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Abstract. This paper is concerned with the question of reconstructing a vector in a finite-
dimensional complex Hilbert space when only the magnitudes of the coefficients of the vector
under a redundant linear map are known. We present new invertibility results as well as
an iterative algorithm that finds the least-square solution which is robust in the presence
of noise. We analyze its numerical performance by comparing it to the Cramer-Rao lower
bound.
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1. Introduction

This paper is concerned with the question of reconstructing a vector x in a finite-dimensional
complex Hilbert space H when only the magnitudes of the coefficients of the vector under
a redundant linear map are known.

Specifically our problem is to reconstruct x ∈ H up to a global phase factor from the
magnitudes {|〈x, fk〉| , 1 ≤ k ≤ m} where {f1, · · · , fm} is a frame (complete system) for H.
The real case was considered in [6]. Here we develop the theory for the complex case.

A previous paper [3] described the importance of this problem to signal processing, in
particular to the analysis of speech. The problem appears in X-Ray crystallography under
the name of ”phase retrieval” problem (see [9]) where the frame vectors are the Fourier frame
vectors. The case of the windowed Fourier transform was considered in the ’80s [29]; see
also [5] for a frame based approach to this case. A different approach is taken in [33]. The
authors propose a novel algorithm adapted to compactly supported signals and FFT that
uses individual signal spectral powers and two additional interferences between signals. A
3-term polarization identity has been used in [1] together with the angular synchronization
algorithm.

Recently the authors of [13] developed a convex optimization algorithm (PhaseLift) and
proved its ability to perform exact reconstruction in the absence of noise, as well as its
stablity under noise conditions. In a separate paper, [14], the authors developed further a
similar algorithm in the case of windowed DFT. The original requirement of m = O(n log(n))

1



2 R. BALAN

vectors has been relaxed to m = O(n) in [15]. Similar convex optimization solutions have
been proposed by the authors of [20] and [34]. Additionally, [23] studied the duality gap in
this approach and obtained a necessary and sufficient condition for the existence of a dual
certificate.

While writing this paper, we become aware of [8] where the authors obtained similar
results to the injectivity criteria presented here, as well as to the Cramer-Rao Lower Bound
derived in this paper. We will comment more later in the paper. We also acknowledge the
paper [21] where certain Lipschitz bounds have been obtained in the real case. The real
case of the stabilty bounds obtained here are presented in a separate paper [7] together with
additional results for the real case.

The organization of the paper is as follows. In section 2 we define the problem explicitly.
In section 3 we describe new analysis results. Specifically we analyze in more detail spaces of
symmetric operators of constrained signature, and then we show how they are related to the
phaseless recovery problem. Our results are canonical, meaning they are independent to a
particular choice of basis. In section 4 we establish two robustness results: bi-Lipschitzianity
of the nonlinear analysis map, and the Cramer-Rao Lower Bound (CRLB). In section 5 we
present a new reconstruction algorithm based on the Least-Square method. We also obtain
robustness bounds to noise. Its performance is analyzed in section 6 and is compared to the
CRLB. Section 7 contains conclusions and is followed by references.

2. Background

Let H be an n-dimensional complex Hilbert space (such as Cn or Cp1×p2 the vector space
of p1 × p2 complex matrices) with scalar product 〈, 〉 linear in the first term and antilinear
in the second term and a conjugation c : H → H (see e.g. [22]; conjugation is an antilinear
transformation that squares to the identity). Let F = {f1, · · · , fm} be a spanning set of m
vectors in H. As H has finite dimension such a set forms a frame. In the infinite dimensional
case, the concept of frame involves a stronger property than completeness (see for instance
[16]). We review additional terminology and properties which remain still true in the infinite
dimensional setting. The set F is a frame if and only if there are two positive constants
0 < A ≤ B <∞ (called frame bounds) such that

A‖x‖2 ≤
m∑
k=1

|〈x, fk〉|2 ≤ B‖x‖2 .

When we can choose A = B the frame is said to be tight. For A = B = 1 the frame is called
Parseval. A set of vectors F of the n-dimensional Hilbert space H is said to have full spark if
every subset of n vectors is linearly independent (see [2] for a full discussion of such frames).

2.1. Problem Definition and Notations. For a vector x ∈ H, the collection of coefficients
{〈x, fk〉 , 1 ≤ k ≤ m} represents the analysis of the vector x given by the frame F. In H we
consider the following equivalence relation:

(2.1) x, y ∈ H , x ∼ y iff y = zx for some scalar z with |z| = 1.
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Note z = eiϕ for some real number ϕ. Let Ĥ = H/ ∼ be the set of classes of equivalence
induced by this relation. Thus x̂ = {eiαx, 0 ≤ α < 2π}. The analysis map induces the
following nonlinear map

(2.2) α : Ĥ → (R+)m , α(x̂) = (|〈x, fk〉|2)1≤k≤m

where R+ = {x , x ∈ R , x ≥ 0} is the set of nonnegative real numbers. In [6] we
studied when the nonlinear map α is injective, mostly in the real case, and we provided
some necessary conditions of injectivity in the complex case. We review these results below.
In this paper we obtain additional injectivity results. We then concentrate on the additive
white Gaussian noise model

(2.3) y = α(x) + ν , ν ∼ N (0, σ2).

We describe an algorithm (the Iterative Regularized Least-Square (IRLS) algorithm) to solve
the estimation problem. We prove some convergence results and we study its performance
in the noisy case. We shall derive the Cramer-Rao Lower Bound (CRLB) for this model and
compare the algorithm performance to this bound.

We describe several objects that will be used in this paper.
The set B(H) denotes the set of bounded linear operators on H. In B(H) for any 1 ≤

p ≤ ∞, the p-norm of T ∈ B(H) denoted ‖T‖p is given by the p-norm of its set of singular

eigenvalues. In particular for p = 1, the 1-norm ‖T‖1 is called the nuclear norm of T ; for

p = 2, the 2-norm ‖T‖2 =
√
tr(T ∗T ) is the Frobenius norm of T ; for p = ∞, the ∞-norm

‖T‖∞ is the same as the operator norm of T on H, simply denoted ‖T‖.
In general, for two operators T, S ∈ B(H) we denote 〈T, S〉B(H) = tr{TS∗} their Hilbert-

Schmidt scalar product, where S∗ is the adjoint of S and tr denotes the trace. Note the
scalar product is basis independent, but it depends on the underlying Hilbert space structure.
When no danger of confusion we drop the index B(H) from the scalar product notation.

For each frame vector fk we denote by Fk its associated rank-1 operator

(2.4) Fk : H → H , Fk(x) = 〈x, fk〉fk.

In general the associated rank-1 operator to a vector x ∈ H is the operator X : H → H,
X = xx∗ which acts by X(v) = 〈v, x〉x. Here and throughout the paper x∗ denotes the
adjoint (or dual) of x, that is x∗ : H → C, x∗(v) = 〈v, x〉. Note X has at most rank one.
Specifically, X has rank one if and only if x 6= 0; otherwise X has rank zero.

