0). The Alfvén wave in double adiabatic theory is
identical to that inMHD, while the magnetosonic waves are
different; this is because the ‘‘ adiabatic index ’’ in a colli-
sionless plasma is different for motions perpendicular and
parallel to the magnetic field. Motion along the field is one-
dimensional and corresponds to 
 ¼ 3 (hence the 3k2k term
in eq. [27]), while motion perpendicular to the field is two-
dimensional and corresponds to 
 ¼ 2 (hence the 2k2? term
in eq. [27]). By contrast, in MHD the pressure is isotropic
and 
 ¼ 5=3.

Figure 1 shows a plot of the dispersion relation of the fast
and slow magnetosonic waves in MHD (dotted lines) and in
double adiabatic theory (solid lines), taking � ¼ 100. The
fast wave, which is essentially a sound wave, is qualitatively
similar in the two cases (the quantitative differences are due
to the different 
). The slow wave, however, is quite differ-
ent. In MHD, the dispersion relation of the slow wave is
degenerate with that of the Alfvén wave for �41, namely,
! ¼ kkvA. Except for k? ¼ 0, this is not true in double adia-
batic theory. The frequency of the slow wave depends on
the sound speed; in fact, for k? 6¼ 0, the primary restoring
force for the slow wave in double adiabatic theory is gas
pressure, not magnetic forces.

This result can be understood as follows. In MHD, the
properties of the �41 slow wave can be calculated by
explicitly imposing incompressibility,

D

x �v / �� � 0. This
additional constraint (incompressibility) replaces the equa-
tion of state to determine the pressure (the Boussinesq
approximation). In a collisionless plasma, this cannot hap-
pen because the pressure response is different parallel and
perpendicular to the magnetic field, i.e., there are two equa-
tions of state (one for p? and one for pk). Both equations of
state cannot be replaced by the single requirement that the
fluctuations be incompressible. More physically, a k? � kk
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slow wave in MHD has �p � �B2=8� � B0 �B?=4�ð Þ, i.e.,
the gas pressure, magnetic pressure, and magnetic tension
forces are all comparable. Equivalently, �p=p0 �
��1�B=B05 �B=B0 (for �41). In double adiabatic theory,
however, a parallel magnetic field perturbation �B=B0 indu-
ces a pressure perturbation �p?;k=p0 of comparable magni-
tude (see eqs. [18] and [19]). This means that the pressure
forces are much larger than the magnetic forces
[�p � � �B2=8�ð Þ4�B2=8�] and dominate the dynamics of
the wave.

The exception to these arguments is if the pressure pertur-
bation vanishes, i.e., �p? ¼ �pk ¼ 0. Alfvén waves and the
k? ! 0 limit of the slow magnetosonic wave are the only
waves inMHD that have �p ¼ 0 (they also have �B ¼ 0). As
a result, these pressure-free waves are the only incompressi-
ble fluctuations in double adiabatic theory. For all other
waves, and in particular for slow waves with k? 6¼ 0, pres-
sure is the dominant restoring force in a �41 plasma,
and so the frequencies depend strongly on the sound speed
(Fig. 1).

The results in this section are relevant to theMRI because
the MRI is an incompressible instability with j!j5 kc0.
Although pressure forces generally lead to a small modifica-
tion of the MRI in MHD, they will be substantially more
important in the kinetic analysis (just as for the slow magne-
tosonic wave in this section).

4. THE KINETIC MRI

As noted in x 2.2, the general kinetic MRI dispersion rela-
tion appears to be analytically intractable. In this section we
present its numerical solution and physical interpretation.
As a check on our numerical calculations, we have con-
firmed that our results reproduce the kinetic dispersion rela-

tion for the Alfvén wave and the slow and fast
magnetosonic waves when� ¼ 0 (including the collisionless
damping rates).5We also reproduce theMRI inMHDwhen
the kinetic terms are dropped (this requires setting
D1 ¼ D2 ¼ 0 in eqs. [23]–[25]).

