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the space variable) linearized system. We show that the stability property is more robust when a
space-decentered scheme is used (which brings in some numerical dissipation) rather than with a
space-centered one. The linearization is first performed about a zero mean velocity, and then about
a non-zero mean velocity. At the various stages of the analysis, our scheme is compared with more
classical schemes and its improved stability property is outlined. The analysis of a fully discrete
(in space and time) version of the scheme is also given. Finally, some considerations about a model
nonlinear problem, the Burgers-Poisson problem, are also given.
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1. Introduction. In a previous work [8] (see also [6]), a new numerical dis-
cretization of the Euler-Poisson system has been proposed. The Euler-Poisson system
under consideration consists of the isentropic Euler equations for the particle and mo-
mentum densities coupled with the Poisson equation through a source term modeling
the electrostatic force. In dimensionless units, the coupling constant can be expressed
in terms of a parameter ε which represents the scaled Debye length. When ε is small,
the coupling is strong. In this situation, the particle density is constrained to be close
to the background density of the oppositely charged particle, which we suppose to be
uniform and equal to 1 in scaled units. The velocity then evolves according to the
incompressible Euler equation. The limit ε → 0 is called the quasineutral limit, since
the charge density almost vanishes identically. When two or more particle species are
considered, the limit ε → 0 leads to a more complex model usually referred to in the
physics literature as a quasineutral model. In the present work, we restrict ourselves
to the case of a single particle species as described above.

The scheme which has been proposed in [8] and [6] is ’Asymptotic Preserving’ in
the quasineutral limit, which means that it becomes consistent with the limit model
when ε → 0. The goal of the present work is to analyze the stability properties of
this scheme and to show that its stability domain is independent of ε. This stability
analysis is performed on the Fourier transformed (with respect to the space variable)
linearized system. We show that the stability property is more robust when a space-
decentered scheme is used (which brings in some numerical dissipation) rather than
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with a space-centered one. The linearization is first performed about a zero mean
velocity, and then about a non-zero mean velocity. At the various stages of the anal-
ysis, our scheme is compared with more classical schemes and its improved stability
property is outlined. The analysis of a fully discrete (in space and time) version of the
scheme is also given. Finally, some considerations about a model nonlinear problem,
the Burgers-Poisson problem, are also given.

The Euler-Poisson model is one of the most widely used fluid models in plasma
and semiconductor physics (see e.g. [19], [1] for plasmas, and [22] for semiconductors).
It can be derived from a moment expansion of kinetic models such as the Vlasov or
Boltzmann Poisson equations supplemented with a convenient closure assumption (see
references above).

There are two important physical length and time scales associated with this
model (see e.g. [1], [19]): the Debye length and the electron plasma period. These
two scales are related one to each other by the thermal speed which is an order one
quantity. We are interested in the quasineutral regime where both parameters can
be very small compared with typical macroscopic length and time scales. A standard
explicit scheme must resolve these micro-scale phenomena in order to remain stable.
The satisfaction of these constraints requires huge computational resources which
make the use of explicit methods almost impracticable.

The search for schemes free of such constraints has been the subject of a vast
literature. A number of works deal with Particle-in-Cell (PIC) methods which are
specific discretizations of the kinetic model, the Vlasov-Poisson system (see e.g. the
direct implicit method [3], [20] and the implicit moment method [23], [24]). These
methods have proved extremely efficient in number of situations but there are still
regions where short time steps must be used (see e.g. the recent discussion in [17]). So
the improvement of classical time-stepping strategies, if possible, would offer attractive
perspectives. More references can be found in [8]. We also mention that the strategy
developed in the present paper has been applied to PIC codes in [9]

The present work deals with fluid models. For fluid models the literature is
comparatively less abundant. We can refer to the pioneering work [15], and more
recently to [2], [4], [25], [26]. When the fluid models are drift-diffusion models, implicit
strategies have been proposed in [27], [28], [21].

To cancel the fast scales associated with electron plasma frequency, quasineutral
models have been very frequently considered [14] (see also references in [8]). Recently,
two-fluid quasineutral models have been studied [5], [7], [10], [11], [12], [13].

However, in situations where quasineutral and non quasineutral regions coexist, a
specific treatment is needed to connect the quasineutral model with a non quasineutral
model across the interface. Such situations arise in sheath problems (see e.g. [16],
[18], [11] ; other references can be found in [8]). In such problems, one has often to
deal with a dynamic interface the tracking of which gives rise to a complex numerical
problem. Additionally, the interface dynamics is not a priori known, and must either
be derived from an asymptotic analysis like in [11], [12], or [18], or must be inferred
from physical considerations. In both cases, great care is required to ensure that the
proper dynamics is implemented. Another problem is related to the fact that the
quasineutral to non-quasineutral transition may not be a sharp transition, but rather
a fairly diffuse one, and its approximation into a sharp interface may actually lead to
some unphysical behavior.

For these reasons, it is highly desirable to develop numerical methods which auto-
matically shift from a quasineutral to a non-quasineutral model across the transition
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region when such a transition is encountered. The scheme proposed in [8] serves this
purpose. Additionally, it has been shown that the numerical cost of this scheme is the
same as the standard strategy (we refer the reader to [8] for more detail). The goal
of the present work is to provide elements towards a rigorous analysis of its stability
properties.

The paper is organized as follows. In section 2, we present the model and our
Asymptotic Preserving strategy. Our AP scheme consists in an implicit time differ-
encing of both the flux term in the mass balance equation and the source term in the
momentum equation. For this reason, we shall refer to it as an Implicit-Implicit (II)
scheme. It will be compared to schemes in which either one or the other or both terms
are treated explicitly (referred to as the (IE), (EI) or (EE) schemes). For instance,
the (IE) scheme is implicit in the mass flux term and explicit in the momentum source
term. The classical strategy it the (EI) scheme where the mass flux term is explicit
and the momentum source term is implicit [15]. The (EE) strategy is unconditionnaly
unstable as was shown by Fabre in [15] and reviewed below. We will always consider
an explicit time differencing for the momentum flux term, so there will be no mention
of it in our terminology.

In section 3, the Euler-Poisson system is linearized about zero mean velocity. The
linearized Euler-Poisson (LEP) system has a wave equation-like formulation, which is
indeed a Klein-Gordon equation with an O(ε) mass term, as shown in section 3.1.

The Fourier transformed (with respect to the space variable) system is considered
in section 3.2 and the stability of the time-stepping strategy is analyzed on this model
system. This analysis is a model for the analysis of a fully discrete scheme (in space
and time) using a centered space differencing. Indeed, the symbol of the continuous
space derivative and that of a centered space-differencing are both pure imaginary
and therefore behave in a similar way for stability considerations. Using the symbol
of the continuous operator instead of the discrete one makes the computations a little
bit simpler (we shall see that they are already quite complex) while still providing a
significant insight into the properties of the fully discrete scheme. Of course, to mimic
the fact that a fully discrete scheme cannot resolve large wave-numbers, the range of
admissible wave-numbers is limited to a value π/∆x where ∆x is the value of the
underlying space discretization. To support this approach, the fully discrete scheme
will be analyzed in a particular situation.

In this section, we show that the AP strategy (i.e. the (II) scheme) is stable
uniformly with respect to ε while the (IE) scheme is limited by a stability constraint
of the form δ ≤ O(ε) where δ is the time-step. The (IE) scheme corresponds to an
explicit time discretization of the wave equation formulation of the (LEP) system
while the (II) is an implicit one. In the case of the (II) scheme, a stability analysis
of a fully discrete scheme is given. This analysis shows that the scheme is stable
provided that ε is small enough (compared to ∆x). This can be easily understood
since, when ε is large the system is close to the standard Euler system for which
a centered space-differencing is known to be unstable (even though the mass flux
term is treated implicitly, the momentum flux is treated explicitly and the standard
instability of the centered scheme manifests itself).

For this reason, in section 3.3, the influence of a decentered space-differencing is
investigated. The numerical diffusion is modeled by a diffusion term added to the
mass and momentum balance equations in the continuous model, leading to a Lin-
earized Viscous Euler-Poisson (LVEP) model. Energy estimates for this system and
for a space discretization of this system are given. The similarity of these estimates
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encourages us to discard the space discretization and instead, we consider the Fourier
transform (with respect to the space variable) of the continuous system and we per-
form a stability analysis of the various time discrete schemes under considerations.
The AP strategy (i.e. the (II) scheme) is compared with the (EI) scheme (which cor-
responds to the standard approach, see e.g. [15]) and to the (EE) scheme. Only the
(II) scheme has a uniform stability with respect to ε. The (EI) scheme has a stability
constraint of the form δ ≤ O(ε) while the (EE) scheme is unconditionally unstable,
as already noted by S. Fabre [15].

Only the (II) scheme has the desired asymptotic stability property. It remains
to check if this property remains true when the system is linearized about a non-zero
velocity u0. This is performed in section 4. In this section, we restrict ourselves
to the (II) scheme but we investigate the influence of the space discretization by
looking first at the Fourier transformed non-viscous (LEP) system (mimicing a space
centered differencing) and then, the viscous (LVEP) system. As already pointed out
the (II) scheme for the non-viscous LEP system is only ’marginally’ uniformly stable
in the sense that it stable if ε is small enough (depending on u0 and other parameters
such as ∆x) while the (II) scheme for the viscous (LVEP) system is uniformly stable
with respect to ε: there exists a stability region for δ which is independent of ε for ε
ranging in the whole interval [0,∞). This result shows that the (II) scheme associated
with a decentered space differencing has the requested uniform stability property with
respect to ε. This has been observed numerically in the simulations shown in [8].

There remains the question of knowing whether these results which are proved for
the linearized system translate to the fully nonlinear system. In section 5, we consider
a toy model for the Euler-Poisson system: the Burgers-Poisson system. We show that
this system has an entropy-entropy flux pair and that a space semi-discrete system
shares this property with the continuous model. This leads to a stability result for this
semi-discrete scheme which allows to prove a convergence estimate (at least as long as
the solution of the Burgers-Poisson problem remains regular). The question whether
an (II) time discretization of this model would show the same stability property is
still an open question which will be investigated in future work.

A short conclusion is drawn in section 6. All technical proofs are deferred to an
appendix (section 7).

2. Quasi-neutral limit of the Euler-Poisson system and asymptotically
stable schemes.

2.1. Quasi-neutral limit. In this work, we are mainly concerned with the
Euler-Poisson model. For the sake of simplicity, we shall restrict ourselves to a one-
species model, but our scheme construction can be easily extended to any number
of charged-particle species (see [6], [8]). The scaled one-species Euler-Poisson model
(EP) is written

∂tn + ∇ · q = 0 , (2.1)

∂tq + ∇(
q ⊗ q

n
) + ∇p(n) = n∇φ , (2.2)

ε2∆φ = n − 1 . (2.3)

where n = n(x, t) is the particle number density, p(n) is the hydrodynamic pressure,
q = q(x, t) is the momentum, p(n) = nγ is the pressure law with γ ≥ 1 and φ = φ(x, t)
is the potential, where x ∈ R

d is the position and t > 0 is the time. The scheme
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construction can be easily extended to a model including the full energy equation in
place of the isentropic assumption on the pressure.