For any two vectors u, v ∈ H we define their symmetric outer product denoted Ju, vK by

(2.5) Ju, vK : H → H , Ju, vK =
1

2
(uv∗ + vu∗) , Ju, vK(x) =

1

2
(〈x, u〉v + 〈x, v〉u) .

Note the rank-1 operator associated to a vector x can be written as Jx, xK. In particular
Fk = Jfk, fkK. Note also Ju, vK is R-bilinear but it is not C-(bi)linear. Furthermore Ju, vK =
Jv, uK.
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Following [4] the nonlinear map α induces a linear map A on the set B(H) of bounded
operators on H:

(2.6) A : B(H)→ Cm , (A(T ))k = 〈Tfk, fk〉 = tr{TFk} , 1 ≤ k ≤ m.

Thus (A(T ))k = 〈T, Fk〉B(H). Also note α(x) = A(X) where X = xx∗ is the rank-1 operator

associated to x. This remark was first observed by B. Bodmann in [4].
Let Sym(H) denote the set of self-adjoint operators on H, Sym(H) = {T ∈ B(H) , T ∗ =

T}. We denote by Sp,q or Sp,q(H), the set of self-adjoint operators on H that have at most
p positive eigenvalues and at most q negative eigenvalues:

Sp,q ={T ∈ Sym(H) , Sp(T ) = {λ1, · · · , λn} ,
λ1 ≥ · · · ≥ λp ≥ 0 = λp+1 = · · · = λn−q ≥ λn−q+1 ≥ · · · ≥ λn}

(2.7)

where Sp(T ) denotes the spectrum of T (i.e. the set of its eigenvalues). Notice Sp,q is not
a linear space, but instead it is a cone in B(H). This cone property is key in deriving
robustness and stability bounds later on.

We denote by λmax(T ) the largest eigenvalue of T and by λmin(T ) the smallest eigenvalue
of T . In particular we are interested in S1,0 and S1,1:

S1,0 = {T ∈ Sym(H) , rank(T ) ≤ 1, λmin(T ) = 0}(2.8)

S1,1 = {T ∈ Sym(H) , rank(T ) ≤ 2, Sp(T ) = {λmax(T ), 0(n−2), λmin(T )},(2.9)

λmax(T ) ≥ 0 ≥ λmin(T )}

Note the following obvious inclusions

(2.10) {0} ⊂ S1,0 ⊂ S1,1 ⊂ Sym(H) , {0} ⊂ S0,1 ⊂ S1,1 ⊂ Sym(H)

We denote by S̊p,q the subset of Sp,q of selfadjoint operators that have rank p + q, hence
exactly p strictly positive eigenvalues and q strictly negative eigenvalues. Thus

(2.11) Sp,q = S̊p,q ∪ Sp−1,q ∪ Sp,q−1

represents a disjoint partition of Sp,q. In particular

(2.12) S1,1 = S̊1,1 ∪ S0,1 ∪ S1,0 , S1,0 = S̊1,0 ∪ {0} .

Finally we let GL(H) denote the group of invertible linear operators on H. A more detailed
analysis of these sets is presented in subsection 3.1.

Next we describe the realification of the Hilbert space H. To do so canonically we need
to fix a conjugation c : H → H. To the complex Hilbert space H with conjugation c
we associate its 2n-dimensional real vector space HR subset of H × H built from vectors
vR = 1

2
(v + c(v)) and vI = 1

2i
(v − c(v)) as follows:

(2.13) HR =

{(
1

2
(v + c(v)),

1

2i
(v − c(v))

)
, v ∈ H

}
.
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Thus HR is the image of H through the R-linear map,

(2.14) j : H → H ×H , j(v) =

(
1

2
(v + c(v)),

1

2i
(v − c(v))

)
.

Note j is injective with range HR. Furthermore j : H → HR is a norm preserving R-
isomorphism. Its inverse is given by

(2.15) j−1 : HR → H , j−1(u, v) = u+ iv .

Let J denote the linear map defined by

(2.16) J : H ×H → H ×H , J(v, w) = (−w, v) .

Note it is conjugate to the multiplication by i in H:

(2.17) J : HR → HR , J(j(v)) = j(iv) .

Hence HR is J invariant. In HR the induced scalar product is given by
(2.18)

〈j(v), j(w)〉 :=

〈
1

2
(v + c(v)),

1

2
(w + c(w))

〉
+

〈
1

2i
(v − ic(v)),

1

2i
(w − c(w))

〉
= real(〈v, w〉).

We denote by 〈v, w〉R = real(〈v, w〉) the R-linear inner product on H. Note

〈u, v〉 = real(〈u, v〉) + i imag(〈u, v〉) = 〈u, v〉R − i〈iu, v〉R
= 〈u, v〉R + i〈u, iv〉R = 〈j(u), j(v)〉+ i〈j(u), J j(v)〉.

(2.19)

If {e1, · · · , en} is an orthonormal basis in H, then {j(e1), · · · , j(en), Jj(e1), · · · , Jj(en)} is an
orthonormal basis in HR. Which shows the real dimension of HR is 2n, dimRHR = 2n.

On H ×H there are two inner product structures:

〈(x, y), (u, v)〉C = 〈x, u〉+ 〈y, v〉(2.20)

〈(x, y), (u, v)〉R =
1

2
(〈(x, y), (u, v)〉+ 〈(u, v), (x, y)〉) = 〈x, u〉R + 〈y, v〉R(2.21)

With respect to 〈·, ·〉C, H ×H is a C-vector space of dimension 2n. With respect to 〈·, ·〉R,
H×H is a R-vector space of dimension 4n. On HR the two inner products coincide. Because
of this fact we shall simply denote 〈ξ, η〉HR

or 〈ξ, η〉 the scalar product on H ×H whenever
ξ, η ∈ HR. Furthermore j is norm preserving ‖x‖H = ‖j(x)‖HR

and 〈x, y〉R = 〈j(x), j(y)〉HR
for all x, y ∈ H. The orthogonal complement of HR in H ×H with respect to 〈·, ·〉R is given
by

(2.22) H⊥R = iHR =

{(
i

2
(x+ c(x)),

1

2
(x− c(x))

)
, x ∈ H

}
.

The orthogonal projection onto HR with respect to the real structure is given by

(2.23) PR : H ×H → HR ⊂ H ×H , PR(u, v) =

(
1

2
(u+ c(u)),

1

2
(v + c(v))

)
.
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The projection onto the orthogonal complement H⊥R is given by
(2.24)

P⊥R = 1− PR , P
⊥
R (u, v) =

(
1

2
(u− c(u)),

1

2
(v − c(v))

)
= i

(
1

2i
(u− c(u)),

1

2i
(v − c(v))

)
.

Note:

(2.25) P⊥R (u, v) = −iPR(iu, iv) .