Figures 2–4 show the results of numerically solving the
kinetic MRI dispersion relation, assuming a Keplerian disk
for which � / R�3=2 and � ¼ �. The figures show the
kinetic growth rate of the MRI for different values of
�z � 8�p0=B2

z , for different magnetic field geometries
(defined by B�=Bz), and for different wavevectors (kR and
kz). The correspondingMHD results are shown for compar-
ison by the dotted lines. It is important to note that inMHD
the MRI growth rate is essentially independent of � and
B�=Bz; by contrast, Figures 2–4 show that the kinetic results
depend sensitively on both of these parameters.

Figures 2–4 show that, although the growth rates can be
very different, the region of instability in wavevector space is
the same in kinetic theory and MHD. To understand this
result, it is sufficient to consider the ! ! 0 limit of the
kinetic equations, since this determines the transition
between stable and unstable modes. Setting ! ¼ 0 implies
that 	 � !=ð

ffiffiffi
2

p
kkc0Þ ¼ 0 as well. From equations (14)–(16),

it then follows that �p?=p0 ¼ �pk=p0 ¼ ��=�0. Physically, as
	 ! 0, there is more and more time for particles moving
along magnetic field lines to efficiently transport heat. This
leads to nearly isothermal fluctuations in which the pressure
perturbation is isotropic and is set only by the density per-
turbation. As discussed in x 2.2, the kinetic equations reduce

5 We compared our results to the linear kinetic code described in
Quataert (1998) and to the analytic results in Barnes (1966) and Foote &
Kulsrud (1979).

Fig. 2.—Kinetic growth rates of the MRI for �z � 8�p0=B2
z ¼ 104 and

for different geometries of the seed magnetic field. TheMHD results, which
are independent of B�, are shown for comparison (dotted line). The vertical
wavenumber is taken to be kzvAz=� ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
15=16

p
, which is the fast growing

mode inMHD.

Fig. 1.—Dispersion relation for the magnetosonic waves in MHD (dot-
ted lines) and in double adiabatic theory (solid lines), taking � ¼ 100. In
MHD, the slow wave dispersion relation is identical to that of the Alfvén
wave (! ¼ kkvA), while this is only true for k?5 kk in double adiabatic
theory (see the text for an explanation).
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to the MHD equations in this limit. This is an important
result because it shows that the MHD instability criterion,
namely d�2=dR < 0, applies to the kinetic problem as well.
Moreover, the set of unstable modes is the same in MHD
and kinetic theory, as is seen explicitly in Figures 2–4.

Perhaps the three most striking results of the kinetic cal-
culation shown in Figures 2–4 are: (1) The kinetic growth
rates depend sensitively on �. For �41 they differ signifi-
cantly from theMHD growth rates, while for � � 1 they are
similar (see Fig. 3). (2) For B� ¼ 0, or for sufficiently large
kR, the kinetic growth rates are smaller than their MHD

counterparts, particularly at large � (e.g., Fig. 3a). (3) For
B� 6¼ 0, the kinetic growth rates can be larger than their
MHD counterparts (e.g., Figs. 2 and 4b). Moreover, for
�41, the fastest growing mode is at kzvAz5�, where there
is negligible growth inMHD (Fig. 4b).

To understand the kinetic MRI results, we have found it
useful to consider the equations that describe the displace-
ment of a fluid element from its equilibrium circular orbit.
BH92 and BH98 showed that, for the special case of a verti-
cal magnetic field and vertical wavevector, the radial and
azimuthal components of the MHD momentum equation

Fig. 4.—Kinetic growth rates of theMRI as a function of kz for different �z (solid lines). The correspondingMHD results are shown by the dotted line.

Fig. 3.—Kinetic growth rates of theMRI for varying �z (solid lines). TheMHD results, which are nearly independent of �z, are shown for comparison (dot-
ted line). The vertical wavenumber is taken to be kzvAz=� ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
15=16

p
, which is the fast growingmode inMHD.
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can be written in terms of the radial and azimuthal fluid dis-
placements, 	R and 	�, as

@2	R
@t2

� 2�
@	�
@t

¼ � d�2

d lnR
þ ðkzvAzÞ2

� �
	R ; ð29Þ

@2	�
@t2

þ 2�
@	R
@t

¼ �ðkzvAzÞ2	� : ð30Þ

As discussed by BH92 and BH98, equations (29) and (30)
are identical to the equations describing two orbiting point
masses connected by a spring of spring constant k2z v