Here, we consider negatively charged electrons (with scaled charge equal to −1)
and the right-hand side of the Poisson equation involves a uniform ion background
density equal to 1 in the present scaled variables. Again, this simplification is for the
sake of clarity only and a space-dependent ion background density or a model with
simultaneously evolving electrons and ions could be considered as well (see [6], [8]).

The dimensionless parameter ε = λD/L is the scaled Debye length, i.e. the ratio
of the actual Debye length λD to the macroscopic length scale L. We recall that the
Debye length has the following expression in physical variables:

λD =

(

ǫ0kBT

e2n0

)1/2

,

where ǫ0 is the vacuum electric permittivity, kB the Boltzmann constant, T the av-
erage plasma temperature, e the absolute electron charge and n0 the average plasma
density.

In many instances, the Debye length is very small compared to the macroscopic
length and thus ε ≪ 1. In this case, the quasineutral limit ε → 0 of system (2.1)-(2.3)
can be considered. It leads to n = 1, i.e. the electron density must be everywhere
equal to the background ion density and to the following quasineutral model (QN)
for the flux q:

∇ · q = 0 , (2.4)

∂tq + ∇(q ⊗ q) = ∇φ , (2.5)

We note that φ is now the Lagrange multiplier of the incompressibility constraint
(2.4) and upon changing φ into −π, that the quasineutral model is nothing but the
Incompressible Euler equations with hydrostatic pressure π.

In the present paper, our goal is to analyze a class of numerical schemes for (EP)
which remains uniformly stable in the limit ε → 0. Such schemes have first been
proposed and tested in [6], [8] where their uniform stability with respect to ε has been
demonstrated.

The design of this class of scheme is based on the following remark. In the passage
from (EP) to (QN), the equation for the electric potential φ changes dramatically, from
the Poisson eq. (2.3) into

∆φ = ∇2 : (q ⊗ q) , (2.6)

where ∇2 denotes the Hessian matrix and : the contracted product of rank two tensors.
Any attempt to design a uniformly stable scheme in the limit ε → 0 requires to find
a different (and equivalent) formulation of the Poisson equation (2.3) in which the
transition towards eq. (2.6) when ε → 0 appears explicitly.

Such a formulation is provided by the following equation:

−∇ · ((n + ε2∂2
tt)∇φ) + ∇2 : f(n, q) = 0 , (2.7)

where the momentum flux tensor f(n, q) is given by

f(n, q) =
q ⊗ q

n
+ p(n)Id . (2.8)
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Eq. (2.7) is formally equivalent to the Poisson eq. provided (n, q) satisfies the mass
and momentum eqs. (2.1), (2.2) and that the Poisson eq. and its time derivative are
satisfied at t = 0:

(ε2∆φ − n + 1)|t=0 = 0 , (∂t(ε
2∆φ − n + 1))|t=0 = 0 .

We refer to [6], [8] for a proof of this equivalence. Essentially, it relies on a second
order (wave-like) formulation of the Euler equations, and replacing the second time
derivative of the density in this formulation by the second time derivative of the Lapla-
cian of the potential (thanks to the Poisson eq.). We shall see below the importance
of using a wave-like formulation of the Euler eqs in this matter.

We remark that solving the elliptic eq. (2.7) (after time discretization) is no more
costly than solving the Poisson eq. (2.3) since both of them are elliptic equations.
However, one important advantage of (2.7) over (2.3) is that it does not degenerate
when ε → 0 and moreover reduces to the (QN) elliptic eq. (2.6) for φ when ε = 0.
Therefore, we can expect that the asymptotic stability with respect to ε is obtained
if a suitable time discretization is used.

2.2. Asymptotically stable scheme in the quasineutral limit. The ques-
tion of finding an asymptotically stable scheme in the QN limit is in the first place a
question of time discretization. We propose a time-discretization which formally sat-
isfies this asymptotic stability property. Below, we shall suppose that the symbol D
stands for space discretizations of the ∇ operator and we shall postpone the question
of finding suitable expressions of such operators to forthcoming sections.

First, we describe the most standard time marching procedure for solving the
(EP) system. Suppose nm, qm, φm are approximations at time tm of n, q and φ and
let δ = tm+1 − tm. Then, the standard procedure consists in discretizing (2.1)-(2.3)
by:

δ−1 (nm+1 − nm) + D · qm = 0 , (2.9)

δ−1 (qm+1 − qm) + Df(nm, qm) = nm+1Dφm+1 , (2.10)

ε2D2φm+1 = nm+1 − 1 . (2.11)

We note that the scheme involves an implicit computation of the electric force in the
momentum eq. but the cost stays the same as that of a fully explicit scheme. Indeed,
nm+1 can be computed first by the mass eq. (2.9). Then, φm+1 is obtained by the
Poisson eq. (2.11). Finally, the momentum qm+1 can be advanced using (2.10). It is
common wisdom in plasma physics that the stability of this scheme is constrained by
the condition

δ
≤∼ ε . (2.12)

which is very penalizing in the QN regime ε ≪ 1.
Let us note that if an explicit electric force discretization is used at the r.h.s. of

(2.10), the scheme is simply unconditionally unstable [15].
Our new Asymptotic Preserving (AP) strategy consists in computing the mass

flux in (2.9) implicitly. More precisely, we consider the following scheme

δ−1 (nm+1 − nm) + D · qm+1 = 0 , (2.13)

δ−1 (qm+1 − qm) + Df(nm, qm) = nmDφm+1 , (2.14)

ε2D2φm+1 = nm+1 − 1 . (2.15)
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By reproducing the procedure which, in the continuous case, allowed to pass from
the standard formulation of the Poisson eq. (2.3) to the reformulated one (2.7), we
can transform the discrete Poisson eq. (2.15) into a reformulated one

−D · ((δ−2ε2 + nm)Dφm+1) =

−D2 : f(nm, qm) − δ−2(2nm − nm−1 − 1) := G(nm, qm, nm−1) . (2.16)

This is a new elliptic eq. for φm+1 which is formally equivalent to the original one
(2.15), is as easy to solve and which does not degenerate when ε → 0.

The first important remark about this scheme is that it provides a discretization
of the (QN) Euler system (2.4), (2.5) when ε = 0, i.e. it is an asymptotic preserving
(AP) scheme when ε → 0. To see this, we can use either of the formulations (2.15)
or (2.16) of the Poisson equation, coupled with (2.13)-(2.14). Of course, we suppose
that at step m, the data nm and qm satisfy nm = 1 and D · qm = 0. If we let
ε → 0 in (2.15), we first find that nm+1 = 1. Then, given that nm = 1, (2.13) yields
D · qm+1 = 0. Finally, (2.14) leads to

δ−1 (qm+1 − qm) + Df(1, qm) = Dφm+1 ,

which clearly gives a discretization of the (QN) Euler system (2.4), (2.5). Note that
the standard scheme (2.9)-(2.11), which has an explicit mass flux, would lead to
D · qm = 0, the other limiting equations remaining unchanged, and that this would
not allow us to compute φm+1.

If one uses (2.16) instead of (2.15), then one first lets ε → 0 in (2.16) leading to

−D · (Dφm+1) = −D2 : f(1, qm) ,

(since nm = 1), which is a discretization of the quasineutral potential equation (2.6).
Then, by acting operator D· on (2.14) and using that D · qm = 0, we deduce that
D · qm+1 = 0. Finally, inserting this in (2.13), we get that nm+1 = nm = 1 and
again, we get a discretization of the (QN) Euler system (2.4), (2.5). Here, using the
standard scheme (2.9), (2.10) (which has an explicit mass flux) in conjunction with
the modified Poisson equation (2.16) would also lead to an AP scheme. However, it
has been numerically experienced that this scheme is unstable and this possibility will
be disregarded.

The second important remark is that the reformulated Poisson equation (2.16)
allows us to compute φm+1 in terms on known quantities G(nm, qm, nm−1) from the
previous time step. Indeed, once φm+1 is known after solving (2.16), qm+1 can be
computed by advancing the momentum eq. (2.14) and then, nm+1 in turn is obtained
by using the density eq. (2.13). Therefore, the time marching procedure of the (AP)
scheme (2.13)-(2.15) involves the same computational cost as that of the standard
scheme (2.9)-(2.11).

Finally, even more importantly, we claim that, by contrast with the standard
scheme, the (AP) scheme (2.13)-(2.15) is not constrained by the stability condition
(2.12), but rather, has a stability condition of the form

δ = O(1) as ε → 0 . (2.17)

We stress however that the scheme is still constrained by the CFL condition of the
hydrodynamic system (which is an O(1) quantity in our scaled units) and this can be
penalizing for electrons due to their very small mass. It is possible however to extend
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this strategy into a scheme which is asymptotically stable also in the small mass limit
(see remark in [8]). This strategy will be developed in future works. We also note that
similar ideas can be applied to the low Mach number limit of compressible Euler eqs.
and to the drift approximation of highly magnetized plasmas (works also in progress).

The stability estimate (2.17) is so far formal. It has been verified in numerical
computations using different types of space discretizations in [6], [8]. However, no
rigorous arguments were available so far. The goal of the present paper is to provide
some rigorous support to the estimate (2.17) by analyzing the linearized system.

Two types of analyses will be performed. A first one uses Fourier analysis and
keeps the time semi-discrete framework, mimicking space discretization by suitable
Fourier symbols. The second one considers both a space semi-discrete setting (the
so-called method of lines) and a full time and space discretization and develops energy
estimates. Both methods show that the AP strategy gives rise to a stability constraint
of the type (2.17) while the standard strategy has the more severe stability constraint
(2.12).

3. The linearized system about zero velocity.

3.1. The linearization of the Euler-Poisson system. Linearizing system
(2.1)-(2.3) about the stationary homogeneous solution n0 = 1, q0 = 0, ∂xφ0 = 0,
leads to the following Linearized Euler-Poisson (LEP) system:

∂tn + ∂xu = 0 , (3.1)

∂tu + c2
s∂xn = ∂xφ , (3.2)

ε2∂xxφ = n. (3.3)

Here, n, u and φ denote the first order perturbations of the density, flux and poten-
tial about the above defined stationary state. We have made the speed of sound cs

explicit (it was taken equal to 1 in the previous section), in order to highlight how
our conclusions may depend on its explicit value.

We note that both φ and u can be eliminated and the (LEP) system can be
rephrased into a wave-like formulation (specifically a Klein-Gordon equation with
mass equal to 1/ε2):

∂2
ttn − c2

s∂
2
xxn +

1

ε2
n = 0 . (3.4)

By a partial Fourier transform with respect to the x-variable, and denoting n̂(ξ, t),

û(ξ, t), φ̂(ξ, t) the transforms of n, u and φ, we obtain:

∂tn̂ + iξû = 0 , (3.5)

∂tû + iξc2
sn̂ = iξφ̂ , (3.6)

−ε2ξ2φ̂ = n̂. (3.7)

After elimination of φ̂, the system reduces to a 2 × 2 system of the form:
(

∂tn̂
∂tû

)

+

(

0 iξ
iξc2

s + i
ε2ξ 0

)(

n̂
û

)

= 0 . (3.8)

Its solutions are of the form
(

n̂(ξ, t)
û(ξ, t)

)

=

(

n̂+(ξ)
û+(ξ)

)

eiθε(ξ)t +

(

n̂−(ξ)
û−(ξ)

)

e−iθε(ξ)t , (3.9)
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where

θε(ξ) =

(

c2
sξ

2 +
1

ε2

)1/2

. (3.10)

The quantities s± = ±iθε(ξ) are the two eigenvalues of the matrix A at the left hand

side of (3.8). The vectors (n̂±(ξ), û±(ξ))
T

are obtained as the projections of the initial

data (n̂0, û0)
T

onto the associated eigenspaces of A (here the exponent T denotes the
transpose).