Fix a, b ∈ H and define the linear operator on H,

(2.26) Ta,b : H → H , Ta,b(x) = 〈x, a〉b .

Associate the following R-linear operator on H ×H

(2.27) T̃a,b : H ×H → HR ⊂ H ×H , T̃a,b(u) = 〈u, j(a)〉Rj(b) + 〈u, j(ia)〉Rj(ib) .

Note 〈j(b), j(ib)〉R = 0 and HR is invariant under the action of Ta,b. Direct computations
show the following diagram is commutative:

(2.28)

Ta,b : H
Ta,b−→ H

j ↓ ↓ j

T̃a,b : HR
T̃a,b−→ HR

Similarly each symmetric operator T in Sym(H) gets mapped into a symmetric operator in
Sym(HR) of double rank. Denote by τ this mapping, τ : Sym(H)→ Sym(HR) that makes
the following diagram commutative:

(2.29)
H

T−→ H
j ↓ ↓ j

HR
τ(T )−→ HR

If desired, τ(T ) can be extended to H×H using the R-linear scalar product 〈·, ·〉R on H×H.
τ is R-linear but not C-linear. In particular:

T = Jx, xK ∈ S1,0 Z=⇒ τ(T ) = Jj(x), j(x)K + Jj(ix), j(ix)K ∈ S2,0(HR)(2.30)

T = Jx, yK ∈ S1,1 Z=⇒ τ(T ) = Jj(x), j(y)K + Jj(ix), j(iy)K ∈ S2,2(HR)(2.31)

Using the R-linear operator J introduced in (2.16) the first relation above can be rewritten
as

(2.32) τ(xx∗) = ξξ∗ + Jξξ∗J∗ , where ξ = j(x) ∈ HR

and the adjoints ξ∗ and J∗ are taken with respect to the scalar product of HR. In general an
operator in Sp,q(H) gets mapped into an operator in S2p,2q(HR). Note the map τ preserves
scalar products between selfadjoint operators up to a multiplicative constant:

(2.33) 〈T, S〉B(H) = 2〈τ(T ), τ(S)〉B(HR)
.
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Thus τ is a monomorphism (i.e. linear injective morphism) between the R-vector spaces
Sym(H) and Sym(HR). We shall discuss in more details the linear map τ in subsection 3.2.

Note, in the case H = Cn, c(z) = (z̄1, · · · , z̄n)T , and 〈v, w〉 = vT c(w), the map j acts
by z ∈ Cn 7→ j(z) = (real(zT ), imag(zT ))T . Here T denotes transposition. Thus HR =
{(real(vT ), imag(vT ))T , v ∈ Cn} = R2n, and the R-linear map J has the block form

J =

[
0 −I
I 0

]
where I is the identity matrix of size n. The scalar product in HR is the usual real scalar
product. For any vector ξ ∈ HR = R2n the adjoint reduces to transposition ξ∗ = ξT .

We return to the frame set F = {f1, · · · , fm} and the Hilbert space H. We let

(2.34) Φk = τ(fkf
∗
k ) = ϕkϕ

∗
k + Jϕkϕ

∗
kJ
∗

denote the image of Fk = Jfk, fkK under τ , where ϕk = j(fk) is an element of HR.
The last notation we introduce here is the following map on HR:

(2.35) R : HR → Sym(HR) , R(ξ) =
m∑
k=1

Φkξξ
∗Φk.

As we will see later R(ξ) is related to the Fisher information matrix for the measurement
model (2.3), and it plays a key role in obtaining a necessary and sufficient condition of
injectivity for the nonlinear map α. More explicit

(2.36) R(ξ) =
m∑
k=1

vkv
∗
k , vk = Φkξ = 〈ξ, ϕk〉ϕk + 〈ξ, Jϕk〉Jϕk.

We shall not overload the notation and use the same letter R to denote the map R : H →
Sym(HR), defined by x 7→ R(j(x)). Finally, we let δi,j denote the Kroneker symbol: δi,j = 1
if i = j, and 0 otherwise.

2.2. Existing Results. We revise now existing results on injectivity of the nonlinear map
α. A subset Z of a topological space (X, τ) is said to be generic if its open interior is
dense. In the following statements, the term generic refers to the Zarisky topology: a set
Z ⊂ Kn×m = Kn × · · · ×Kn is said to be generic if Z is dense in Kn×m and its complement
is a finite union of zero sets of polynomials in nm variables with coefficients in the field K
(here K = R or K = C).

Theorem 2.1. In the real case when H = Rn the following are equivalent:

(1) The nonlinear map α is injective;
(2) ([3], Th.2.8) For any disjoint partition of the frame set F = F1 ∪ F2, either F1 spans

H or F2 spans H.
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(3) ([6],Th.2.4(2)) For any two vectors x, y ∈ H if x 6= 0 and y 6= 0 then
m∑
k=1

|〈x, fk〉|2|〈y, fk〉|2 > 0

(4) ([6],Th.2.4(3)) There is a real constant a0 > 0 so that for all x, y ∈ H,

(2.37)
m∑
k=1

|〈x, fk〉|2|〈y, fk〉|2 ≥ a0‖x‖2‖y‖2

(5) ([6],Th.2.4(4)) There is a real constant a0 > 0 so that for all x ∈ H,

(2.38) R(x) :=
m∑
k=1

|〈x, fk〉|2〈·, fk〉fk ≥ a0I

where the inequality is in the sense of quadratic forms.

Additionally, the following statements hold true:

(1) ([3], Prop2.5) If α is injective then m ≥ 2n− 1;
(2) ([3], Prop.2.5) If m ≤ 2n− 2 then α cannot be injective;
(3) ([3], Cor.2.7(1)) If m = 2n− 1 then α is injective if and only if F is full spark;
(4) ([3], Cor.2.6) If m ≥ 2n− 1 and F is full spark then the map α is injective;
(5) ([3], Th.2.2) If m ≥ 2n− 1 then for a generic frame F the map α is injective.

In the complex case the following results are known:

Theorem 2.2. In the complex case when H = Cn the following statements hold true:

(1) ([3], Th.3.3) If m ≥ 4n− 2 then for a generic frame F the map α is injective;
(2) ([12]) For any positive integer n there is a frame with m = 4n − 4 elements so that

the nonlinear map α is injective;
(3) ([25], Corollary 4) If α is injective then

(2.39) m ≥ 4n− 2− 2β +

 2 if n odd and β = 3mod 4
1 if n odd and β = 2mod 4
0 otherwise

where β = β(n) denotes the number of 1’s in the binary expansion of n− 1.
(4) The following are equivalent:

(a) The map α is injective;
(b) ([25] Prop. 2)

(2.40) ker(A) ∩
(
S1,0 − S1,0

)
= {0}

(c) ([8], Theorem 4) dimS(u) ≥ 2n− 1 for every u ∈ Cn \ {0};
(d) ([8], Theorem 4) S(u) = spanR(iu)⊥ for every u ∈ Cn \ {0}.
(e) ([19]1, Theorem 1.1) If m ≥ 4n − 4 then for a generic frame F the map α is

injective;

1This result was not known at the time the present paper was submitted for publication.
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In the last two conditions, S(u) = spanR{fkf ∗ku}1≤k≤m, where fkf
∗
ku is seen as a 2n vector

in R2n.