2
Az (in

MHD, magnetic tension plays the role of the spring). This
suggests the following physical interpretation of the MRI in
MHD (BH92). For a rotation profile with d�2=dR < 0
(unstable to the MRI), a fluid element at radius R� �R is
rotating slightly faster than a fluid element at radius R. The
‘‘ spring ’’ pulls backward on this inner fluid element, re-
moving its angular momentum and forcing it to move to a
yet smaller radius. Similarly, a fluid element at radius
Rþ �R is rotating slightly slower than a fluid element at
radius R and so the ‘‘ spring ’’ pulls forward on this fluid ele-
ment, giving it angular momentum and forcing it to move to
a yet larger radius. This simple physical picture captures the
essence of theMRI inMHD.

A useful toy model that provides additional insight into
the physics of the MRI, in both MHD and kinetic theory, is
given by the following equations for the fluid displacement:

@2	R
@t2

� 2�
@	�
@t

¼ � d�2

d lnR
þ KR

� �
	R ; ð31Þ

@2	�
@t2

þ 2�
@	R
@t

¼ �K�	� : ð32Þ

Equations (31) and (32) describe the displacement of rotat-
ing fluid elements coupled by an anisotropic ‘‘ spring,’’ for
which the spring constant is different in the azimuthal (K�)
and radial (KR) directions (this is clearly no longer a real
spring!). The unstable root in the dispersion relation associ-
ated with equations (31) and (32) is given by

!2 ¼ �2 þ KR þ K�

2

� 1

2
K� þ KR þ �2
� �2� 4K� KR þ d�2

d lnR

� �� �1=2
: ð33Þ

For KR ¼ K� ¼ ðkzvAzÞ2, equation (33) gives the kR ¼ 0 dis-
persion relation of the MRI in MHD (this is shown by the
dotted line in Fig. 4b). It is also straightforward to show
that, for KR > K�, the growth rates in equation (33) are
smaller than the MHD growth rates (i.e., those with
KR ¼ K�) and for K� > KR the growth rates in equation
(33) are larger than the MHD growth rates. For example,
for K� ¼ 0, equation (33) gives ! ¼ 0 for any KR, and so
there is no instability. On the other hand, the K�4�4KR

solution of equation (33) is j!j � jd�2=d lnRj1=2. For a
Keplerian disk this gives j!j ¼

ffiffiffi
3

p
�, which is larger than the

growth rate of the fastest growing mode in MHD
(j!j ¼ 3�=4).

These results can be understood physically by noting that
it is ultimately the presence of an azimuthal restoring force,
rather than a radial restoring force, that is destabilizing in
the MRI. This is because it is the azimuthal force that
removes angular momentum from an inwardly displaced

fluid element and adds it to an outwardly displaced fluid ele-
ment. By contrast, the radial force is stabilizing because it
attempts to ‘‘ pin ’’ the fluid element to its equilibrium posi-
tion. Thus, K� > KR leads to faster growth because it
enhances the destabilizing azimuthal force relative to the
stabilizing radial force (and vice versa forKR > K�). For the
remainder of this section we explain how thermal pressure
in a collisionless plasma plays the role of the anisotropic
‘‘ spring ’’ in the above toy model. This will account for the
behavior of the kineticMRI seen in Figures 2–4.

Because they are restricted to kR ¼ 0 and B� ¼ 0, equa-
tions (29) and (30) do not include the effects of gas pressure
or magnetic pressure (both of which vanish in this special
case). To understand the kinetic MRI we need to include
these restoring forces using the radial and azimuthal
momentum equations (eqs. [8] and [9], respectively). This
yields the following equations for the fluid displacement:6

@2	R
@t2

� 2�
@	�
@t

¼ � d�2

d lnR
þ ðkzvAzÞ2

� �
	R

� ikR
�B2

8��0
þ �p?

�0

� �
; ð34Þ

@2	�
@t2

þ 2�
@	R
@t

¼ � ðkzvAzÞ2	�

� ikz
�pk � �p?

�0

� �
sin � cos � : ð35Þ

In equations (34) and (35) we have simply rewritten the pres-
sure gradients from equations (8) and (9); in the Appendix
we calculate these explicitly in terms of the fluid displace-
ment. It is worth noting again that there is a pressure force
in the �-momentum equation (eq. [35]) because the per-
turbed pressure is anisotropic. In MHD, �pk ¼ �p? and so
this term vanishes.