From (3.9) and the fact that |e±iθ(ξ)t| = 1, we see that the L2 norm of the solution
in Fourier space stays bounded in time, which by Plancherel’s identity shows that the
corresponding L2 norm in physical space also stays bounded in time. Additionally,
when ε → 0, we have

θε ∼ 1

ε
→ ∞ ,

which shows that the solution has high frequency time oscillations of frequency ∼ 1
ε ,

irrespective of the value of the wave-number ξ.
Therefore, the quasineutral limit ε → 0 gives rise to high frequency oscillations

which are nothing but the ubiquitous plasma oscillations of the physics literature.
Explicit schemes are constrained to resolve these oscillations as a condition for their
stability, as we shall see below.

Another view point which emphasizes the wave-like behaviour of this system is
that of energy estimates. Multiplying (3.4) by 2nt, one has

∂t

(

(∂tn)2 + c2
s(∂xn)2 +

1

ε2
n2

)

= 2c2
s∂x

(

∂xn∂tn
)

. (3.11)

Integrating over the computational domain say (a, b) to fix the ideas, we get:

∂t

∫ b

a

(

(∂tn)2 + c2
s(∂xn)2 +

1

ε2
n2

)

dx = 2c2
s

(

∂xn∂tn
)∣

∣

∣

b

a
. (3.12)

If periodic or homogeneous Dirichlet or homogeneous Neumann conditions are im-
posed at the boundary points, the right-hand side of the above equation vanishes and
conservation of energy follows:

∂t

∫ b

a

(

(∂tn)2 + c2
s(∂

2
xn)2 +

1

ε2
n2

)

dx = 0 . (3.13)

This energy estimate indicates a wave-like behaviour. When ε → 0, more and more
energy is stored in the last term which can be interpreted as a potential.

The goal of this work is to propose implicit time discretizations with stability con-
ditions which are independent of ε when ε → 0. In particular, we wish to show that
the scheme (2.13)-(2.15) has an ε-independent linear stability constraint. Although
restricted to a linear regime, this observation provides good indications that the non-
linear scheme enjoys the (AP) property. As already pointed out, in spite of its implicit
character, this (AP) scheme is no more costly than a standard explicit scheme, which
makes it very attractive for plasma simulations in close to quasineutrality regimes.

Below, we state stability criteria for various kinds of time-discretizations of the
(LEP) system. The proofs of all these facts are deferred to the appendix for the
reader’s convenience.
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3.2. Asymptotic preserving strategy with centered-like space-differencing.
For the (LEP) system in Fourier variables (3.5)-(3.7), our scheme (2.13)-(2.15) reads:

n̂m+1 − n̂m

δ
+ iξûm+1 = 0 , (3.14)

ûm+1 − ûm

δ
+ iξc2

sn̂
m +

i

ε2ξ
n̂m+1 = 0 . (3.15)

It is easy to see that this scheme can be recast into an implicit scheme for the wave
equation (3.4) expressed in Fourier variables, i.e.

∂2
ttn̂ + c2

sξ
2n̂ +

1

ε2
n̂ = 0 . (3.16)

Indeed, taking the time difference of (3.14) and combining with (3.15) to eliminate
the velocity leads to:

n̂m+1 − 2n̂m + n̂m−1

δ2
+ c2

sξ
2n̂m +

1

ε2
n̂m+1 = 0 . (3.17)

By contrast, let us consider the following explicit scheme for the wave-equation
formulation:

n̂m+1 − 2n̂m + n̂m−1

δ2
+ c2

sξ
2n̂m +

1

ε2
n̂m = 0 . (3.18)

This scheme can be obtained by eliminating the velocity from the original formulation
of the (LEP) system. Two schemes for the original (LEP) system lead to the same
scheme (3.18). The first one is implicit in the mass flux and explicit in the momentum
flux and in the source term:

n̂m+1 − n̂m

δ
+ iξûm+1 = 0 , (3.19)

ûm+1 − ûm

δ
+ iξc2

sn̂
m +

i

ε2ξ
n̂m = 0 . (3.20)

The second one is explicit in the mass flux and implicit in the momentum flux and
the source term:

n̂m+1 − n̂m

δ
+ iξûm = 0 , (3.21)

ûm+1 − ûm

δ
+ iξc2

sn̂
m+1 +

i

ε2ξ
n̂m+1 = 0 . (3.22)

We see that the schemes (3.14)-(3.15) on the one hand and (3.19)-(3.20) are both
implicit in the mass flux. The first one is also implicit in the source term while the
second one is explicit. For these reasons, we shall refer to the first scheme as the (II)
scheme (for Implicit-Implicit) while the second one is the (IE) scheme (for Implicit-
Explicit). What the equivalence of scheme (3.21), (3.22) with the scheme (3.18) shows
is that if the mass flux is taken explicit, there is no way to obtain a uniformly stable
scheme, no matter how implicit one takes the momentum flux or the source term.

If additionally the momentum flux is taken explicit and only the source term is
taken implicit, one is led to the following scheme:

n̂m+1 − n̂m

δ
+ iξûm = 0 , (3.23)

ûm+1 − ûm

δ
+ iξc2

sn̂
m +

i

ε2ξ
n̂m+1 = 0 . (3.24)
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which is equivelently written in the wave-equation formulation as follows:

n̂m+1 − 2n̂m + n̂m−1

δ2
+ c2

sξ
2n̂m−1 +

1

ε2
n̂m = 0 . (3.25)

In this scheme the mass flux is taken explicit and the source term implicit. For this
reason, we call this scheme the (EI) scheme. We shall analyze the stability of this
scheme in the next section in relation with decentered space differencing. Indeed, we
know already that with a centered space differencing, the hydrodynamic part of this
scheme will be unconditionally unstable and that it is unlikely that the implicit source
term restores stability and if it does so, it will do it only marginally.

For all the reasons previously exposed, in the remainder of this paper, we will
always treat the momentum flux explicitly. We will consider various combinations of
explicit or implicit schemes for the mass flux and the source term and the terminology
will refer to these terms. For instance, the (IE) scheme refers to an implicit scheme
in the mass flux but explicit in the source term.

Looking at the stability of a time-semidiscretized scheme in Fourier space gives
a good indication of the behaviour of a fully discretized scheme associated with a
space-centered discretization. Indeed, the symbol of a centered-space discretization is
purely imaginary, like the symbol of the continuous space derivative. Of course, there
might exist some quantitative differences between the fully discrete scheme and the
semi-discrete scheme in Fourier space, but we believe that this analysis gives a correct
rough picture. Using space continuous Fourier transform allows also to considerably
simplify the computations and to express the results in a more compact form, which
makes them easier to interpret.

In view of a space discretization of mesh size ∆x, we assume that the range of
admissible wave-numbers ξ is |ξ| ≤ ξ∗ = π/∆x.

We show in section 7.1 of the appendix that a sufficient stability condition for the
(II) scheme for a given wave-number ξ is

δ ≤ δii(ξ) :=
2( 1

ε2 + c2
sξ

2)1/2

c2
sξ

2
. (3.26)

The (II) scheme is stable over the range of admissible wave-numbers ξ as soon as

δ ≤ δ∗ii := δii(ξ
∗) = 2

(

∆x

πcs

)2 (

1

ε2
+

(πcs

∆x

)2
)1/2

. (3.27)

By contrast, the stability domain of the (IE) for a given wave-number ξ is given
by:

δ ≤ δie(ξ) :=
2

( 1
ε2 + c2

sξ
2)1/2

. (3.28)

The (IE) scheme is stable over the range of admissible wave-numbers iff

δ ≤ δ∗ie := δie(ξ
∗) =

2

( 1
ε2 +

(

πcs

∆x

)2
)1/2

. (3.29)

The stability domain of the (IE) scheme shrinks down when ε → 0, while that
of the (II) scheme turns out to be uniformly stable with respect to ε. Furthermore,
the (II) scheme is also consistent with the limit model when ε → 0 (Asymptotic
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Preserving property) as we have seen in section 2.2 in the case of the fully nonlinear
equation (the proof is the same for the linearized equation and is left to the reader).

Indeed, we see that δ∗ie = O(ε) as ε → 0 with a fixed ∆x while δ∗ii = O(ε−1),
showing the announced behavior. More precisely, δ∗ii ∼ 2( ∆x

2πcs
)2 1

ε . We note that this
increased stability with respect to ε is paid by a more restrictive CFL condition of
diffusion type with respect to the acoustic waves. By contrast, in the absence of source
term, or equivalently when ∆x → 0 for a fixed ε, the stability constraints for both
the (IE) and (II) schemes reduce to δ ≤ 2 ∆x

πcs
, which is similar to a CFL condition. In

section 7.1 we also show that the (II) scheme damps the plasma oscillations. At each
time step, the amplitude of the oscillation is multiplied by a factor ε/δ (in the limit
ε → 0 for fixed δ). When ε is very small, the damping is very strong. At each time
step, the phase of the solution is multiplied by the factor e±iθ with

θ = cos−1 (1 − 1
2δ2c2

sξ
2)

(1 + δ2

ε2 )1/2

ε→0−→ π

2
, (3.30)

which means that, in the limit ε → 0, a shift of π/2 is added to the phase of the
oscillation at each time step. In this limit, the period of the plasma oscillations stays
bounded, equal to 4δ.

To support the conclusions of this Fourier analysis of the scheme, we show below
that the same stability and dissipation properties are still valid when we use a fully
discretized scheme in both time and space.

We denote by D2u = ui+1−2ui+ui−1

h2 the standard second order difference oper-

ator and by D−u = ui−ui−1

h and D+u = ui+1−ui

h the standard one-sided difference

operator. Then D2 = D+D− = D−D+. Denote D̃ = (D+ + D−)/2. Here h is the
space step.