3. New Analysis Results

This section contains our injectivity results of the nonlinear map α as well as an in-depth
analysis of the spaces Sp,q.

Theorem 3.1. Let H be a C-vector space of dimension n, with scalar product 〈, 〉 and
conjugation c : H → H. The following are equivalent:

(1) The nonlinear map α : Ĥ → Rm, (α(x))k = |〈x, fk〉|2 is injective.
(2) There is a constant a0 > 0 so that for every u, v ∈ H

(3.41)
m∑
k=1

|〈Fk, Ju, vK〉|2 ≥ a0‖Ju, vK‖21

where Fk = fkf
∗
k . Explicitly, this means:

(3.42)
m∑
k=1

(real(〈u, fk〉〈fk, v〉))2 ≥ a0
[
‖u‖2‖v‖2 − (imag(〈u, v〉))2

]
.

(3) For any ξ ∈ HR, ξ 6= 0, rank(R(ξ)) = 2n− 1.
(4) There is a0 > 0 so that for all ξ ∈ HR, ξ 6= 0,

(3.43) R(ξ) ≥ a0‖ξ‖2P⊥Jξ
where the inequality holds in the sense of quadratic forms in HR, and

(3.44) P⊥Jξ = 1− 1

‖ξ‖2
Jξξ∗J∗

is the orthogonal projection in HR onto the orthogonal complement of Jξ in HR.

The proof is given in section 3.3.

Remark 3.2. The two constants a0 in (2) and (4) can be chosen to be equal, hence the same
notation. We will see in the next section, this common constant is related to robustness and
stability of any reconstruction scheme.

Remark 3.3. The proof of (3)⇔ (4) shows that the optimal bound a0 is given by

(3.45) aopt0 = minξ∈HR,‖ξ‖=1a2n−1(R(ξ))

where a2n−1(R(ξ)) denotes the next to the smallest eigenvalue of R(ξ).

Remark 3.4. The choice of the nuclear norm and the square in (3.41) is somewhat arbitrary.
For any p, q ≥ 1 (including infinity), there is a constant ap,q > 0 so that

(3.46)
m∑
k=1

|〈Fk, Ju, vK〉|p ≥ ap,q‖Ju, vK‖pq .
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An interesting corollary, which follows, is obtained in the case when α is restricted to
a subspace of H. It turns out that sometimes the underlying signal is actually real. The
canonical description of such a condition is to be conjugation invariant. Let H ′ denote this
set:

(3.47) H ′ = {x ∈ H ; c(x) = x}.
Note H ′ is a R-linear space, but it is not a C-linear space. Since x is restricted to H ′ it
follows that the equivalence class in H ′ of x is given by x̂∩H ′ = {x,−x}. Consequently the

appropriate quotient space is given by Ĥ ′ = {{x,−x} , x ∈ HR}. Let π1 : H ×H → H and
π2 : H×H → H be the canonical projections onto factors: π1((u, v)) = u and π2((u, v)) = v.
Then it is immediate to check that H ′ admits the following equivalent descriptions:

(3.48) H ′ = {x ∈ H ; π2(j(x)) = 0} = j−1 ({HR ∩ (H × {0})) .
Note in H ′, 〈u, v〉 is always real for all u, v ∈ H ′ since 〈u, v〉 = 〈c(v), c(u)〉 = 〈v, u〉. Let
F = {f1, · · · , fm} be the frame set in H. Note we do not assume F ⊂ H ′. Let

(3.49) gk = π1(j(fk)) , hk = π2(j(fk))

with 1 ≤ k ≤ m. Note fk = j−1((gk, hk)) = gk + ihk and gk, hk ∈ H ′. Set:

(3.50) Φ′k = gkg
∗
k + hkh

∗
k ∈ S2,0(H ′) ⊂ S2,0(H) , 1 ≤ k ≤ m.

Note:

〈Fk, Jx, xK〉 = |〈fk, x〉|2 = 〈Φ′kx, x〉 = 〈Φ′k, Jx, xK〉(3.51)

〈Fk, Ju, vK〉 = real(〈u, fk〉〈fk, v〉) = 〈Φ′ku, v〉 = 〈Φ′k, Ju, vK〉(3.52)

for all x, u, v ∈ H ′. Thus the linear map A restricted to Sym(H ′) can be thought of as
taking inner products with a family of rank-2 nonnegative operators. We have

Corollary 3.5. Let H be an n-dimensional complex Hilbert space with scalar product 〈, 〉
and conjugation c : H → H. Let H ′ = {x ∈ H ; c(x) = x} be the maximal c-invariant set.
The following are equivalent:

(1) The restriction to H ′ of the nonlinear map α|H′ is injective on Ĥ ′.
(2) There is a constant a0 > 0 so that ∀u, v ∈ H ′

(3.53)
m∑
k=1

|〈Φ′ku, v〉|2 ≥ a0‖u‖2‖v‖2.

(3) For all u 6= 0,

(3.54) dimR spanR{〈u, gk〉gk + 〈u, hk〉hk ; 1 ≤ k ≤ m} = n.

(4) For any u 6= 0,

(3.55) rank

(
m∑
k=1

Φ′kuu
∗Φ′k

)
= n.
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(5) Let R′(u) =
∑m

k=1 Φ′kuu
∗Φ′k. There is a constant a0 > 0 so that ∀u, v ∈ H ′,

(3.56) 〈R′(u)v, v〉 ≥ a0‖u‖2‖v‖2.

The proof is given in section 3.3.

3.1. Analyis of sets Sp,q . In addition to (2.11) the sets Sp,q introduced in (2.7) have the
following properties summarized in the following lemma:

Lemma 3.6. (1) For any p1 ≤ p2 and q1 ≤ q2, Sp1,q1 ⊆ Sp2,q2
(2) For any nonnegative integers p, q the following disjoint decomposition holds true

(3.57) Sp,q =

p⋃
r=0

q⋃
s=0

S̊r,s

where by convention S̊0,0 = S0,0 = {0}, and S̊p,q = ∅ for p+ q > n.
(3) For any nonnegative integers p, q,

(3.58) −Sp,q = Sq,p

(4) The mapping (T,X) 7→ TXT ∗ defines an action of B(H) on Sp,q. Specifically for
any T ∈ B(H) and integers p, q,

(3.59) TSp,qT ∗ ⊆ Sp,q

The inclusion becomes equality if T is invertible.
(5) GL(H) acts transitively on S̊p,q. Specifically for any X, Y ∈ S̊p,q there is an invertible