Following the arguments in x 3 and Figure 1, we expect
that the pressure gradients in equations (34) and (35) will be
much more important in kinetic theory than in MHD. In
the Appendix we calculate the magnitude of these pressure
forces and confirm this hypothesis. We use these results
below to present a physical interpretation of the kinetic
MRI, focusing on two important special cases: (1) B� ¼ 0,
kR 6¼ 0, for which the kinetic growth rates are smaller than
their MHD counterparts (e.g., Figs. 3a and 4a), and (2)
kR ¼ 0, B� 6¼ 0, for which the kinetic growth rates are larger
than theMHD growth rates (e.g., Fig. 4b).

Consider first the special case of B� ¼ 0 and kR 6¼ 0 (e.g.,
Fig. 3a and 4a). In this case a displaced fluid element feels a
restoring force in the radial direction due to gas and mag-
netic pressure; there is, however, no analogous pressure gra-
dient in the � direction (only magnetic tension). This
corresponds to KR > K� in the toy model of equation (33);
the growth rates should therefore be suppressed with respect
to the kR ¼ 0 growth rates. The presence of a stabilizing
radial pressure gradient provides a physical explanation for
why the MHD growth rates decrease with increasing kR
(see, e.g., the dotted line in Fig. 3a). Moreover, in the
Appendix we show that the pressure gradient is larger in

6 Strictly speaking, equations (30) and (35) should have an additional
term on the right-hand side given by kzvAzvA�ðk x nÞ. For �41, this term is
negligible because the MRI is nearly incompressible, and so we do not con-
sider it further.

530 QUATAERT, DORLAND, & HAMMETT Vol. 577



kinetic theory than in MHD by a factor of ��1=2. The
kinetic growth rates should therefore be even smaller than
the MHD growth rates, with stronger suppression at larger
�. This is precisely what is seen in the kinetic calculation;
e.g., Figures 3a and 4a show the B� ¼ 0 growth rate for
different �.

Consider now the special case of kR ¼ 0 but B� 6¼ 0 (e.g.,
Fig. 4b). In this case the radial pressure force vanishes, but
there is an azimuthal pressure force due to the anisotropic
pressure. As suggested by the toy model in equation (33) this
azimuthal pressure force, which is not present in MHD, is
destabilizing because it removes angular momentum from
an inwardly displaced fluid element and adds it to an out-
wardly displaced fluid element (just as the azimuthal com-
ponent of magnetic tension does). Moreover, for B� � Bz

the destabilizing pressure force is larger than the destabiliz-
ing magnetic tension force by a factor of ��1=2 (see the
Appendix). This explains why the kR ¼ 0, B� 6¼ 0 growth
rates are larger than their MHD counterparts, and why the
growth rates increase with increasing � (see, e.g., Fig. 4b). It
also explains why the growth can be rapid even at
kzvAz5�, when magnetic tension (which drives the MRI in
MHD) is very weak. In fact, for �41 and kzvAz5�, the
forces in the kinetic MRI are arranged as follows: azimuthal
pressure 4 Coriolis 4 magnetic tension. We therefore
expect the growth rates to approach the K�4�4KR limit
of equation (33), namely, j!j �

ffiffiffi
3

p
�. As shown in Figure

4b, the fastest growing modes do approach this maximal
growth rate.

Although the above interpretation focuses on two special
cases, the results in Figures 2–4 can be readily understood as
a competition between the stabilizing radial pressure force
and the destabilizing azimuthal pressure force. The impor-
tance of gas pressure, rather than magnetic forces, also
explains why the kinetic results depend sensitively on �.

5. SUMMARY AND DISCUSSION

In this paper we have presented a linear axisymmetric cal-
culation of the magnetorotational instability (MRI) in a col-
lisionless plasma. Our analysis is restricted to wavelengths
much larger than the proton Larmor radius, frequencies
below the proton cyclotron frequency, and ‘‘ seed ’’ mag-
netic fields with no radial component (BR ¼ 0). The MRI is
believed to give rise to MHD turbulence and efficient angu-
lar momentum transport in astrophysical accretion flows,
and may also be important for the dynamo generation of
galactic and stellar magnetic fields (e.g., BH98). Our kinetic
calculation, rather than anMHD calculation, is appropriate
whenever the collisional mean free path of the protons
exceeds the wavelength of theMRI.

