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Shape fluctuations in nanoparticles strongly influence their stability. Here, we introduce a quantitative
model of such shape fluctuations and apply this model to the important case of Pt-shell/transition metal-
core nanoparticles. By using a Gibbs distribution for the initial shapes, we find that there is typically
enough thermal energy at room temperature to excite random shape fluctuations in core-shell nanoparticles,
whose amplitudes are sufficiently high that the cores of such particles are transiently exposed to the
surrounding environment. If this environment is acidic and dissolves away the core, then a hollow shell
containing a pinhole is formed; however, this pinhole quickly closes, leaving a hollow nanoparticle. These
results favorably compare to experiment, much more so than competing models based on the room-
temperature Kirkendall effect.
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There are a number of recent observations of
hollow nanoparticles formed via the Kirkendall effect in
annealed core-shell nanoparticles, i.e., uncompensated
high-temperature bulk interdiffusion between the core and
the shell [1]. This effect is certainly operative when the final
shell composition is an alloy mixture of the two components
[2]. Recently, however, the Kirkendall effect has been
implicated in the formation of hollow Pt-shell nanoparticles
formed from Pt-shell/transition metal (e.g., Ni) core nano-
particles in electrolytes at room temperature [3–6]. This class
of nanoparticles is useful in many low-temperature electro-
chemical reactions, such as oxygen reduction in fuel cells.
This “room temperature Kirkendall effect” (rt-KE) is
invoked in systems that differ from the high-temperature
phenomena in an important way: the shell that is observed to
remain after electrochemical processing, which serves to
dissolve away any surface Ni, is comprised of pure Pt.
In this Letter, we argue that the kinetics of vacancy-

mediated diffusion in core-shell nanoparticles at room
temperature are far too slow to justify attribution of the
formation of Pt-shell hollow nanoparticles in electrochemi-
cal environments to the rt-KE. We present an alternative
model (Fig. 1) in which thermal energy induces surface-
diffusion mediated random fluctuations in the shape of
Pt-shell nanoparticles, fluctuations whose amplitudes are
high enough to expose the core, forming pinholes in the
shell and allowing the cores to be dissolved away. Once the
cores are dissolved away, the mismatch of interior and
exterior curvatures provides a new driving force for surface
diffusion through the pinholes that closes them rapidly.
In early studies of dealloying (dissolving the less

noble component out of a two-component alloy), it was
hypothesized that the less noble component might be
transported to the surface via a bulk vacancy diffusion

mechanism [7]. However, the site concentration of vacan-
cies e−ΔGv=ðkBTÞ, where ΔGv is the vacancy formation
energy (ΔGv ¼ 1.15 eV for Pt), is orders of magnitude
too low at room temperature (1 vacancy per 3 × 1019 atoms;

Fig. 1 Stages in the surface-diffusion driven formation of
hollow nanoparticles. (i) A core-shell nanoparticle of radius
R0 and shell thickness h; (ii) shape fluctuations in the outer
surface expose the core, allowing it to be dissolved away; (iii) a
pinhole of radius r exists in the shell, but quickly closes up
because of a diffusional flux from the convex outer surface A
through the pinhole edge B and into the inner concave surface C.
(iv) When the radius of curvature of the pinhole edge a becomes
sufficiently large, the net flux at the pinhole edge Jþ − J− is
positive, closing the pinhole and leaving a hollow nanoparticle.
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equivalent to one vacancy in 8 × 1014 10 nm-diameter Pt
nanoparticles) [8]. Similarly, the bulk migration energy
(∼1.5 eV) yields bulk diffusion coefficients of order
10−27 cm2= sec [9]; this is geologically slow in comparison
to the minutes time scale of the rt-KE. To account for higher
vacancy concentrations in Pt-shell particles in acid electro-
lytes, it is hypothesized that experimental procedures lead
to an excess of vacancies at the core-shell interface;
similarly, fast vacancy diffusion can be induced in simu-
lation, but only by imposing unrealistically high driving
forces [10]. Dealloying has subsequently been shown to be
controlled by surface diffusion [11], so it is reasonable to
explore whether a similar mechanism can be invoked for
core-shell nanoparticles at room temperature, without
resorting to the rt-KE.
In contrast to kinetic growth problems [12], we hold

the nanoparticle volume constant, with a steady-state
spherical shape. We focus on small random fluctuations
around this steady-state shape. Such small fluctuations
have long been observed in experiment [13], and resem-
ble vesicle deformations analyzed as a free-boundary
problem [14]. We assume uniform surface energy γ,
leading to a spherical Wulff shape. The assumption
regarding kinetics is that the shape evolves only via
surface diffusion, so that the normal velocity vn of the
surface is [15]

vn ¼ −MΔSκ: (1)