We consider a space discretization of (3.4) by replacing the continuous second
order space derivative by the discrete operator D2:

∂2
ttn − c2

sD
2n +

1

ε2
n = 0 . (3.31)

Applying the (II) time-difference scheme (3.17) to this equation leads to

nm+1 − 2nm + nm−1

δ2
− c2

sD
2nm +

1

ε2
nm+1 = 0. (3.32)

This scheme can be viewed as a wave-type version of the following scheme for the
original (LEP) system (3.1)-(3.3):

nm+1 − nm

δ
+ D−um+1 = 0 , (3.33)

um+1 − um

δ
+ c2

sD+nm = D+φm+1 , (3.34)

ε2D2φm+1 = nm+1. (3.35)

Indeed, eliminating u between (3.33) and (3.34), one has

nm+1 − 2nm + nm−1

δ2
− c2

sD
2nm + D2φm+1 = 0, (3.36)
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and using (3.35) we get (3.32). We can also eliminate nm+1 from (3.36) using (3.35)
and get a discretization of the reformulated Poisson eq. (2.7) (in linearized form):

(
ε2

δ2
+ 1)D2φm+1 =

2nm − nm−1

δ2
+ c2

sD
2nm. (3.37)

In section 7.2 of the appendix, we show that this scheme is stable provided that
2εcs ≤ h. We observe that the scheme is asymptotically stable in the limit ε → 0
but is not stable if ε is large. This feature can easily be explained. When ε → ∞
the electric field term disappears and we are left with the standard (LEP) system
discretized via centered differences. A time explicit discretization will be uncondi-
tionally unstable. Here, the time-differencing is implicit in the mass flux term but
still explicit in the momentum flux. This semi-implicit discretization is not implicit
enough to stabilize the space-centered discretization. It is a remarkable fact that
the electric field contributes to stabilize the instability of the space-centered scheme.
However, this scheme cannot be used in a far from quasineutrality regime which is a
severe drawback in situations close to quasineutrality in some regions but far from it
in other ones. This unpleasant feature will also be found via Fourier analysis when
linearizing the Euler-Poisson system about a non-zero velocity (see section 4). This
drawback will be overcome by means of a space-decentered discretization.

We also note that the implicit treatment of the last term in (3.32) gives a strong
dissipation (like in the Fourier analysis case). This can be seen from the use of
the so-called equivalent equation (i.e. the equation obtained by retaining the leading
order term in the Taylor expansion of the time semi-discrete scheme). This equivalent
equation is written

∂2
ttn − c2

s∂
2
xxn +

1

ε2
n +

δ

ε2
nt = 0, (3.38)

which can be recast as a LEP system with a damping term

∂tn + ∂xu = − δ
ε2 n , (3.39)

∂tu + c2
s∂xn = ∂xφ , (3.40)

ε2∂2
xxφ = n. (3.41)

The energy estimate (3.13) for (3.38) becomes

∂t

∫ b

a

(

(∂tn)2 + c2
s(∂xn)2 +

1

ε2
n2

)

dx +
2δ

ε2

∫ b

a

(∂tn)2 dx = 0, (3.42)

and we observe the strong damping of the energy with a rate which tends to infinity
as ε → 0 (for fixed δ) as fast as 1/ε2.

The use of centered differencing associated with only a partial implicit time-
differencing may lead to stability problems when the coupling with the field term is
weak, i.e. ε is large. This will be particularly clear with the analysis of the (LEP)
system about non-zero velocity in section 4. For this reason, we now analyze schemes
associated with decentered space differencing, which we shall mimic by looking at the
(LEP) system with diffusion.

3.3. Asymptotic Preserving strategy associated with upwind space-
decentered differencing. In order to mimic the influence of a decentered space
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difference, we consider the following two viscous perturbation of the (LEP) system.
The linearized viscous Euler-Poisson (LVEP) system reads either as

∂tn + ∂xu = 0 , (3.43)

∂tu + c2
s∂xn = ν∂2

xxu + ∂xφ , (3.44)

ε2∂xxφ = n , (3.45)

if numerical diffusion is only added to the momentum balance equation or as

∂tn + ∂xu = β∂2
xxn , (3.46)

∂tu + c2
s∂xn = ν∂2

xxu + ∂xφ , (3.47)

ε2∂xxφ = n , (3.48)

if we also consider numerical diffusion in the mass conservation equation. Here, β
and ν are artificial viscosity coefficients. These systems will be referred to below
respectively as the (LVEP-1) and (LVEP-2) systems. The (LVEP-1) system is of
course a particular case of the (LVEP-2) system by taking β = 0.

Eliminating u and φ, the (LVEP-1) system reduces to the following Klein-Gordon
equation with a viscoelastic term:

∂2
ttn = c2

s∂
2
xxn − 1

ε2
n + ν∂3

txxn . (3.49)

For the (LVEP-2) system, following Slemrod, we introduce v = u − β∂xn. Then the
above system is equivalent to:

∂tn + ∂xv = 0 , (3.50)

∂tv + c2
s∂xn = (ν + β)∂2

xxu + νβ∂3
xxxn + ∂xφ , (3.51)

ε2∂2
xxφ = n . (3.52)

Eliminating v and φ, we are led to the following Klein-Gordon equation with vis-
coelastic and capillary type terms:

∂2
ttn = c2

s∂
2
xxn − 1

ε2
n + (ν + β)∂3

txxn − νβ∂4
xxxxn . (3.53)

We now perform Fourier and energy analyses for the (LVEP-2) system which
includes the (LVEP-1) system as a particular case. After a partial Fourier transform
with respect to x, the system reads:

∂tn̂ + iξû + βξ2n̂ = 0 , (3.54)

∂tû + iξc2
sn̂ + νξ2û = iξφ̂ , (3.55)

−ε2ξ2φ̂ = n̂ , (3.56)

or equivalently, after elimination of φ̂:
(

∂tn̂
∂tû

)

+

(

βξ2 iξ
iξc2

s + i
ε2ξ νξ2

)(

n̂
û

)

= 0 . (3.57)

For |ξ| not too large, the eigenmodes of the (LVEP-2) system are given by

s± = rβ,ν(ξ) ± iθε(ξ) :=
β + ν

2
ξ2 ± i

(

1

ε2
+ c2

sξ
2 − (β + ν)2

4
ξ4

)1/2

. (3.58)
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Now the oscillations are damped by an exponential factor e−rβ,νt which is independent
of ε and proportional to β + ν. Moreover, the phase oscillates with a frequency O( 1

ε )
when ε → 0, independently of ξ.

In order to derive energy estimates, we multiply (3.53) with ∂tn and get

∂t

(

1
2 (∂tn)2

)

= c2
s ∂tn∂2

xxn − 1

ε2
∂t

(

1
2n2

)

+ (ν + β) ∂tn∂3
txxn − νβ ∂tn∂4

xxxxn.

Simple computations give:

∂tn∂2
xxn = ∂x(∂xn∂tn ) − ∂xn∂2

txn = ∂x(∂xn∂tn ) − ∂t

(

1
2 (∂xn )2

)

,

∂tn∂3
txxn = ∂x(∂2

txn∂tn ) − (∂2
txn )2,

∂tn∂4
xxxxn = ∂x(∂3

xxxn∂tn−∂2
txn∂2

xxn )+∂3
txxn∂2

xxn = ∂x(∂3
xxxn∂tn−∂2

txn∂2
xxn )+∂t

(

1
2 (∂2

xxn )2
)

.

Summing up, we get:

∂t
1
2

(

(∂tn )2 + c2
s(∂xn )2 + 1

ε2 n2 + νβ(∂2
xxn )2

)

+ (β + ν)(∂2
txn )2

= ∂x

(

c2
snx∂tn + (ν + β)∂2

txn∂tn − νβ(∂3
xxxn∂tn − ∂2

txn∂2
xxn )

)

.

For periodic or homogeneous Neumann boundary conditions, we obtain:

∂t
1
2

∫ b

a

(

(∂tn )2 + c2
s(∂xn )2 + 1

ε2 n2 + νβ(∂2
xxn )2

)

dx + (β + ν)

∫ b

a

(∂2
txn )2 dx = 0.

Again we see that the second order dissipative coefficient is only dependent on ν + β.
This energy estimate is still true for a space-discrete version of the (LVEP-2)

system with β = ν (simply referred to by (LVEP) system). Indeed, the natural
finite difference space discretization for the (LVEP) system is given by (with the same
notations as above):

∂tn + D̃u = βD2n , (3.59)

∂tu + c2
sD̃n = βD2u + D̃φ , (3.60)

ε2D2φ = n . (3.61)

where D̃ = (D+ + D−)/2 and D2 = D+D−.
Both the upwinding and Lax-Friedrichs scheme for LEP (3.1)-(3.3) take the same

form with β = csh/2 and β = h2

2δ respectively, as we will explain below. This is
also true for the Modified Lax-Friedrichs scheme used in [6] and [8], because in the
linearized case, the Modified Lax-Friedrichs scheme and the upwind scheme coincide.
Indeed, for the upwinding scheme, we first diagonalize the (LEP) system (3.1)-(3.3),
then take upwind difference as given below,

∂t(u + csn) + csD−(u + csn) = D̃φ,

∂t(u − csn) − csD+(u − csn) = D̃φ,

ε2D2φ = n.
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Recast to the original form, it can be written

∂tn + D̃u =
cs

2
(D+ − D−)n,

∂tu + c2
sD̃n =

cs

2
(D+ − D−)u + D̃φ,

ε2D2φ = n.

Note that D+ − D− = hD2. The above is same as (3.59-3.61) with β = csh/2. For
the Lax-Friedrichs scheme we first write the scheme in its usual way:

(nm+1 − nm)/δ + D̃um =
h2

2δ
D2nm,

(um+1 − um)/δ + c2
sD̃nm =

h2

2δ
D2um + D̃φm+1,

ε2D2φm+1 = nm+1.

We can regard it as a time discretization scheme of (3.59)-(3.61) with β = h2

2δ .

In the appendix, section 7.3, we will show that the time continuous scheme (3.59)-
(3.61) has the following energy estimate for the periodic boundary condition case.

∂t
1
2

(

c2
s‖D−n‖2 + ‖D−u‖2 +

1

ε2
‖n‖2

)

+ β(c2
s‖D2n‖2 + ‖D2u‖2) +

1

ε2
‖D−n‖2 = 0.

(3.62)
This indicates that the space discretization has the same behaviour as the space-
continuous model. For this reason, from now on, we shall only consider the problem
of the stability of the time discretization, and replace the influence of the space dis-
cretization by a Fourier transform with limitation of the admissible wave numbers to
a bounded interval (the latter being related to the space step ∆x).

In the remainder of this analysis, we will be using the (LVEP-2) system (3.46)-
(3.48) with β = ν and will simply refer to it by (LVEP) system. The coefficient β is
linked with numerical diffusion. For most schemes,

β = O(cs∆x) . (3.63)

Again, we suppose that |ξ| ≤ ξ∗ = π/∆x, having in mind that this mimics a space
discretization of mesh step ∆x. Therefore, assuming (3.63), there exists a constant
C∗ > 0 such that

β|ξ|
cs

≤ C∗ . (3.64)

The Asymptotic Preserving strategy ((II) scheme) for the (LVEP) system reads
as follows:

n̂m+1 − n̂m

δ
+ iξûm+1 + βξ2n̂m = 0 , (3.65)

ûm+1 − ûm

δ
+ iξc2

sn̂
m + βξ2ûm +

i

ε2ξ
n̂m+1 = 0 . (3.66)
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We shall compare this strategy with an explicit time-differencing of the mass flux
term, but still implicit in the Poisson source term. Such a scheme ((EI) scheme) reads:

n̂m+1 − n̂m

δ
+ iξûm + βξ2n̂m = 0 , (3.67)

ûm+1 − ûm

δ
+ iξc2

sn̂
m + βξ2ûm +

i

ε2ξ
n̂m+1 = 0 . (3.68)

Note that in section 3.2, we mentioned the converse strategy (implicit in the mass
flux, and explicit in the Poisson source term, see system (3.19), (3.20)) called (IE)
scheme and we showed that in the non-viscous case, the stability requirement scales
down to 0 as ε → 0. It is unlikely that the use of an artificial viscosity can cure this
instability, since the cause of this instability is clearly linked to the coupling with
the field (because of its dependence with respect to ε) while the motivation of the
artificial viscosity is to compensate for the instability of the space-centered scheme
of the purely hydrodynamic part of the model. For this reason and for the sake of
conciseness, we do not consider the (IE) scheme in the viscous case.