The instability criterion for the kinetic MRI is the same as
in MHD, namely, that the angular velocity decrease out-
ward. The set of unstable modes is also the same in kinetic
theory and MHD. However, nearly every mode has a linear
kinetic growth rate that differs from its MHD counterpart.
For example, the fastest growing mode in kinetic theory has
a growth rate �

ffiffiffi
3

p
� for a Keplerian disk, which is larger

than its MHD counterpart by a factor of 4
ffiffiffi
3

p
=3 � 2:3.7

More generally, the kinetic growth rates can be either larger

or smaller than the MHD growth rates, depending on the
orientation of the magnetic field and the wavevector of the
mode (Fig. 2). The kinetic growth rates also depend explic-
itly on �, i.e., on the ratio of the gas pressure to the magnetic
pressure. For �41 the kinetic results differ significantly
from the MHD results, while for � � 1 they are similar (see
Fig. 3).

We have argued that the kinetic MRI can be understood
by considering the force due to pressure gradients in a high-
� collisionless plasma. In MHD, pressure leads to a rela-
tively minor modification of the MRI. In kinetic theory,
however, the pressure forces are ��1=2 times larger than in
MHD and are therefore dynamically much more important
(see x 3 and the Appendix). Moreover, in kinetic theory
there is an azimuthal pressure force even for axisymmetric
modes (so long as B� 6¼ 0; see eqs. [10] and [35]). This is
because the pressure response is anisotropic in a collision-
less plasma: it is different along and perpendicular to the
local magnetic field. This azimuthal pressure force, which is
not present in MHD, is destabilizing because it removes
angular momentum from an inwardly displaced fluid ele-
ment and adds it to an outwardly displaced fluid element
(just as the azimuthal component of magnetic tension does
in MHD). The destabilizing pressure force explains why the
kinetic growth rates of the MRI can be larger than the
MHD growth rates (e.g., Fig. 4b).

The importance of gas pressure shows that the character
of the MRI is somewhat different in a collisionless plasma
than in a collisional plasma described by MHD. The crucial
function of the magnetic field is to enforce an anisotropic
pressure response, rather than to directly destabilize the
plasma via magnetic tension. The importance of pressure
gradients also explains why the kinetic results depend sensi-
tively on �. For � � 1, pressure forces are comparable to
magnetic forces, and the kinetic growth rates are not that
different from the MHD growth rates, while for �41 pres-
sure forces dominate over magnetic forces and the kinetic
results differ substantially from the MHD results (e.g.,
Fig. 3).

BH92 showed that the MRI in MHD could be under-
stood using a simple model in which magnetic tension acts
like a spring coupling different fluid elements in the plasma.
We have presented a generalization of BH92’s ‘‘ spring ’’
model that captures many of the results of the full kinetic
MRI calculation (see eqs. [31]–[33]). In this model the radial
and azimuthal ‘‘ spring constants ’’ are different; physically,
this corresponds to the anisotropic pressure response in a
collisionless plasma.

To conclude, we briefly discuss the astrophysical implica-
tions of our results, focusing on the two applications men-
tioned in the introduction: (1) the amplification of weak
fields generated by a Biermann battery or analogous mecha-
nism, and (2) hot two-temperature accretion flows onto
compact objects.

1. For a very weak magnetic field, MHD predicts that
the fastest growing mode of the MRI has a very small wave-
length, � vA=� / B. This will be less than the collisional
mean free path in many cases. Our kinetic analysis shows
that there is rapid growth of the MRI even in this limit. This
is encouraging for the hypothesis that the MRI contributes
to the dynamo amplification of very weak magnetic fields,
e.g., the generation of galactic fields from a cosmological
seed field. To further assess this question, however, it is nec-