Here, κ ¼ ðκ1 þ κ2Þ=2 is the mean curvature (the arith-
metic mean of principal curvatures κ1 and κ2), ΔS is the
surface Laplacian, and M ¼ CsurfDΩ2γ=ðkBTÞ is the
mobility associated with surface diffusion, where Csurf
is the areal concentration of diffusers, D is the surface
diffusion coefficient, and Ω is the atomic volume. A
stochastic noise term could be added to Eq. (1), rendering
the analysis significantly complex. This approach does
not provide fundamentally different insights than what
we report here.
Our simplified approach relies on using Eq. (1) with

random initial nanoparticle shapes. We consider an ensem-
ble of initial axisymmetric shapes that form small pertur-
bations of a sphere of radius R0; these remain axisymmetric
by evolution under Eq. (1). In the spirit of [14], let ρðs; tÞ
be the distance of any point on the surface from the axis (say,
z axis) of rotation, where s is the arc length of the contour
that generates the surface and t is time; 0 ≤ s ≤ smðtÞ and
ρðsmðtÞ; tÞ ¼ 0. We consider the deterministic evolution
of a perturbed sphere from an initial time (t ¼ 0) for
which ρðs; 0Þ ¼ R0 sinðs=R0Þ þ εψ0ðsÞ, 0 < ε ≪ 1; as a
result, we expect that at any later time, t > 0,
ρðs; tÞ ¼ R0 sinðs=R0Þ þ εψ ð1Þðs; tÞ þ ε2ψ ð2Þðs; tÞ þ � � �,
where each ψ ðkÞ (k ¼ 1; 2;…) has units of length. For
our purposes, it suffices to compute only ψ ð1Þðs; tÞ, which we
determine via the mean curvature expansion κðs; tÞ ¼
1=R0 þ εκð1Þðs; tÞ þ � � �. By Eq. (1), this κð1Þðs; tÞ satisfies

[14] ∂tκ
ð1Þ ¼ −ðM=2Þ½Δ2

0 þ 2R−2
0 Δ0�κð1Þ, where Δ0 is the

Laplacian on the sphere of radius R0, Δ0 ¼ ∂ss þ
R−1
0 cotðs=R0Þ∂s, 0 ≤ s ≤ πR0, and ∂s denotes the partial

derivative ∂=∂s. We apply an expansion of κð1Þ in spherical
harmonics Yl0ðθÞ with mode amplitudes Kl viz.,

κð1Þðs; tÞ ¼ R−2
0

X∞
l¼2

KlYl0ðθÞe−α2l Mt=ð2R4
0
Þ; (2)

where α2l ¼ ðl − 1Þlðlþ 1Þðlþ 2Þ, l ≥ 2, and 0 ≤ θ ¼
s=R0 ≤ π (θ: polar angle). By definition of the mean
curvature, we obtain ∂θθψ

ð1Þ þ ψ ð1Þ ¼ −2R2
0κ

ð1Þ sin θ,
which yields the time-dependent shape of the perturbed
particle [14]:

ψ ð1Þðs; tÞ ¼
X∞
l¼2

Clψ̂ lðθÞe−α2l Mt=ð2R4
0
Þ; Cl ¼ −2Kl; (3)

Cl has units of length and the (non-dimensional) ψ̂ lðθÞ is the
lth-mode shape function,

ψ̂ lðθÞ ¼ − cos θ
Z

θ

0

Yl0ðθ0Þsin2θ0dθ0

þ sin θ
Z

θ

0

Yl0ðθ0Þ sin θ0 cos θ0dθ0. (4)