For completeness, we mention the full explicit scheme, in both mass flux and
Poisson source term. This scheme ((EE) scheme) reads as follows:

n̂m+1 − n̂m

δ
+ iξûm + βξ2n̂m = 0 , (3.69)

ûm+1 − ûm

δ
+ iξc2

sn̂
m + βξ2ûm +

i

ε2ξ
n̂m = 0 . (3.70)

We mention that the (EE) and (EI) schemes for the non-viscous system would
be unconditionally unstable because of the well-known instability of space-centered
schemes for hydrodynamics. It is easy to check this instability directly. The compu-
tation is left to the reader.

For these schemes, the stability analysis developed in the appendix (section 7.4)
leads to the following conclusions. The Asymptotic Preserving (II) scheme shows
a uniform stability condition with respect to the parameter ε, as expected. More
precisely, a sufficient stability condition is

δ ≤ 2β

c2
s

F (C∗), (3.71)

where F (C∗) is a convenient function of the constant C∗ (see (3.64)). Again, this
looks like a CFL condition, which only depends on the purely hydrodynamic part of
the scheme and not on ε.

By contrast, the (EI) scheme has a stability domain which shrinks down to 0 as
ε → 0. The analysis is simplified by making the following assumption:

δ ≤ 2β

c2
s

1

1 + C∗2 := δ∗ , (3.72)

where C∗ is given by (3.64). This condition is again similar to a CFL condition (see
(3.63)). Under this condition, a sufficient stability constraint for this scheme is of the
form

δ ≤ 2
√

1 + C∗2
ε , ∀ε ∈ [0,

β

c2
s

√

1 + C∗2
] . (3.73)
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Additionally if δ satisfying (3.72) is such that δ > 2ε, the scheme is unstable. There-
fore, the stability domain is an interval of size exactly O(ε). This scheme is the
linearized version of the standard scheme used for the Euler-Poisson problem. The
conditional stability of this scheme in a fully discrete version was proved earlier by S.
Fabre in [15].

Finally, the fully explicit (EE) scheme has a disastrous behaviour. Its stability
condition for a given wave-number ξ is given by :

δ ≤ δee(ξ) :=
2βξ2

β2ξ4 + c2
sξ

2 + 1
ε2

. (3.74)

Over the range of admissible wave-numbers [0, ξ∗], the minimal value of δee(ξ) is zero,
showing that the scheme is actually unstable. Therefore, numerical diffusion is not
sufficient to stabilize the (EE) scheme. This was proved by S. Fabre for a fully discrete
version of the scheme in [15].

To summarize, the (EE) scheme is unconditionally unstable, even used in con-
junction with a decentered space discretization of the hydrodynamic fluxes. The (EI)
is conditionally stable: the time-step must be kept proportional to ε. Finally, the
(II) scheme is asymptotically stable when ε → 0. Its stability requirement only in-
volves a CFL condition related to the space discretization of the hydrodynamic part
of the model. All the proofs are collected in the appendix, section 7.4, for the reader’s
convenience.

In the next section, we investigate if these conclusions remain true when the (LEP)
system is linearized about a non-zero velocity. We show that the (II) scheme remains
uniformly stable in the viscous case (i.e. for a space decentered discretization), but
not in the non-viscous case (for a space-centered scheme).

4. The linearized Euler-Poisson system about non-zero velocity. Lin-
earizing system (2.1)-(2.3) about the stationary homogeneous solution n0 = 1, u0 = a,
a being constant (but not equal to 0) and ∂xφ0 = 0, leads to the following Linearized
Euler-Poisson (LEP) system:

∂tn + a∂xn + ∂xu = 0 , (4.1)

∂tu + a∂xu + c2
s∂xn = ∂xφ , (4.2)

ε2∂2
xxφ = n. (4.3)

When |a| < |cs|, it can be reduced to a wave-like formulation (specifically a Klein-
Gordon equation with mass equal to 1/ε2):

∂2
ttn + 2a∂2

txn − (c2
s − a2)∂2

xxn +
1

ε2
n = 0 . (4.4)

We can get an energy estimate for this system by multiplying by ∂tn. We have:

∂t

(

(∂tn)2 + (c2
s − a2)(∂xn)2 +

1

ε2
n2

)

= 2(c2
s − a2)∂x

(

∂xn∂tn
)

− 2a∂x

(

(∂tn)2
)

. (4.5)

If periodic or homogeneous Dirichlet boundary conditions are imposed at the bound-
ary points, conservation of energy follows:

∂t

∫ b

a

(

(∂tn)2 + (c2
s − a2)(∂xn)2 +

1

ε2
n2

)

dx = 0 . (4.6)
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We consider a space discretization of (4.4) by replacing the continuous second
order space derivative by the discrete operator D2, with the same meaning as above
for D̃:

∂2
ttn + 2a∂tD̃n − (c2

s − a2)D2n +
1

ε2
n = 0 . (4.7)

Applying the (II) time-difference scheme (3.17) to this equation leads to

nm+1 − 2nm + nm−1

δ2
+ 2a

D̃nm − D̃nm−1

δ
+ a2D2nm−1 − c2

sD
2nm +

1

ε2
nm+1 = 0.

(4.8)
This scheme can be viewed as a wave-type version of the following scheme for the
original (LEP) system (4.1)-(4.3):

nm+1 − nm

δ
+ aD−nm + D−um+1 = 0 , (4.9)

um+1 − um

δ
+ aD+um + c2

sD+nm = D+φm+1 , (4.10)

ε2D2φm+1 = nm+1. (4.11)

Indeed, eliminating u between (4.9) and (4.10), one has

nm+1 − 2nm + nm−1

δ2
+ 2a

D̃nm − D̃nm−1

δ
+ a2D2nm−1 − c2

sD
2nm + D2φm+1 = 0,

(4.12)
and using (4.11), we get (4.8). We can also eliminate nm+1 from (4.12) using (4.11)
and get a discretization of the reformulated Poisson eq. (2.7) (in linearized form):

(
ε2

δ2
+1)D2φm+1 =

2nm − nm−1

δ2
+c2

sD
2nm−2a

D̃nm − D̃nm−1

δ
−a2D2nm−1. (4.13)

We also note that the implicit treatment of the last term in (4.8) gives a strong
dissipation (like in the Fourier analysis case). This can be seen from the use of
the so-called equivalent equation (i.e. the equation obtained by retaining the leading
order term in the Taylor expansion of the time semi-discrete scheme). This equivalent
equation is written

∂2
ttn + 2a∂2

txn − (c2
s − a2)∂2

xxn +
1

ε2
n = − δ

ε2
∂tn + a2δ∂3

txxn + aδ∂3
ttxn . (4.14)

The first two terms on the right hand side are dissipative terms, while the nature of
the last term is less clear.

By examining the (LEP) system about zero velocity, we have shown that schemes
that are implicit in both the mass flux term and the electric field source term are
asymptotically stable in the small Debye length limit ε → 0.

Two schemes have been shown to have this property. A first scheme is associated
with centered space-differencing: the (II) scheme for the (LEP) system without dif-
fusion. This scheme is equivalently the (WEI) implicit scheme for the wave-equation
formulation of the (LEP) system (see above and section 3.2). A second scheme scheme
is associated with a decentered shock capturing type space-discretization: the (II)
scheme for the viscous linearized Euler-Poisson system or (LVEP) system (see section
3.3). We have seen in section 3.2 that the (II) scheme for the inviscid (LEP) system
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is not uniformly stable with respect to ε when ε → ∞ and that this lack of uniformity
is related with the space centered-differencing.

We are now concerned with the stability of these two schemes for the linearized
Euler-Poisson problem about non-zero velocity. This analysis will confirm that the
(II) scheme without diffusion is uniformly stable in the limit ε → 0 but not in the
limit ε → ∞ while the (II) scheme with diffusion is uniformly stable for all values of
ε whatever small or large.

Linearizing system (2.1)-(2.3) about the stationary homogeneous solution n0 = 1,
q0 = Constant (but not equal to 0) and ∂xφ0 = 0 leads to the following Linearized
Euler-Poisson (LEP) system:

∂tn + ∂xu = 0 , (4.15)

∂tu + ∂x(2q0u − q2
0n) + c2

s∂xn = ∂xφ , (4.16)

ε2∂xxφ = n. (4.17)

After Fourier transform in space, the system reads

∂tn̂ + iξû = 0 , (4.18)

∂tû + iξ(2q0u − q2
0n) + iξc2

sn̂ = iξφ̂ , (4.19)

−ε2ξ2φ̂ = n̂. (4.20)

After elimination of φ̂, the system reduces to a 2 × 2 system of the form:
(

∂tn̂
∂tû

)

+

(

0 iξ
−iq2

0ξ + iξc2
s + i

ε2ξ 2iq0ξ

) (

n̂
û

)

= 0 . (4.21)

Its solutions are of the form
(

n̂(ξ, t)
û(ξ, t)

)

=

(

n̂+(ξ)
û+(ξ)

)

eiθε
+(ξ)t +

(

n̂−(ξ)
û−(ξ)

)

eiθε
−

(ξ)t , (4.22)

where

θε
±(ξ) = −q0ξ ±

(

c2
sξ

2 +
1

ε2

)1/2

. (4.23)

These eigenmodes are obtained by shifting the phase by the quantity −q0ξ. Indeed,
the linearization about a uniform non-zero velocity can be deduced from a linearization
about zero velocity by a Galilean transformation x′ = x + q0t, v′ = v thanks to the
Galilean invariance of the nonlinear Euler problem. A Galilean shift translates in
Fourier space into a constant phase shift.

It should not be inferred however that the stability of the schemes for the lin-
earization about non-zero velocity can be deduced from considerations concerning the
linearized system about zero velocity. Indeed, the mass and momentum flux terms
are treated differently (one being implicit while the other one is explicit) which breaks
this Galilean invariance.

Now, the (II) scheme for the inviscid Euler-Poisson system linearized about non-
zero velocity reads:

n̂m+1 − n̂m

δ
+ iξûm+1 = 0 , (4.24)

ûm+1 − ûm

δ
+ iξ(2q0u

m − q2
0nm) + iξc2

sn̂
m +

i

ε2ξ
n̂m+1 = 0 , (4.25)
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while the (II) scheme for the viscous system is written:

n̂m+1 − n̂m

δ
+ iξûm+1 + βξ2n̂m = 0 , (4.26)

ûm+1 − ûm

δ
+ iξ(2q0u

m − q2
0nm) + iξc2

sn̂
m + βξ2ûm +

i

ε2ξ
n̂m+1 = 0 . (4.27)

We recall that the inviscid linearized system in Fourier space mimics a centered spa-
tial discretization while the viscous system mimics a decentered spatial discretization
associated with a numerical diffusion equal to β.