7 This rapid growth is obtained only for kRvAz5�, kzvAz5�, �41, and
B�eBz (see Figs. 3 and 4).
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essary to extend our analysis to include finite Larmor radius
effects. In particular, the ‘‘ battery ’’ generation of magnetic
fields is limited by self-induction to field strengths such that
the proton Larmor radius is comparable to the size of the
system (e.g., Balbus 1993). Finite Larmor radius effects will
always be important on these scales, particularly since the
wavelengths of unstable MRI modes are then much less
than the proton Larmor radius.
2. In radiatively inefficient accretion flows onto compact

objects, which have been applied extensively to low-lumi-
nosity accreting sources (e.g., Narayan et al. 1998), the
inflowing gas is a hot two-temperature plasma in which the
proton temperature is much larger than the electron temper-
ature. In order to maintain Tp4Te, the timescale for elec-
trons and protons to exchange energy by Coulomb
collisions must be longer than the inflow time of the gas.
This requires a sufficiently small accretion rate,
_MMd�2 _MMEdd (e.g., Rees et al. 1982), where _MMEdd is the
Eddington accretion rate and � is the dimensionless Sha-
kura-Sunyaev viscosity parameter. Since the timescale for
proton-electron collisions to modify the proton distribution
function is comparable to the proton-electron energy
exchange timescale, the proton dynamics is effectively colli-
sionless for any two-temperature radiatively inefficient
accretion flow;8 the kinetic calculation presented in this
paper is therefore appropriate for describing angular
momentum transport by theMRI in such models.9

It is, however, difficult to apply our linear calculations to
the nonlinear saturated state expected in the accretion flow.
Nonetheless, it is worth noting that there are rapidly grow-
ing modes in a collisionless plasma even for �41, so weak

fields can be efficiently amplified. Moreover, MHD simula-
tions find saturation at � � 1 100 with a predominantly
toroidal field (e.g., BH98; Stone & Pringle 2001). For this
magnetic field configuration, the linear kinetic growth rates
of the MRI are not that different from their MHD counter-
parts (if anything, they may be somewhat larger; e.g., Figs.
3b and 4b). While this suggests that the saturated turbulence
may be qualitatively similar in kinetic theory and MHD,
there will undoubtedly be quantitative differences. In addi-
tion, the fact that the fastest growing modes occur at some-
what different wavenumbers could change the nonlinear
results. Perhaps more importantly, collisionless damping of
the sound wave and the slow magnetosonic wave is very
strong and operates on all scales in a collisionless plasma,
while strong damping in MHD is restricted to very small
scales. This may alter the nonlinear behavior of the MRI.
Numerical simulations that address these issues would be
extremely interesting.

Our results may also have implications for understanding
particle heating in radiatively inefficient accretion flows.
The radiative efficiency of such models is set by the amount
of electron heating in the plasma. This depends on how the
energy in MHD turbulence is dissipated (e.g., via a turbu-
lent cascade, reconnection, etc.). The prominent role of
pressure fluctuations in the kinetic MRI suggests that the
resulting turbulence may couple better to slow waves (which
have a pressure perturbation) than Alfvén waves (which do
not). Slow waves primarily heat the protons in the collision-
less plasmas of interest (e.g., Quataert 1998; Blackman
1999), while an Alfvénic cascade may lead to significant
electron heating if �d10 (e.g., Gruzinov 1998; Quataert &
Gruzinov 1999). Kinetic simulations of the MRI should be
able to assess the relative importance of slow wave and
Alfvén wave excitation.

We thank Steve Balbus, Steve Cowley, Barrett Rogers,
Alex Schekochihin, and Anatoly Spitkovsky for useful dis-
cussions. G. H. was supported in part by the US Depart-
ment of Energy under contract DE-AC02-76CH03073.
E. Q. was supported in part by NASA grant NAG5-12043.

APPENDIX

CALCULATION OF THE PRESSURE FORCES

In this Appendix we calculate the radial and azimuthal pressure forces in equations (34) and (35) in terms of the fluid dis-
placements 	R and 	�. These are used in our interpretation of the kinetic MRI results in x 4. We restrict our analysis to the two
important limits highlighted in x 4: (1) B� ¼ 0; kR 6¼ 0 and (2) B� 6¼ 0; kR ¼ 0.

A1. B� ¼ 0; kR 6¼ 0

In this case there is a radial pressure force given by (eq. [34])

FR � �ikR
�B2

8��0
þ �p?