Equations (3) and (4) describe the leading-order correc-
tion for the shape function given the amplitudes Cl, which
can be extracted from ψ0ðsÞ or κð1Þðs; 0Þ. Random fluctua-
tions are induced by imposing random Cl in the initial
condition via the Gibbs distribution at t ¼ 0. By writing
the total energy of the perturbed particle as EðtÞ ¼
4πR2

0γ þ EðtÞ, where Eð0Þ depends on ψ0ðsÞ, we assume
that the probability distribution of initial shapes ψ0ðsÞ, or
mode amplitudes fClg∞l¼2, is P½ψ0� ¼ Ze−Eð0Þ=ðkBTÞ (Z:
normalization constant). The statistics of shape fluctuations
stem from Eq. (3). To express P in terms of fClg∞l¼2,
consider the formula [15] _E≡ dEðtÞ=dt ¼ −2γ∬SvnκdS,
where S is the nanoparticle surface. By Eqs. 1) and 2, we
compute _EðtÞ ≈ −2ε2Mγ∬Sj∇Sκ

ð1Þj2dS ¼ −ε2ðMγ=R4
0Þ×P

l½lðlþ 1Þ=ð2lþ 1Þ�C2
l e

−α2l Mt=R4
0 , which is integrated to

yield

EðtÞ ≈ γ
X∞
l¼2

½ð2lþ 1Þðl − 1Þðlþ 2Þ�−1C2
l e

−α2l Mt=R4
0 . (5)

Thus, EðtÞ is a random variable for every t. In the steady-
state limit, Eðt → ∞Þ ¼ 4πR2

0γ, we recover the surface
energy of the unperturbed shape (the sphere). To derive
Eq. (5), we have set ε ¼ 1, which only requires that the
standard deviation of Cl be small compared to R0=l.
By the Gibbs distribution P ¼ Ze−Eð0Þ=ðkBTÞ; with Eq. (5),

P ¼ Q
l Pl, where Pl∝e−γ½ð2lþ1Þðl−1Þðlþ2Þ�−1C2

l =ðkBTÞ. Thus,
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the random fluctuation amplitudes Cl are independent, each
with zero mean (hCli ¼ 0) and variance hC2

l i ¼
ð1=2Þð2lþ 1Þðl − 1Þðlþ 2ÞkBT=γ. In order for the linear
theory to hold, a reasonable criterion is that

ð1=2Þ
ffiffiffiffiffiffiffiffiffi
hC2

l i
q

< R0=l, where R0=l is of order the wave-

length, so this linear model is valid for modes l such that

l < N ≡ ð4γR2
0=kBTÞ1=5: (6)

Equation (5) indicates that, for fixed perturbation ampli-
tude Cl, the probability Pl of finding the lth fluctuation
mode increases with l. This is expected physically, as
high-l modes are associated with high spatial frequency
fluctuations that require short-distance mass transport.
Correspondingly, however, high-l fluctuations are also very
short lived. Thus, the consideration of any nonlinearity is
not expected to play a physically significant role in the
mechanism of hollow particle formation discussed in this
Letter.
In electrochemical experiments involving Pt-shell

nanoparticles, the exterior surface of the particles is often
cycled between potentials that form a surface oxide, leaving
a surface comprised of PtO, and reducing potentials that
leave a pure Pt surface. Values for the surface energies and
atomic volumes of Pt, PtO, are γPt ¼ 15 eV=nm2,
γPtO=Pt ¼ 3.1 eV=nm2, ΩPt ¼ 1.5 × 10−2 nm3, ΩPtO ¼
2.5 × 10−2 nm3 [16,17]. We will focus our discussion on
particles with radius R0 ¼ 6.5 nm and shell thickness of
2 nm, at T ¼ 298 K, comparing to the data of Wang et al.
[3]. For these parameters, Eq. (6) yields an upper
bound for l near N ∼ 10. Independent experimental
measurements of Csurf and D have not been made.
However, Martinez Jubrias et al. [17] experimentally
measured the morphological relaxation times for rough-
ened Pt surfaces as a function of temperature and electro-
chemical potential, yielding a range for the product
DCsurf from 0.023 to 0.44 sec−1 over relevant electro-
chemical potentials from ∼0.1 V (Pt) to ∼1.1 (PtO) vs
RHE (RHE: reversible hydrogen electrode). Note that
significant details about activation barriers, formation
energies, and particular diffusion pathways on Pt surfaces
in contact with aqueous acidic electrolytes with
adsorbed oxide species and solution anions are as-yet
unknown for these systems, making modeling by kinetic
Monte Carlo methods, for instance, difficult. Figure 2
shows the probability Fl ¼ 2