In section 7.5, we prove that the (II) scheme for the inviscid system is uniformly
stable in the limit ε → 0. But ε must be large enough. To state a more precise
result, we recall that the range of admissible wave numbers ξ is limited to the interval
|ξ| ≤ ξ∗ = π

∆x in order to mimic the influence of a space discretization ∆x. Then, for
all K < 1, there exists a δ∗ > 0 such that for all δ < δ∗ and all ε such that ε < Kδ,
the (II) scheme for the inviscid system is stable. We note that as K gets closer to 1,
δ∗ tends to 0. In particular, the scheme is not stable when ε = O(1) and δ → 0, which
would be the situation if we wanted to resolve the plasma period scale. We show in
section 7.5 that if ε = 0, the scheme is unstable. Therefore, the (II) scheme for the
inviscid system cannot be of practical usefulness.

We now turn to the (II) scheme for the viscous system. We assume that the
diffusion constant β is proportional to the time step: β = Bδ. Then, the result shown
in in section 7.5 is that if B is large enough (depending only on q0 and cs), there
exists an interval of time steps [0, δ∗] (again, only depending on q0 and cs) such that
for all δ’s in this interval, all admissible wave-numbers ξ (i.e. such that |ξ| ≤ ξ∗) and
all ε ≥ 0, the scheme is stable. Usually, the diffusion constant is taken proportional to
∆x (or to ∆x2/δ in the case of the Lax-Friedrichs scheme) rather than to δ. The result
would also remain true in this case but the proof would be more complex. Indeed,
supposing that β = O(δ) allows to express the problem in terms of the ’CFL variable’
X = ξδ only, which simplifies the (already quite technical) proof. Also, the result in
itself is interesting as it shows that the scheme is stable even with a vanishingly small
diffusion proportional to δ.

These result show that, at least for the linearized problem about any uniform
state (of zero or non-zero velocity), the (II) scheme associated with a decentered
space-differencing is uniformly stable with respect to all values of ε be it small or
large.

5. Burgers-Poisson equation. In a preliminary attempt to analyze the nonlin-
ear effects, we consider the following model consisting of a nonlinear Burgers-Poisson
system:

∂tu + u∂xu = −∂xφ, (5.1)

ε2∂2
xxφ = u. (5.2)

This system owns the following entropy pair (u2

2 , u3

3 +
ε2φ2

x

2 ). Indeed, simple compu-
tations show that

∂t

(

u2

2

)

+ ∂x

(

u3

3
+

ε2(∂xφ)2

2

)

= 0 . (5.3)

The theoretical study of this equation will be reported in a future paper.
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We consider the following conservative scheme,

∂tuj +
uj+1 + uj + uj−1

3

uj+1 − uj−1

2h
= −φj+1 − φj−1

2h
, (5.4)

ε2 φj+1 − 2φj + φj−1

h2
= uj , (5.5)

where h = ∆x is the grid size. The above scheme may generate some oscillations near
shocks due to the dispersive nature of the scheme. We can recast the above scheme
in a conservative form,

∂tuj +
fj+1/2 − fj−1/2

h
= −φj+1 − φj−1

2h
, (5.6)

ε2 φj+1 − 2φj + φj−1

h2
= uj , (5.7)

where fj+1/2 = 1
6 (u2

j + ujuj+1 + u2
j+1). We have a discrete entropy pair

∂t

(

u2
j

2

)

+
gj+1/2 − gj−1/2

h
= 0 , (5.8)

where gj+1/2 = 1
6 (u2

juj+1 + uju
2
j+1) + ε2

2

(

φj+1−φj

h

)2

. As a direct consequence, we

can prove a stability result for the space semi-discretization of this model. We can
also get some convergence results assuming the solution is smooth.

More precisely, we only consider the periodic boundary condition case for sim-
plicity. Let φ(x), u(x) be the exact solution. Let Φj = φ(xj), Uj = ε2 Φj+1−2Φj+Φj−1

h2 .
Assuming that the initial data are approximated up to second order, we have

‖uh − u‖ =

√

∑

j

(uj − u(xj))2h ≤ Ch2,

and

ε‖φh − φ‖ = ε

√

∑

j

(φj − φ(xj))2h ≤ Ch2,

for all ε ≤ ε0, with arbitrary ε0 > 0 and where C = C(u, φ, ε0). We refer to section
7.6 in the appendix for the proof.

This analysis indicates that a similar implicit time-discretization as in the (LVEP)
system will provide asymptotic stability with respect to ε → 0. The investigation of
this problem will be the topic of future work.

6. Conclusion. In this paper, we have analyzed the stability property of a re-
cently proposed numerical scheme for the Euler-Poisson system [8]. For this anal-
ysis, we have considered the linearized Euler-Poisson system about both zero and
non-zero velocities, and, after Fourier transform in space, we have applied the time
discretization under scrutiny. We have mimiced the influence of a space decentered
discretization by adding viscosity terms in both the mass and momentum conservation
equations. We have shown that the resulting scheme is uniformly stable with respect
to the Debye parameter ε. By contrast, other schemes with less implicit treatment
or with centered space differencing are shown to lose the uniform stability property.
Elements of a nonlinear stability analysis have been given by considering a model
Burgers-Poisson problem. The analysis of this strategy for the kinetic version of this
model [9] is in progress.
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7. Appendix: proofs of statements.

7.1. AP strategy with centered space differencing: Fourier analysis.
(II) scheme: The characteristics equation for the (II) scheme (3.14)-(3.15) for the
non-viscous (LEP) system is written:

(1 +
δ2

ε2
)λ2 − 2(1 − 1

2
δ2c2

sξ
2)λ + 1 = 0 . (7.1)

Obviously, the product of the two roots is smaller than unity. Therefore, a sufficient
condition for stability is that the discriminant is negative. In this case, the two roots
are complex conjugate numbers of module less than unity. Of course, it is not a
necessary stability condition since, in the case of a positive discriminant, there may
exist real roots which are both less than unity. However, any sufficient condition
which leads to an ε-independent stability requirement is enough for our purpose.

The discriminant of this polynomial is

D′ = δ2(
1

4
δ2c4

sξ
4 − (

1

ε2
+ c2

sξ
2)) . (7.2)

Therefore, we have D′ ≤ 0 iff condition (3.26) is satisfied. δii(ξ) is a monotonously
decreasing function of ξ, so that condition (3.27) must be satisfied in order for the
scheme to be stable over the range of admissible wave numbers. The eigenvalues are
given by:

λ± =
1

1 + δ2

ε2

(

1 − 1

2
c2
sξ

2δ2 ± i
√

|D′|
)

= |λ±|e±iθ ,

with

cos θ =
1 − 1

2c2
sξ

2δ2

√

1 + δ2

ε2

, |λ±| =

(

1 +
δ2

ε2

)−1/2

.

We note that |λ±| ∼ ε
δ as ε → 0 and that the behaviour of the phase is given by

(3.30).

(IE) scheme: The characteristics equation of the (IE) scheme (3.19)-(3.20) for the
non-viscous (LEP) system is written:

λ2 − 2(1 − δ2

2
(

1

ε2
+ c2

sξ
2))λ + 1 = 0 . (7.3)

Obviously, the product of the two roots is 1. So, the stability condition is equivalent
to saying that the discriminant of the polynomial is negative. Indeed, in this case, the
two roots are complex conjugate and their product is also the square of their module
and is equal to one. In the converse case, the two roots are real and one is necessarily
above unity, showing instability. The discriminant is

D′ = δ2(
1

ε2
+ c2

sξ
2)(

1

4
δ2(

1

ε2
+ c2

sξ
2) − 1) . (7.4)

Therefore, D′ ≤ 0 iff condition (3.28) is satisfied. We note that δie(ξ) is a monotonously
decreasing function of ξ, so that condition (3.29) must be satisfied in order for the
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scheme to be stable over the range of admissible wave numbers. The eigenvalues λ±
are given by

λ± = 1 − δ2

2
(

1

ε2
+ c2

sξ
2) ± i

√

|D′| = e±iθ , cos θ = 1 − 1

2

(

δ(
1

ε2
+ c2

sξ
2)1/2

)2

.

In the limit δ → 0 with fixed ε, we recover the fact that θ is an approximation of the
phase of the continuous problem given by (3.10) but the stability constraint prevents
us from investigating the limit ε → 0 with fixed δ.

7.2. AP strategy with centered space differencing: stability analysis of
the fully discrete scheme. We prove the asymptotic stability of the scheme (3.33)-
(3.35). We assume periodic boundary conditions. The approximation nm is a discrete
sequence nm

j for j ∈ Z/NZ if N is the number of points (such that Nh = L and L is

the interval length). We view nm as an element of a discrete ℓ2 space, provided with
the inner product 〈a, b〉 =

∑

aibih and norm ‖a‖2 = 〈a, a〉. By discrete summation
by parts, one can easily check the following formulas:

〈D2a, b〉 = −〈D−a,D−b〉, 〈D̃a, b〉 = −〈a, D̃b〉.

Denote D2
t nm = nm+1−2nm+nm−1

δ2 . Using these formulae, we have:

2〈nm+1 − nm,D2
t nm〉 = ‖nm+1 − nm

δ
‖2 − ‖nm − nm−1

δ
‖2 + δ2‖D2

t nm‖2,

2〈nm+1 − nm,−c2
sD

2nm〉= c2
s

(

‖D−nm+1‖2 − ‖D−nm‖2 − ‖D−(nm+1 − nm)‖2
)

≥ c2
s

(

‖D−nm+1‖2 − ‖D−nm‖2
)

− 4c2
s

h2
‖nm+1 − nm‖2,

2〈nm+1 − nm,
1

ε2
nm+1〉 =

‖nm+1‖2 − ‖nm‖2 + ‖nm+1 − nm‖2

ε2
.

Adding up these formulas leads to:

‖nm+1 − nm

δ
‖2 + c2

s‖D−nm+1‖2 + 1
ε2 ‖nm+1‖2 + δ2‖D2

t nm‖2 +
( 1

ε2
− 4c2

s

h2

)

‖nm+1 − nm‖2

≤ ‖nm − nm−1

δ
‖2 + c2

s‖D−nm‖2 + 1
ε2 ‖nm‖2.

If 2εcs ≤ h, the scheme is stable.

7.3. Time-continuous, space-discrete viscous (LVEP) system: Energy
estimate. In this section, we prove (3.62). We use the same framework as in section
7.2. Multiplying (3.59) by D2n one has

〈D2n, ∂tn〉 + 〈D2n, D̃u〉 = β‖D2n‖2.

A simple computation gives

〈D2n, ∂tn〉 = −∂t

(

1
2‖D−n‖2

)

.
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We recast it in the conservative form

∂t

(

1
2‖D−n‖2

)

+ β‖D2n‖2 = 〈D2n, D̃u〉. (7.5)

Similarly, we multiply (3.60) by D2u and get

∂t

(

1
2‖D−u‖2

)

+ β‖D2u‖2 + 〈D2u, D̃φ〉 = c2
s〈D2u, D̃n〉. (7.6)

In the same way, using (3.59) and (3.61), we obtain

〈D2u, D̃φ〉 = −〈D̃u,D2φ〉 = 1
ε2 〈∂tn − βD2n, n〉 = 1

ε2 ∂t(
1
2‖n‖

2) +
β

ε2
‖D−n‖2. (7.7)

Note that

〈D2n, D̃u〉 + 〈D2u, D̃n〉 = 0. (7.8)

We multiply (3.59) by c2
s and combine with (7.6) to (7.8) and get:

∂t
1
2

(

c2
s‖D−n‖2 + ‖D−u‖2 + 1

ε2 ‖n‖2
)

+ β
(

c2
s‖D2n‖2 + ‖D2u‖2 + 1

ε2 ‖D−n‖2
)

= 0,

which is the announced energy estimate.