�0

� �
¼ �ikR

��

�0
c20 þ

�B

B0
v2Az þD1c

2
0

� �� �
; ðA1Þ

where we have used �p?=p0 ¼ ��=�0 þD1�B=B0 from equation (14) in the second equality. We now rewrite all of the terms in
FR in terms of 	R, the radial displacement. For B� ¼ 0, �B ¼ �Bz. The radial component of the induction equation (eq. [11])
thus yields

�B

B0
¼ kR�vR

!
¼ �ikR	R : ðA2Þ

8 Proton-electron collisions are more important than proton-proton col-
lisions becauseTp4Te.

9 By contrast, geometrically thin accretion disks (e.g., Shakura &
Sunyaev 1973) are much cooler and denser; MHD accurately describes the
dynamics of thin disks so long as the gas is sufficiently ionized.
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To calculate ��=�0 ¼ ðkz�vz þ kR�vRÞ=! in terms of 	R alone we need to find �vz as a function of �vR. To do this note that the
z-component of the momentum equation (eq. [10]) implies

kz�vz ¼
k2z�pk

!�0
: ðA3Þ

Since ��=�0 � �B=B0 ¼ kz�vz=!, equation (15) gives �pk as a function of both �vz and �vR. Substituting this into equation
(A3), we solve for �vz in terms of �vR and thus find

��

�0
¼ �ikR	R 1þ

c20k
2
z

!2 � c20k
2
zð1þD2Þ

� �
: ðA4Þ

Substituting equations (A2) and (A4) into equation (A1), and assuming �41 so that j!2j5 k2z c
2
0, yields

FR ¼ �k2R	R c20 D1 þ
2D2

1þ 2D2

� �
þ v2Az 1� !2

k2z v
2
Azð1þ 2D2Þ2

" #( )
: ðA5Þ

The MHD limit of equation (A5) can be obtained by setting D1 ¼ D2 ¼ 0 (see x 2.2). In this case,
FR ¼ �	Rk

2
Rv

2
Az½1þ j!j2=ðk2z v2AzÞ� � �	Rk

2
Rv

2
Az. Consider instead double adiabatic theory, for which D1 ¼ 1 and D2 ¼ 2. In

this case FR � �	Rk
2
Rc

2
0; this is larger than the MHD pressure force by a factor of ��. Finally, for the full kinetic problem we

need to evaluate D1 and D2 using equation (16). Since the MRI has j!jdkzvA, we can take 	5 1 so long as �41. In this case
D1 � D2 � �i

ffiffiffi
�

p
	 � �i!=kzc0, so that FR � �k2R	Rc

2
0ð�i!=kzc0Þ. To estimate the magnitude of FR, note that j!j � kzvA in

MHD, in which case FR � �	Rk
2
RvAzc0. This is ��1/2 times larger than the pressure force in MHD. This large radial pressure

gradient suppresses the growth rates of theMRI, as seen in Figures 2–4.

A2. B� 6¼ 0; kR ¼ 0

In this case there is an azimuthal pressure force given by (eq. [35])

F� � �ikz sin � cos �
�pk � �p?

�0
¼ �ikzc

2
0 sin � cos � D2

��

�0
� D1 þD2ð Þ �B

B0

� �
; ðA6Þ

where we have used equations (14) and (15) to eliminate �p? and �pk. For �41 the MRI is nearly incompressible and
��=�05 �B=B0.

10 We therefore neglect the ��=�0 term in equation (A6). Using �v� ¼ @	�=@t� 	Rd�=d lnR, one can rewrite
equation (22) for �B in terms of 	�. Again neglecting ��=�0 relative to the other terms, this yields

�B

B0
¼ �ikz sin � cos �	� : ðA7Þ

Substituting equation (A7) into equation (A6) yields

F� ¼ �	�k
2
z c

2
0 sin

2 � cos2 �ðD2 þD1Þ : ðA8Þ

In MHD, F� ¼ 0, and magnetic tension, which � �k2z v
2
Az	� (see eq. [35]), plays the destabilizing role. By contrast, in kinetic

theory the azimuthal pressure force is given by F� � �	� sin
2 � cos2 �k2z c

2
0ð�i!=kzc0Þ. For B� � Bz, so that sin � � cos � � 1,

this is larger than the destabilizing azimuthal tension force by a factor of ��1/2. This large destabilizing azimuthal pressure
force enhances the growth rates of theMRI, as seen in Figures 2–4.
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