T ∈ GL(H) so that Y = TXT ∗.
(6) For any integers p, q, r, s,

(3.60) Sp,q + Sr,s = Sp,q − Ss,r = Sp+r,q+s

Proof of Lemma 3.6
First three assertions are trivial.
(4) Fix an orthonormal basis in H, fix a T ∈ B(H) and let T = UDV be its singular value

decomposition, where U, V are unitary operators on H and D is a diagonal operator with
non-negative entries. Let X ∈ Sp,q and set R(t) = U(tD+(1−t)I)V XV ∗(tD+(1−t)I)U∗ for
every 0 ≤ t ≤ 1, where I denotes the identity operator on H. Note R(0) = UV XV ∗U∗ ∈ Sp,q
and R(1) = TXT ∗. For every 0 ≤ t < 1, the operator U(tD+ (1− t)I)V is invertible. Then
by Sylvester’s Law of Inertia (see Ex. 12.43 in Chapter 12 of [30]), for every 0 ≤ t < 1
the operator R(t) has the same number of strictly positive eigenvalues and strictly negative
eigenvalues as X does. Since the spectrum is continuous with respect to matrix entries,
it follows the number of strictly positive eigenvalues cannot increase when passing to limit
t → 1. Same conclusion holds for the number of strictly negative eigenvalues. This shows
TXT ∗ = R(1) ∈ Sp,q. Finally, when T is invertible, TXT ∗ has the same number of strictly
positive (negative) eigenvalues as X does. This shows TSp,qT ∗ = Sp,q.

(5) The conclusion follows again from Sylvester’s Law of Intertia. Indeed fix an orthonor-
mal basis in H and let T1, T2 ∈ GL(H) be invertible transformations so that both T1XT

∗
1 and
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T2Y T
∗
2 have the same matrix representations that are diagonal with +1 repeated p times,

−1 repeated q times and 0 repeated n− p− q times. Thus T1XT
∗
1 = T2Y T

∗
2 from where the

conclusion follows with T = T−12 T1.
(6) One can see this statement as a special instance of the Witt decomposition theorem,

a much more powerful tool in the theory of quadratic forms especially in the case of vector
spaces over fields of charactersitics other than 2, see [27]. However for the benefit of those
who prefer a more direct proof, here is a sketch of this result. Using spectral decomposition
and rearranging the term, one can easily see that Sp+r,q+s ⊂ Sp,q + Sr,s. For the converse
inclusion, we need to show that if T, S ∈ Sym(H) are so that T has at most p positive
eigenvalues and q negative eigenvalues, and S has at most r positive eigenvalues and s
negative eigenvalues, then T + S has at most p+ r positive eigenvalues, and q + s negative
eigenvalues. Without loss of generality we can assume T ∈ S̊p,q and S ∈ S̊r,s. Using spectral
decompostions of T and S we obtain

T + S =

(
p∑

k=1

akAk −
p+q∑

k=p+1

akAk

)
+

(
r∑

k=1

bkBk −
r+s∑

k=r+1

bkBk

)
= U − V ,

U =

p∑
k=1

akAk +
r∑

k=1

bkBk ≥ 0 , V =

q∑
k=p+1

akAk +
r+s∑

k=r+1

bkBk ≥ 0 ,

where Ak, Bk are rank one orthogonal (spectral) projectors with AkAj = 0 and BlBh = 0 for
all k 6= j and l 6= h, and ak, bk > 0. Thus U ∈ Sp+r,0 and V ∈ Sq+s,0. The claim now follows
by induction provided we show that for any R ∈ S̊a,b and E ∈ S1,0, a rank one associated to
vector e ∈ H (E = 〈·, e〉e), then E +R ∈ Sa+1,b.

Indeed this last assertion is shown as follows. Let R =
∑a

k=1 ck〈·, gk〉gk−
∑a+b

k=a+1 ck〈·, gk〉gk
be its spectral decomposition. Two cases are treated distinctly.

Case 1: If e 6∈ R(H) then Γ′ = {g1, · · · , ga+b, e} is linearly independent. Let Γ = {γk , 1 ≤
k ≤ a + b + 1} be the (unique) biorthogonal system to Γ′. Let T be an invertible operator
that maps an orthonormal set ∆ = {δ1, · · · , δa+b+1} into Γ, Tδk = γk, 1 ≤ k ≤ a + b + 1,
and maps the orthogonal space to ∆ onto the orthogonal complement to Γ. Note T ∗gk = δk,
1 ≤ k ≤ a+ b and T ∗e = δa+b+1. Then a direct computation shows that

T ∗(R + E)T =
a+b∑
k=1

ck〈·, δk〉δk + 〈·, δa+b+1〉δa+b+1.

Thus the spectrum of T ∗(R+E)T is composed of {c1, · · · , ca,−ca+1, · · · , ca+b, 1} which shows
that T ∗(R + E)T ∈ Sa+1,b, and by (4), R + E ∈ Sa+1,b.

Case 2: e ∈ R(H). The rank of R + E is less than or equal to the rank of R. Hence
R+E ∈ Sa′,b′ with a′+ b′ = a+ b. Now by the continuity of spectrum with respect to small
perturbations, it follows that, for a small perturbation e 7→ e′ 6∈ R(H), R+E ′ ∈ Sa′′,b′′ with
a′′ ≥ a′, b′′ ≥ b′. But the proof of case 1 shows Sa′′,b′′ ⊂ Sa+1,b. Hence b ≥ b′′ ≥ b′ ≥ b, and
a+ 1 ≥ a′′ ≥ a′ ≥ a. Thus R + E ∈ Sa+1,b. 2
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Next we analyze the space S1,1 in more detail. The special factorization we obtain here
can be extended to other classes Sp,q but we do not plan to do so here. First set the following
matrices:

(3.61) K =

[
0 1
1 0

]
, D =

[
1 0
0 −1

]
, V =

1√
2

[
1 1
−1 1

]
.

In the next result we use a generalized unitary group U(1, 1;K). Recall its definition.
Definition The groups U(1, 1) and U(1, 1;K) are defined by

(3.62) U(1, 1) = {A ∈ C2×2 , A∗DA = D}

(3.63) U(1, 1;K) = {A ∈ C2×2 , A∗KA = K}
These groups have been studied extensively in literature. See for instance [32], section 10.4.
In particular the two groups above are unitarily equivalent to each other, and the matrix V
provides such an equivalence:

(3.64) A ∈ U(1, 1;K)⇔ B = V AV ∗ ∈ U(1, 1).

The quadratic form ω(z1, z2) = |z1|2 − |z2|2 is invariant under the action of U(1, 1), whereas
φ(z1, z2) = z̄1z2 + z1z̄2 is invariant under the action of U(1, 1;K).

Lemma 3.7.

(1) S1,1 = S1,0 − S1,0 = S1,0 + S0,1.
(2) For any T ∈ S1,1 there are u, v ∈ H so that

(3.65) T =
1

2
(uv∗ + vu∗) = Ju, vK.