7.4. AP strategy with decentered space-differencing: Fourier analysis
of the linearized system about zero mean velocity. (II) scheme: The char-
acteristics equation of the (II) scheme (3.65), (3.66) for the viscous (LVEP) system
reads:

(1 +
δ2

ε2
)λ2 − 2λ

(

−βξ2δ + 1 − 1

2
c2
sξ

2δ2

)

+ (βξ2δ − 1)2 = 0. (7.9)

We assume that (βξ2δ − 1)2 ≤ 1. This requires that δ ≤ 2/β|ξ|2. Over the range of
admissible wave-numbers ξ, the r.h.s. of this inequality takes its minimal value for
ξ = C∗cs/β (with C∗ defined by (3.64)) which gives the following CFL-like condition:

δ ≤ 2β

c2
s

1

C∗2 . (7.10)

Under this condition, the product of the two roots of (7.9) is less than unity. Therefore,
a sufficient stability condition is that the discriminant of the polynomial is negative.

The discriminant is:

D′ = (
1

2
c2
sξ

2δ2)2 + c2
sξ

2δ2(βξ2δ − 1) − δ2

ε2
(βξ2δ − 1)2

≤ (
1

2
c2
sξ

2)2 δ2 P (δ)

P (δ) := δ2 +
4βδ

c2
s

− 4

c2
sξ

2
. (7.11)

It is readily seen that P has only one positive root δ0 and is negative for δ < δ0. An
easy computation shows that

δ0 =
2β

c2
s

(

(

1 +
c2
s

β2ξ2

)1/2

− 1

)

.
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The minimal value of this expression over the range of admissible values of ξ leads to
the following stability requirement:

δ ≤ 2β

c2
s

(

(

1 + C∗2
)1/2

− 1

)

. (7.12)

Collecting (7.10) and (7.12) leads to (3.71) with

F (C∗) = min

(

1

C∗2 ,
(

1 + C∗2
)1/2

− 1

)

.

(EI) scheme: The characteristics equation of the (EI) scheme (3.67), (3.68) for the
viscous (LVEP) system reads:

λ2 + 2λ

(

βξ2δ − 1 +
δ2

2ε2

)

+ (βξ2δ − 1)2 + c2
sξ

2δ2 = 0. (7.13)

We assume that the product of the two roots is lower than unity. This imposes

(βξ2δ − 1)2 + c2
sξ

2δ2 ≤ 1 ,

i.e.

δ ≤ 2β

c2
s

1

1 + β2ξ2

c2
s

. (7.14)

The right-hand side is a decreasing function of ξ, and for the condition to be valid
over the range of admissible wave-numbers, we request (3.72), which can be viewed
as a CFL condition, using (3.63). Again, we wish to make clear that our goal is to
find the ε-dependence of the stability condition, provided a CFL-like condition for the
hydrodynamic part of the system is satisfied.

Under this condition, a sufficient condition for stability is that the discriminant
of this polynomial is negative. The discriminant is given by

D′ =
1

4

(

δ

ε

)4

+

(

δ

ε

)2

(βξ2δ − 1) − c2
sξ

2δ2 , (7.15)

or, in terms of the variable X = δ/ε:

D′ = X2P (X) , P (X) :=
1

4
X2 + εβξ2X − 1 − ε2c2

sξ
2 . (7.16)

It is readily seen that P (X) has only one positive root X0 and that P (X) is negative
for X < X0. For ε bounded by a constant depending on cs and β only, namely

ε ≤ β(c2
s

√

1 + C∗2)−1, we can estimate that

2
√

1 + C∗2
≤ X0 < 2 . (7.17)

The stability requirement is satisfied as soon as X ≤ X0, or δ ≤ X0ε. Therefore, the
method is stable as soon as δ ≤ 2(1 + C∗2)−1/2ε, which is condition (3.73).
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To prove (7.17), we emphasize the ε-dependence of X0 by writing X0(ε) and we
compute it easily:

X0(ε) = 2(−βξ2ε +
√

1 + ε2(c2
sξ

2 + β2ξ4)) .

To determine the monotonicity of X0 with respect to ε, we compute

1

2

dX0

dε
= −βξ2 +

ε(c2
sξ

2 + β2ξ4)
√

1 + ε2(c2
sξ

2 + β2ξ4)
.

We note that dX0/dε(0) < 0 and X0(0) = 2. The unique positive root ε∗ of
dX0/dε(ε) = 0 is given by

ε∗(ξ) =
β

cs

√

c2
s + β2ξ2

.

Over the range of admissible wave numbers |ξ| ≤ csC
∗β−1, we have:

min
|ξ|≤csC∗β−1

ε∗(ξ) =
β

c2
s

√

1 + C∗2
:= ε̄∗ .

Therefore, X0(ε) is a decreasing function of ε for all ε ≤ ε̄∗ and all admissible wave-
numbers ξ. Now, for ε = ε∗(ξ), we have

X0(ε
∗) =

2c2
sε

∗

β
=

2cs
√

c2
s + β2ξ2

,

and consequently X0(ε
∗) ≥ 2(1+C∗2)−1/2 for all admissible wave-numbers ξ. There-

fore, we have the bound (7.17) for all ε ≤ β(c2
s

√

1 + C∗2)−1 and all admissible wave
numbers ξ.

We now show that if δ/ε is too large, the scheme is unstable. First, we assume
that (3.72) is satisfied. Now, in view of (7.17), if δ > 2ε, the discriminant D′ is
positive. Therefore, the two roots are real and of product less that unity. Now, we
consider the sum S of these roots, equal to

S = −2

(

βξ2δ − 1 +
δ2

2ε2

)

.

By (7.14), we have |βξ2δ − 1| ≤ 1, and therefore,

|S|
2

>
δ2

2ε2
− 1.

Then |S|/2 > 1 as soon as δ > 2ε, in which case, the absolute value of one of the two
real roots must be larger than unity, showing instability.

(EE) scheme: The characteristics equation of the (EE) scheme (3.69), (3.70) for the
viscous (LVEP) system leads to the following expression of the eigenvalues:

λ = 1 − βξ2δ ± i

(

c2
sξ

2 +
1

ε2

)1/2

δ . (7.18)

Then

1 − |λ|2 = 2βξ2δ −
(

β2ξ4 + c2
sξ

2 +
1

ε2

)

δ2 , (7.19)

is positive if and only if condition (3.74) is satisfied.
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7.5. Linearized schemes about non-zero velocity: Fourier analysis. (II)
scheme for the non-viscous (LEP) model: The characteristic equation for the
(II) scheme for the non-viscous (LEP) model (4.24)-(4.25) is written:

λ2(1 +
δ2

ε2
) − 2λ(1 − iq0ξδ +

1

2
q2
0ξ2δ2 − 1

2
c2
sξ

2δ2) + 1 − 2iq0ξδ = 0 . (7.20)

To make the analysis simpler, we introduce the following notations: X = ξδ,
u = q0, Ω = δ2/ε2, c2 = c2

s. In these notations, the polynomial (7.20) is written

λ2(1 + Ω) − 2λ(1 − iuX +
1

2
u2X2 − 1

2
c2X2) + 1 − 2iuX = 0 . (7.21)

The two roots of this polynomial are given by

λ =
1

1 + Ω
(1 − iuX +

1

2
(u2 − c2)X2 ±

√
∆), (7.22)

where the discriminant is given by:

∆ = −c2X2 − iu(u2 − c2)X3 +
1

4
(u2 − c2)2X4 − Ω(1 − 2iuX). (7.23)

Now, in what follows, C will denote generic constants and U generic neighbour-
hoods of X = 0 which are independent of Ω. We first note that

|1 − 2iuX| = (1 + 4u2X2)1/2 ≤ 1 + CX2, for C > 2u2,

| − c2X2 − iu(u2 − c2)X3 +
1

4
(u2 − c2)2X4| ≤ CX2,

for X in U . Then

|∆| ≤ (1 + CX2)Ω + CX2 ≤ (1 + CX2)Ω,

for all Ω ≥ Ω0. Therefore,
√

|∆| ≤ (1 + CX2)
√

Ω.

Similarly, we have

|1 − iuX +
1

2
(u2 − c2)X2| = ((1 +

1

2
(u2 − c2)X2)2 + u2X2)1/2 ≤ 1 + CX2,

for X ∈ U .
Then, summing up all these estimates, we deduce that

|λ| = (1 + CX2)
1 +

√
Ω

1 + Ω
,

for X ∈ U and Ω ≥ Ω0. Let Ω0 > 1. There exists C > 0 such that for all Ω ≥ Ω0,
1+

√
Ω

1+Ω < 1 − C. Then, for all X in a neighbourhood U of 0, we have |λ| < 1, showing
the stability of the method.

We recover the result stated in section 4, by taking K = 1/Ω0 and ξ∗δ ∈ U where
ξ∗ is the maximal range of admissible wave-numbers.

The condition that Ω should stay away from 0 is needed. This is clear since in this
case, the scheme reduces to a semi-implicit centered scheme for the Linearized Euler
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problem, which cannot be stable. Let us verify this fact by setting Ω = 0. Then, we
get

λ = 1 − iuX +
1

2
(u2 − c2)X2 ±

√
∆, (7.24)

where the discriminant is given by:

∆ = −c2X2 − iu(u2 − c2)X3 +
1

4
(u2 − c2)2X4. (7.25)

We can write

∆ = −c2X2(1 + iu
u2 − c2

c2
X + O(X2)) .

Thus,

√
∆ = icX(1 + iu

u2 − c2

2c2
X + O(X2)) ,

and

λ = 1 + (
1

2
(u2 − c2) ∓ u

u2 − c2

2c
)X2 + i(−u ± c)X + O(X3).

Then,

|λ|2 = (1 + (
1

2
(u2 − c2) ∓ u

u2 − c2

2c
)X2 + O(X3))2 + ((−u ± c)X + O(X3))2

= 1 + ((u2 − c2)(1 ∓ u

c
) + (−u ± c)2)X2 + O(X3)

= 1 ∓ u

c
(c ∓ u)2)X2 + O(X3).

One of the roots is of module strictly bigger than unity for X ∈ U as soon as u 6= 0
and therefore, the scheme is unstable.

(II) scheme for the viscous (LVEP) model: The characteristic equation for the
(II) scheme for the viscous (LVEP) model (4.26)-(4.27) is written:

λ2(1 + Ω) − 2λ(1 − BX2 − iuX +
1

2
(u2 − c2)X2) +

+(1 − BX2)(1 − BX2 − 2iuX) = 0 .(7.26)

We have used the same notations as previously: X = ξδ, u = q0, Ω = δ2/ε2, c2 = c2
s

and we have set B = β/δ.
The two roots of this polynomial are given by

λ =
1

1 + Ω
(1 − BX2 − iuX +

1

2
(u2 − c2)X2 ±

√
∆), (7.27)

where the discriminant is given by:

∆ = −(1 − BX2)c2X2 − iu(u2 − c2)X3 +
1

4
(u2 − c2)2X4 − Bu2X4

−Ω(1 − BX2)(1 − BX2 − 2iuX).(7.28)
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We are now going to treat the two cases Ω small and Ω large differently. Basically,
in the small Ω case, stability will result from numerical diffusion (i.e. the term linked
with B), while in the large Ω case, stability will be gained from the field term (i.e.
the term linked with Ω). Again, in this proof, C will denote generic constants and U
generic neighbourhoods of X = 0 which are independent of Ω.