R
∞
C�
PlðCÞdC that a fluc-

tuation of mode l exceeds a critical amplitude C�, for
C� ¼ 0.25, 2.0 nm, for Pt- and PtO-terminated surfaces.
Assuming the Gibbs distribution P ∝ e−Eð0Þ=ðkBTÞ for the
initial shapes, cf. Eq. (5), FlðC�Þ ¼ erfcðβlC�Þ, where βl ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ½ð2lþ 1Þðl − 1Þðlþ 2Þ�−1=kBT

p
and erfc is the comple-

mentary error function. For an amplitude of C� ¼ 0.25 nm
(i.e., a 0.5 nm thick shell), Pl rises to nearly unity by l ∼ 10
for both Pt and PtO surfaces. Even for an amplitude of

Cl ¼ 2.0 nm (a 4.0 nm thick shell), the probability Pl is
greater than 50% at l ∼ 10 for PtO surfaces, although this
probability is lower for Pt surfaces.
At high potentials, dissolution of the core of 10 nm

diameter particles is typically faster than 1 sec. For such
dissolution to occur, the fluctuation lifetime must be longer.
By the exponential in Eq. (5), the lifetime of the lth mode is
estimated as τl ¼ R4

0M
−1α−2l and is plotted in Fig. 2 for

Pt- and PtO-terminated surfaces. For nearly all modes, the
lifetime of fluctuations is greater than 1 sec. (still, with a
high probability of existence), rising to greater than 104

seconds for the very lowest mode (l ¼ 2) on Pt-terminated
surfaces. For shell thickness from 0.5 to 4.0 nm, we
conclude that under reasonable conditions fluctuations
are both sufficiently probable and long enough lived to
expose the core to the surrounding electrolyte, allowing the
cores to be dissolved away. This conclusion holds for both
Pt-terminated and PtO-terminated surfaces. The PtO sur-
face, however, is significantly more mobile than Pt. This
fact may explain why the hollow Pt shell nanoparticles in
Co3Pt nanoparticles are seen only when the particles are
subjected to high potential [4,6]. We also expect our
conclusions to be qualitatively unaffected by including
azimuthal modes.
To this point we have argued that pinholes in the

nanoparticle Pt shells are inevitable. However, they are
not observed experimentally [3], and their treatment must
be considered separately from the shape fluctuations that

Fig. 2 (solid lines; left vertical axis): Pinhole formation prob-
ability Fl associated with generating a fluctuation with peak-to-
valley length greater than threshold 2C�, vs fluctuation mode l.
(dashed lines; right vertical axis): Fluctuation lifetime τl vs
fluctuation mode l. Results are shown for Pt- and PtO-terminated
surfaces, with shells of 0.5 and 4.0 nm thickness and core radius
R0 ¼ 6.5 nm; in all cases, fluctuations are highly probable and
possess lifetimes long enough to allow attack of the core by an
external electrolyte.
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led to exposure of the core to the electrolyte. A simple
kinetic model shows that small pinholes should close quite
quickly. The central physical observation is that without the
pinhole, curvature variations on the surface are relatively
small, but once the core has been dissolved away, there is a
significant new driving force for mass transport from the
convex outer surface to the concave inner one; this driving
force distinguishes this problem from that of pinhole
closure in planar films [18]. Mass transport occurs via
surface diffusion as follows: In good approximation, the
geometry of a shell with a pinhole is characterized by the
mean curvature at three points (labeled A, B, and C in
Fig. 1). According to the Gibbs-Thomson relation, the
chemical potential at each point is given by μ ¼ μ∞ þ γκΩ,
where κ is the mean curvature as above, and μ∞ is
the reference chemical potential of a planar surface.
Upon the formation of the pinhole, κA ¼ 1=R0 and
κC ¼ −1=ðR0 − hÞ, leading to an overall gradient in
chemical potential that provides a driving force for mass
transport from the outer surface to the inner one. At the
pinhole edge κB ¼ ð1=2Þð1=a − 1=rÞ, where r is the radius
of the pinhole and 1=a is the curvature of the edge of the
pinhole (Fig. 1). In principle, when the pinhole first opens,
a may be very small, so that μB ≫ μA; μC, and the pinhole
will open. However, this process blunts the edge of the
pinhole, quickly increasing the magnitude of a to a value of
order of the shell thickness h. For small pinholes, the 1=r
term then will dominate the chemical potential of the
pinhole. Note that the condition r ≪ h for closure of the
pinhole does not violate our assumption of linearity which
requires that the standard deviation of h be much smaller
than R0.
A simple analysis for the closure time of the pinhole