If T = a1e1e
∗
1−a2e2e∗2 with a1, a2 ≥ 0 and 〈ek, ej〉 = δk,j is its spectral factorization

then

(3.66) u0 =
√
a1e1 +

√
a2e2, v0 =

√
a1e1 −

√
a2e2

provides a particular factorization in (3.65).

Lemma 3.8.

(1) Let T = Ju, vK. Then traces and spectrum Sp(T ) = {a+, a−} are given by

tr{T} = real(〈u, v〉) = 〈u, v〉R(3.67)

tr{T 2} =
1

4
((〈u, v〉)2 + (〈v, u〉)2 + 2‖u‖2‖v‖2)(3.68)

=
1

2

(
‖u‖2‖v‖2 + 〈u, v〉2R − 〈iu, v〉

2
R
)

a+ =
1

2

(
〈u, v〉R +

√
‖u‖2‖v‖2 − 〈iu, v〉2R

)
≥ 0(3.69)

a− =
1

2

(
〈u, v〉R −

√
‖u‖2‖v‖2 − 〈iu, v〉2R

)
≤ 0(3.70)
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The nuclear norm of T is given by

(3.71) ‖T‖1 = a+ + |a−| =
√
‖u‖2‖v‖2 − 〈iu, v〉2R.

Hence T ∈ S1,1.
(2) Let T = Ju0, v0K ∈ S̊1,1. Then any pair (u, v) of vectors, with u, v ∈ H so that

T = Ju, vK is given by

(3.72) u = a11u0 + a12v0 , v = a21u0 + a22v0

for some matrix A = (ak,l)1≤k,l≤2 with A ∈ U(1, 1;K). Conversely, for any matrix
A ∈ U(1, 1;K), Ju, vK = Ju0, v0K where (u, v) are given by (3.72).

Lemma 3.9.

(1) Let T = xx∗−yy∗ for some x, y ∈ H. Then T ∈ S1,1 with spectrum Sp(T ) = {b+, b−}
and traces given by

tr{T} = ‖x‖2 − ‖y‖2(3.73)

tr{T 2} = ‖x‖4 + ‖y‖4 − 2|〈x, y〉|2(3.74)

b± =
1

2

(
‖x‖2 − ‖y‖2

)
± 1

2

√
(‖x‖2 + ‖y‖2)2 − 4|〈x, y〉|2(3.75)

‖T‖1 =

√
(‖x‖2 + ‖y‖2)2 − 4|〈x, y〉|2(3.76)

(2) Let T = xx∗ − yy∗ ∈ S1,1. Any pair of vectors (x′, y′), with x′, y′ ∈ H so that
T = x′(x′)∗ − y′(y′)∗ is related to (x, y) via

(3.77) x′ = b11x+ b12y , y
′ = b21x+ b22y

for some matrix B = (bij)1≤i,j≤2 with B ∈ U(1, 1). Conversely, for any matrix
B ∈ U(1, 1), x′(x′)∗ − y′(y′)∗ = xx∗ − yy∗, where x′, y′ are given by (3.77).

Remark 3.10. 1. The need for studying S1,1 arose from the behavior of the IRLS algorithm
described in [6]. However, it quickly became apparent that the space S1,1 and its factorization
given by (3.65) are crucial for understanding the injectivity of the nonlinear map α, especially
in light of Theorem 2.2 (4), equation (2.40).

2. The choice in (3.66) has the following two additional properties:

‖u0‖ = ‖v0‖ =
√
a1 + a2 =

√
a+ − a− =

√
‖T‖1(3.78)

〈u0, v0〉 = a1 − a2 = a+ + a− = tr{T} (a real number!)(3.79)

where ‖T‖1 represents the nuclear norm of T , and a1 = a+ ≥ 0 and a2 = −a− ≥ 0 are its
singular eigenvalues.

Proof of Lemma 3.7
(1) is a direct application of Lemma 3.6(5).
(2) Since J, K is R-linear and Je1, e2K = Je2, e1K we obtain

Ju0, v0K = a1e1e
∗
1 +
√
a1a2Je1, e2K−

√
a1a2Je1, e2K− a2e2e∗2 = a1e1e

∗
1 − a2e2e∗2 = T. 2
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Proof of Lemma 3.8
(1) The equation (3.67) comes from the definition (2.5) and the fact that tr(vu∗) = 〈v, u〉.

For T 2 compute first

T 2 =
1

4

(
〈v, u〉vu∗ + ‖u‖2vv∗ + ‖v‖2uu∗ + 〈u, v〉uv∗

)
.

Then (3.68) follows from this relation and real((〈u, v〉)2) = (real(〈u, v〉))2− (imag(〈u, v〉))2.
Finally, (3.69) and (3.70) come from solving:

(3.80)
a+ + a− = tr(T )
a2+ + a2− = tr(T 2)

and observing

a+a− =
1

4

(
(〈u, v〉R)2 + (〈iu, v〉R)2 − ‖u‖2‖v‖2

)
=

1

4
(|〈u, v〉|2 − ‖u‖2‖v‖2) ≤ 0.

(2) A direct computation shows

Ju, vK =
1

2
(ā11a21 + ā21a11)u0u

∗
0 +

1

2
(ā11a22 + ā21a12)v0u

∗
0

+
1

2
(ā12a21 + ā22a11)u0v

∗
0 +

1

2
(ā12a22 + ā22a12)v0v

∗
0.

Since {u0, v0} are linearly independent, Ju, vK = Ju0, v0K implies

ā11a21 + ā21a11 = 0 , ā11a22 + ā21a12 = 1

ā12a21 + ā22a11 = 1 , ā12a22 + ā22a12 = 0.

which corresponds to A∗KA = K. Hence A ∈ U(1, 1;K). Conversely, if A ∈ U(1, 1;K) then
the above relations are satisfied which imply Ju, vK = Ju0, v0K. 2

Proof of Lemma 3.9
Claims (1) and (2) are similar to claims in lemma 3.8 and follow by direct computation.

2

Topologically, S1,0 and S1,1 are not differentiable manifolds. Instead they are algebraic
varieties since they are given by the zero loci of certain polynomials. We have the following
result:

Lemma 3.11. (1) The set S̊1,0 is an analytic manifold in B(H) of real dimension 2n − 1.
As a real manifold, its tangent space at X = x0x

∗
0 is given by

(3.81) TX S̊1,0 = {Jx0, yK , y ∈ H}.

The R-linear embedding H 7→ TX S̊1,0 given by y 7→ ϕx0(y) = Jx0, yK has null space given by
ker ϕx = {iax0 ; a ∈ R}.

(2) The set S̊1,1 is an analytic manifold of real dimension 4n− 4. As a real manifold, its
tangent space at X = Jx0, y0K is given by

(3.82) TX S̊1,1 = {Jx0, uK + Jy0, vK , u, v ∈ H}.
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The R-linear embedding H×H 7→ TX S̊1,1 given by (u, v) 7→ ϕx0,y0(u, v) = Jx0, uK+Jy0, vK has
null space given by ker ϕx0,y0 = {a(ix0, 0)+b(0, iy0)+c(y0,−x0)+d(iy0, ix0) , a, b, c, d ∈ R}.