First case: Ω large. We suppose that Ω ≥ Ω0 where Ω0 will be specified later on.
We first write

Re(∆) = −(1 − BX2)c2X2 +
1

4
(u2 − c2)2X4 − Bu2X4 − Ω(1 − BX2)2, (7.29)

Im(∆) = −u(u2 − c2)X3 + Ω(1 − BX2)2uX. (7.30)

Clearly, there exists a neighbourhood U and constants C such that

| − (1 − BX2)c2X2 +
1

4
(u2 − c2)2X4 − Bu2X4| ≤ CX2(1 − BX2)

≤ CX2(1 − 2BX2)

≤ CX2.

On the other hand, for X ∈ U , we have 0 ≤ 1− 2BX2 ≤ (1−BX2)2 ≤ 1. Therefore,
Re(∆) < 0 and

(Ω − CX2)(1 − 2BX2) ≤ |Re(∆)| ≤ Ω + CX2,

(with possibly different C’s at the left and right hand sides of this inequality). In a
similar way, for X ∈ U ,

|Im(∆)| ≤ C|X|(1 − BX2)Ω ≤ C|X|(1 − 2BX2)Ω ≤ C|X|Ω,

again, with possibly different C’s.
We denote ∆ = |∆|(cos α + i sin α). We have

| tan α| =
|Im(∆)|
|Re(∆)| ≤

C|X|Ω
Ω − CX2

≤ C|X|Ω0

Ω0 − CX2
≤ C|X|,

because Ω/(Ω − CX2) is a decreasing function of Ω. Since Re(∆) < 0, this means
|π − α| ≤ C|X| and |π2 − α

2 | ≤ C|X|. Then,

| cos
α

2
| = | sin(

π

2
− α

2
)| ≤ C|X|.

We also have, in view of (7.28):

|∆| ≤ Ω(1 + C|X|) + CX2 ≤ Ω(1 + C|X|).

Now, we write

λ =
1

1 + Ω
(1 − (B − 1

2
(u2 − c2))X2 ±

√

|∆| cos
α

2
+ i(−uX ±

√

|∆| sin α

2
)). (7.31)

If B is large enough depending on u and c, then 0 ≤ 1 − (B − 1
2 (u2 − c2))X2 ≤

1 − B
2 X2 ≤ 1. On the other hand,

√

|∆| ≤
√

Ω (1 + C|X|).



Asymptotic preserving scheme for the Euler-Poisson system 31

Therefore,

|Re((1 + Ω)λ)| ≤ 1 +
√

Ω C|X| (1 + C|X|),
|Im((1 + Ω)λ)| ≤ C|X| +

√
Ω (1 + C|X|).

It follows that

|λ|2 ≤ 1

(1 + Ω)2
((1 +

√
Ω C|X| (1 + C|X|))2 + (C|X| +

√
Ω (1 + C|X|))2)

≤ F (Ω,Ξ),

where Ξ = maxX∈U (C|X|) and

F (Ω,Ξ) =
1

(1 + Ω)2
((1 +

√
Ω Ξ (1 + Ξ))2 + (Ξ +

√
Ω (1 + Ξ))2).

We note that F is C∞ in the domain (Ω,Ξ) ∈ [Ω0,∞) × [0,Ξ0] for any Ω0 > 0,
Ξ0 > 0. Furthermore, F (Ω,Ξ) → 0 as Ω → ∞ uniformly for Ξ ∈ [0,Ξ0]. Therefore,
there exists Ω∗ such that F (Ω,Ξ) ≤ 1

2 for all (Ω,Ξ) ∈ [Ω∗,∞)× [0,Ξ0]. Then F (Ω,Ξ)
is uniformly continuous on the bounded domain [Ω0,Ω

∗] × [0,Ξ0]. Now, F (Ω, 0) =
1

1+Ω ≤ 1
1+Ω0

< 1. Let η be an arbitrary number such that 0 < η < min( 1
2 , Ω0

1+Ω0
).

Then, by uniform continuity, there exists a Ξ∗ ∈ [0,Ξ0] such that F (Ω,Ξ) ≤ 1− η for
all (Ω,Ξ) ∈ [Ω0,Ω

∗] × [0,Ξ∗] and consequently for all (Ω,Ξ) ∈ [Ω0,∞) × [0,Ξ∗]. It
follows that |λ| < 1 for all Ω > Ω0 and all X in a neighbourhood U of 0. To obtain
this result, we only had to suppose that Ω0 > 0 and that B is large enough depending
on u and c;

Second case: Ω small. We now suppose that Ω < Ω0. In view of (7.29), we can
write:

Re(∆) = −Ω(1 − BX2)2 − X2(u2 + (1 − BX2)(c2 − u2)) + O(X4),

where the O(X4) = 1
4 (u2 − c2)2X4 term is independent of Ω and B. Noting that we

can take U (depending on B) such that for X ∈ U , 1
2 ≤ 1−BX2 ≤ 1, we easily show

that

C1 := min(c2,
u2 + c2

2
) ≤ u2 + (1 − BX2)(c2 − u2) ≤ C2 := max(c2,

u2 + c2

2
).

We deduce that for X in such a neighbourhood, Re(∆) < 0 and

C ′
1(Ω + X2) ≤ |Re(∆)| ≤ Ω + C ′

2X
2.

Similarly, with (7.30) we obtain:

|Im(∆)| ≤ C|X|(Ω + X2).

Therefore, α being defined as above, we get | tan α| ≤ C|X|. Since Re(∆) < 0, this
means |π − α| ≤ C|X| and |π2 − α

2 | ≤ C|X|. Then,

| cos
α

2
| = | sin(

π

2
− α

2
)| ≤ C|X|.

Choosing the neighbourhood U such that C|X| ≤ 1 for X ∈ U in (7.28), we also
deduce that

|∆| ≤ (Ω + CX2).
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Again, using that B is large enough such that 0 ≤ 1 − (B − 1
2 (u2 − c2))X2 ≤

1 − B
2 X2, and with the fact that

√
a + b ≤ √

a +
√

b we get

|Re((1 + Ω)λ)| ≤ 1 − B

2
X2 + C|X|(Ω + CX2)1/2 ≤ 1 − (

B

2
− C)X2 + C|X|

√
Ω,

|Im((1 + Ω)λ)| ≤ C|X| + (Ω + |X|2)1/2 ≤ C|X| +
√

Ω.

We note that none of the constants in the formula above depend on B. Finally, we
have (1 + Ω)−2 = 1 − 2Ω + O(Ω2). Therefore, for Ω0 small enough and Ω ≤ Ω0, we
have (1 + Ω)−2 ≤ 1 − 3

2Ω. Then,

|λ|2 ≤ 1

(1 + Ω)2
((1 − (

B

2
− C)X2 + C|X|

√
Ω)2 + (C|X| +

√
Ω)2)

≤ (1 − 3

2
Ω)(1 − (B − C)X2 + C|X|

√
Ω + Ω + O((|X| +

√
Ω)4))

≤ 1 − (B − C)X2 + C|X|
√

Ω − 1

2
Ω + O((|X| +

√
Ω)4),

where the passage from the first to the second line is by expanding the squares and
from the second to the third is by keeping only terms of order O((|X|+

√
Ω)2). Now,

writing the last line as a sum of squares, we get:

|λ|2 ≤ 1 − (B − C)(|X| − C

2(B − C)

√
Ω)2 + (

C2

4(B − C)
− 1

2
)Ω + O((|X| +

√
Ω)4),

Now, for B large enough depending on C, we can make both B−C > 1
4 and C2

4(B−C) −
1
2 < − 1

4 . Therefore, for such B, we have

|λ|2 ≤ 1 − 1

4
((|X| − C

2(B − C)

√
Ω)2 + Ω) + O((|X| +

√
Ω)4),

and for the pair (|X|,
√

Ω) in a small neighbourhood of the origin, we deduce that
|λ|2 < 1, which ends the proof of the case Ω small.

So, we have shown that B can be chosen large enough (depending on u and c)
such that there exists a neighbourhood U of X = 0 only depending on u and c and
|λ| < 1 for all X ∈ U and all Ω ∈ R. Back to the original variables, this is the result
stated in section 4.

7.6. Convergence of a space semi-discrete scheme for the Burgers-
Poisson problem. We have the following truncation error

∂tUj +
Uj+1 + Uj + Uj−1

3

Uj+1 − Uj−1

2h
= −Φj+1 − Φj−1

2h
+ O(h2) , (7.32)

ε2 Φj+1 − 2Φj + Φj−1

h2
= Uj , (7.33)

for all ε ≤ ε0 and where O(h2) depends only on u, φ and ε0. Denoting by vj = Uj−uj ,
ψj = Φj − φj , we have

∂tvj +
Uj+1 + Uj + Uj−1

3

vj+1 − vj−1

2h
+

vj+1 + vj + vj−1

3

Uj+1 − Uj−1

2h

−vj+1 + vj + vj−1

3

vj+1 − vj−1

2h
= −ψj+1 − ψj−1

2h
+ O(h2) , (7.34)

ε2 ψj+1 − 2ψj + ψj−1

h2
= vj . (7.35)
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We deduce that

∂t

(

v2
j

2

)

+
ḡj+1/2 − ḡj−1/2

h
+

Uj+1 + Uj + Uj−1

3
vj

vj+1 − vj−1

2h

+vj
vj+1 + vj + vj−1

3

Uj+1 − Uj−1

2h
= O(h2)vj , (7.36)

where ḡj+1/2 = − 1
6 (v2

j vj+1 + vjv
2
j+1) + ε2

2

(

ψj+1−ψj

h

)2

. Using summation by parts,

we have

∂t





∑

j

v2
j

2



 −
∑

j

vjvj+1
Uj+2 − Uj−1

6h

+
∑

j

vj
vj+1 + vj + vj−1

3

Uj+1 − Uj−1

2h
=

∑

j

O(h2)vj . (7.37)

Hence,

∂t





∑

j

v2
j

2
h



 ≤ C





∑

j

v2
j

2
h



 + O(h4) . (7.38)

Therefore we have:




∑

j

v2
j

2
h



 (t) ≤ C





∑

j

v2
j

2
h



 (0) + O(h4) . (7.39)

It is easy verify that





∑

j

(Uj − u(xj))
2h



 (t) ≤ O(h4),

assuming that we also have a second order approximation of the initial data. Then
we have the following error estimate.

‖uh − u‖ =

√

∑

j

(uj − u(xj))2h ≤ Ch2,

for all ε ≤ ε0 and where C depends only on u, φ and ε0. We also have directly from
(7.35) that

ε‖φh − φ‖ = ε

√

∑

j

(φj − φ(xj))2h ≤ Ch2,

for all ε ≤ ε0 and where C depends only on u, φ and ε0. This proves the result.
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