follows: Quantitatively, if h is the shell thickness then the
flux Jþ to the pinhole edge is

Jþ ¼ − DC
kBT

�
μB − μA
Δx1

�

¼ −DCsurfγΩ2=3

kBT

�
1

2

�
1

a
− 1

r

�
− 1

R0

�
1

ðπR0 − rÞ : (7)

This is a minimum flux, because we assume the distance
Δx1 over which the gradient is measured is maximal, equal
to the distance from the pinhole edge to the point A on the
particle farthest away from the edge, i.e., Δx1 ¼ πR0 − r,
and we have related the volumetric concentration of
diffusers C to the surface concentration Csurf using
Csurf ¼ CΩ1=3. An expression similar to Eq. (7) can be
written for the flux J− between the pinhole edge and the
inner surface usingΔx2 ¼ πðR0 − hÞ − r. For large enough
a=r0, one finds that the net flux Jnet ¼ Jþ − J− to the
pinhole edge is always positive, consistent with the notion
that pinholes should shrink. In the limit of small r=R0 and
h=R0, this net flux is given by Jnet ¼ ½DCsurfγΩ2=3=
ðπR0kBTÞ�ð1=r − 1=aÞ. Mass conservation relates the

shrinkage rate dr=dt of the pores to the net flux as
dr=dt ¼ −JnetΩ, allowing us to determine the closure
time tc, i.e., the time elapsed during a change in pinhole
radius from r ¼ r0 to r ¼ 0:

tc ¼
�

πaR0kBT

DCsurfγΩ5=3

��
a ln

���� a
a − r0

���� − r0

�
: (8)

Again, as we have taken the longest diffusion path
possible, Eq. (8) is an approximate upper bound for the
closure time. Figure 3 shows the closure time tc vs initial
pinhole radius r0 for R0 ¼ 6.5 nm in shells comprised of Pt
and PtO surfaces, for various values of the pinhole edge
curvature a−1 (r0 < a). Pinholes in PtO-terminated surfa-
ces close very quickly; except when the pinholes have
radius greater than 1 nm, they will close up within order of
100 sec., i.e., shorter than the time of typical experiments
such as described in Ref. [3]. Pt-terminated surfaces close
more slowly, consistent with their smaller mobility, but
even here we can expect pinholes of radius 0.5 nm to close
up within order of 100 sec.
In this Letter, we have argued in favor to an alternative to

the room-temperature Kirkendall effect in core-shell nano-
particles. Especially for the technologically relevant case of
Pt nanoparticles, we showed that surface fluctuations are
highly probable and lead to exposure of nanoparticle cores.
When these cores dissolve, any pinholes in the shell
quickly close. The model here is minimal, partly based
on the reasonable assumptions of an initial Gibbs distri-
bution and small shape fluctuations, and may be further

Fig. 3 Pinhole closure time tc vs initial pinhole radius r0 for
different values of the pinhole edge radius of curvature a. PtO-
terminated surfaces: thick lines; Pt-terminated surfaces: thin
dashed lines.
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refined by including effects of anisotropic surface energy
and/or effects associated with steps, terraces, and facet
boundaries on particle surfaces. More broadly, this work
confirms the dynamic nature of nanoparticle shapes seen
in microscopy and electrochemical measurements, and
quantifies the degree to which thermal fluctuations can
impact the stability and lifetime of structurally complex
nanoparticles.
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