Proof of Lemma 3.11
Let c1, · · · , cn : Sym(H)→ R be the coefficients of the characteristic polynomial:

det(sI − T ) = sn + c1(T )sn−1 + c2(T )sn−2 + · · ·+ cn(T ).

with c1(T ) = −tr(T ) and cn(T ) = (−1)ndet(T ). Note that the cj’s are polynomials.
(1) The manifold structure can be shown as follows. First note that

S+ = {S ∈ Sym(H) ; c1(T ) = −tr(S) < 0}
is an open subset of Sym(H) and therefore a manifold of same real dimension as Sym(H)
(which is n2). Next note

S̊1,0 = c−12 (0) ∩ · · · ∩ c−1n (0) ∩ S+.

Hence S̊1,0 is an algebraic variety. Next we obtain that S̊1,0 is a homogeneous space and
hence a real analytic manifold. Indeed by Lemma 3.6(5), GL(H) acts transitively on S̊1,0.
Therefore it is sufficient to verify the stabilizer group is closed. Fix {e1, e2, · · · , en} an
orthonormal basis in H and consider the rank-1 operator X = e1e

∗
1. The stabilizer group

for X is given by invertible transformations T so that Te1 = ze1 with z ∈ C, |z| = 1. With
respect to the fixed orthonormal basis, the stabilizer is represented by the group of matrices
of the form:

H1,0
X =

{[
eiθ v
0 M

]
, θ ∈ [0, 2π) , v ∈ C1×(n−1) , M ∈ C(n−1)×(n−1) , det(M) 6= 0

}
.

One can easily verify that H1,0
X is a closed subset of GL(n,C), the Lie group of n×n invertible

complex matrices. Thus S̊1,0 is diffeomorphic to the analytic manifold GL(n,C)/H1,0
X .

Next we determine the tangent space. Let X = x0x
∗
0 ∈ S̊1,0. We consider the set of all

differentiable curves

Υ =
{
γ : I → S̊1,0 , γ(0) = X, 0 ∈ I ⊂ R open interval

}
,

passing through X. Then the tangent space to S̊1,0 at X is given by

TX S̊1,0 =

{
d

dt
γ(t)|t=0 ; γ ∈ Υ

}
.

For each such curve, γ : I → S̊1,0 there is a unique differentiable curve x : I → H such that
γ(t) = x(t)(x(t))∗ with x(0) = x0. In fact, locally,

x(t) =
1√

〈γ(t)(x0), x0〉
γ(t)(x0)

which shows x(t) is differentiable. Then a direct computation shows

d

dt
γ(t)|t=0 = Jẋ(0), x(0)K + Jx(0), ẋ(0)K = 2Jx0, ẋ(0)K, for any ẋ(0) ∈ H.
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Since ẋ(0) can be chosen arbitrarily in H, it follows the tangent space to S̊1,0 at X is given

by (3.81). The real dimension of the R-vector space TX S̊1,0 is 2n − 1 once we notice the
kernel of the R-linear map ϕx0 is one dimensional and given by the real span of ix0.

(2) The algebraic variety structure is given by the intersection

S̊1,1 = c−13 (0) ∩ · · · ∩ c−1n (0) ∩ S−−

where

S−− = {S ∈ Sym(H) ; c2(T ) < 0}.
Next we obtain that S̊1,1 is a homogeneous space and hence a real analytic manifold. Indeed
by Lemma 3.6(5), GL(H) acts transitively on S̊1,1. Therefore it is sufficient to verify the
stabilizer group is closed. Fix {e1, e2, · · · , en} an orthonormal basis in H and consider the

rank-2 operator X = e1e
∗
1 − e2e∗2 ∈ S̊1,1. The stabilizer group for X is given by invertible

transformations T whose matrix representations are of the form

H1,1
X =

{[
R v
0 M

]
, R ∈ U(1, 1) , v ∈ C2×(n−2) , M ∈ C(n−2)×(n−2) , det(M) 6= 0

}
where U(1, 1) was introduced in (3.62). One can easily verify that H1,1

X is a closed subset of

GL(n,C), the Lie group of n× n invertible complex matrices. Thus S̊1,1 is diffeomorphic to
the analytic manifold GL(n,C)/H1,1

X .

Next we determine the tangent space. Fix X ∈ S̊1,1, X = Jx0, y0K with {x0, y0} linearly
independent, and let

Υ′ = {γ : I → S̊1,1 , 0 ∈ I ⊂ R open interval , γ(0) = X}

be the set of differentiable curves passing through X. Then the tangent space to S̊1,1 at X
is given by

TX S̊1,1 =

{
d

dt
γ(t)|t=0 ; γ ∈ Υ′

}
.

By Lemma 3.6 we know γ(t) = Jx(t), y(t)K for some x : I → H and y : I → H. Note
these functions are not unique. However we can choose them to be given by the spectral
factorization of γ(t) via (3.66). Furthermore a direct application of holomorphic functional

calculus (see section 148, Decomposition Theorem in [28]) shows that T → P1 ∈ S̊1,0 and

T 7→ P2 ∈ S̊1,0 are analytic, where T = P1−P2 is its spectral decomposition with P1P2 = 0.
Hence t ∈ I 7→ P1(t) and t ∈ I 7→ P2(t) are differentiable. The component functions x(t)
and y(t) now uniquely defined by:

(3.83) x(t) =
1√

〈P1(t)(x(0)), x(0)〉
P1(t)(x(0)) , y(t) =

1√
〈P2(t)(y(0)), y(0)〉

P2(t)(y(0))

are differentiable. The derivative at t = 0 is given by

d

dt
γ(t)|t=0 = 2Jx(0), ẏ(0)K + 2Jy(0), ẋ(0)K
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And since (x(0), y(0)) and (x0, y0) are related by a U(1, 1;H) matrix, and the fact that
(ẋ(0), ẏ(0)) is arbitrary in H ×H, we obtain the tangent space is given by (3.82), that is:

TX S̊1,1 = {ϕx0,y0(u, v) = Jx0, uK + Jy0, vK , u, v ∈ H}.

A direct computation shows that (ix0, 0), (0, iy0), (y0,−x0) and (iy0, ix0) are the only in-
dependent vectors in the null space of the R-linear map (u, v) 7→ ϕx0,y0(u, v) which implies

dimR TX S̊1,1 = 4n−4. Hence the real dimension of the manifold S̊1,1 is 4n−4. 2

Remark 3.12. Compared to the complex projective manifold CPn−1 = P(Cn), S̊1,0 is diffeo-
morphic to CPn−1×R+. The extra R+ component comes from the fact that rank-1 operators
in S̊1,0 have arbitrary trace. This explains the real dimension of S̊1,0: 2 dimR CPn + 1 =
2(n − 1) + 1 = 2n − 1. On the other hand, using spectral factorization, S̊1,1 has real di-

mension given by dimR S̊1,0 + dimR S̊1,0 − 2 = 2(2n− 1)− 2 = 4n− 4. The −2 term comes

from the orthogonality of the two eigenvectors of an operator in S̊1,1. The 4n− 4 dimension
estimate has been derived also heuristically in [8] right after proof of Lemma 9 ([31]).

Remark 3.13. As suggested by Bernhard Bodmann [11], it can be shown that the subset of

projections inside S̊1,0 is in fact a Kähler manifold (diffeomorphic to CPn−1). However S̊1,0

is not a Kähler manifold.

3.2. Analysis of the linear map τ . We introduced earlier the R-linear map τ that maps
Sym(H) operators into Sym(HR) operators, using the real linear structure on these spaces.
In order for the diagram (2.29) to be commutative, the map τ(T ) is given explicitly by

(3.84) τ(T )(ξ) = j(T (j−1(ξ)) , ξ ∈ HR

The following lemma summarizes the basic properties of the map τ .

Lemma 3.14. (1) Let P be an orthogonal projection of rank k in H. Then τ(P ) is an
orthogonal projection of rank 2k in HR. Furthermore if {e1, · · · , ek} is an orthonormal
basis in the range of P , then {j(e1), · · · , j(ek), Jj(e1), · · · , Jj(ek)} is an orthonormal
basis in the range of τ(P ).

(2) If T ∈ Sym(H) has spectrum (a1, a2, · · · , an) then τ(T ) in Sym(HR) has spectrum
(a1, a1, a2, a2, · · · , an, an).

(3) For any two operators T, S ∈ Sym(H), τ(T ), τ(S) ∈ Sym(HR) and

(3.85) tr{τ(T )τ(S)} = 〈τ(T ), τ(S)〉B(HR)
= 2〈T, S〉B(H) = 2tr{TS}

(4) Let 1 ≤ p ≤ ∞. The p-norms of a symmetric operator T ∈ Sym(H) and τ(T ) ∈
Sym(HR), are related by

‖τ(T )‖p = 21/p‖T‖p , if p <∞(3.86)

‖T‖ = ‖τ(T )‖∞ = ‖T‖∞ = ‖T‖(3.87)

Proof of Lemma 3.14



RECONSTRUCTION FROM MAGNITUDES OF FRAME COEFFICIENTS 19

(1) First we prove the statement for rank-1 projections. This comes from directly checking
equation (2.30). Thus P = ee∗ gets mapped into τ(P ) = εε∗ + Jεε∗J∗, where ε = j(e). Next
if {e1, · · · , ek} is an orthonormal basis for the range of P then

P =
k∑
l=1

ele
∗
l

By R-linearity, τ(P ) has the form

τ(P ) =
k∑
l=1

(εlε
∗
l + Jεlε

∗
l J
∗)

where εl = j(el), 1 ≤ l ≤ k. Note

〈Jεl, Jεs〉 = 〈εl, εs〉 = 〈el, es〉R = δl,s , 〈Jεl, εs〉 = 〈iel, es〉R = 0

Hence {ε1, · · · , εk, Jε1, · · · , Jεk} is an orthonormal set and since it is spanning the range
of τ(P ) it is an orthonormal basis in the range of τ(P ). Hence τ(P ) is an orthonormal
projection on HR of rank 2k.

(2) Follows by using the spectral factorization of T ,

(3.88) T =
r∑

k=1

bkPk 7→ τ(T ) =
r∑

k=1

bkτ(Pk)

where P1, · · · , Pr are spectral projections and b1, · · · , br are their associated distinct eigen-
values. For all k 6= l, PkPl = 0 which implies τ(Pk)τ(Pl) = 0. Thus the right hand side of
the second equation in (3.88) represents the spectral factorization of τ(T ). Hence each bk is
an eigenvalue of τ(T ) but with multiplicity twice the multiplicity as an eigenvalue of T . The
conclusion now follows.

(3) It is enought to show tr{τ(T )τ(S)} = 2tr{TS}. Fix an orthonormal basis in H, say
{e1, · · · , en}. Then by (1) {j(e1), · · · , j(en), Jj(e1), · · · , Jj(en)} is an orthonormal basis in HR.
Note Jj(ek) = j(iek). It follows

tr{τ(T )τ(S)} =
n∑
k=1

〈τ(S)j(ek), τ(T )j(ek)〉+ 〈τ(S)Jj(ek), τ(T )Jj(ek)〉

=
n∑
k=1

〈Sek, T ek〉+ 〈Siek, T iek〉 = 2
n∑
k=1

〈Sek, T ek〉

which proves the claim.
(4) Follows from (2): for finite p,

‖τ(T )‖p = (|a1|p + |a1|p + · · ·+ |an|p + |an|p)1/p = 21/p (|a1|p + · · ·+ |an|p)1/p = 21/p‖T‖p
whereas for p =∞,

‖τ(T )‖∞ = max{|a1|, |a1|, · · · , |an|, |an|} = max{|a1|, · · · , |an|} = ‖T‖∞.
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2

3.3. Proof of Theorem 3.1 and its Corollary 3.5.

Proof of Theorem 3.1
(1)⇔(2). According to Theorem 2.2 (4), nonlinear map α is injective iff ker(A) ∩ (S1,0 −

S1,0) = {0}. But using Lemma 3.7(1) and (2) we get equivalently that α is injective iff for
all u, v ∈ H with Ju, vK 6= 0,

A(Ju, vK) 6= 0

Equivalently this means
m∑
k=1

|〈Fk, Ju, vK〉|2 > 0

Consider now the unit ball in S1,1 with respect to the nuclear norm, say S1,1
1 . This set is

compact in Sym(H). Then let

(3.89) a0 = minT∈S1,1,‖T‖1=1

m∑
k=1

|〈Fk, T 〉|2

By homogeneity we obtain (3.41). Then

〈Fk, Ju, vK〉 =
1

2
(〈u, fk〉〈fk, v〉+ 〈v, fk〉〈fk, u〉) = real(〈u, fk〉〈fk, v〉)

and by Lemma 3.8(1),

‖Ju, vK‖21 = ‖u‖2‖v‖2 − 〈iu, v〉2R = ‖u‖2‖v‖2 − (imag(〈u, v〉))2

Putting together all previous derivations we obtain the equivalence (1)⇔ (2).
(2)⇔(4). Using Lemma 3.14 (3) we obtain (3.41) is equivalent to

(3.90)
m∑
k=1

|〈τ(Fk), τ(Ju, vK)〉|2 ≥ 4a0
[
‖u‖2‖v‖2 − (real(〈iu, v〉))2

]
Now (2.30) and (2.31) imply

τ(Fk) = Jϕk, ϕkK + JJϕk, JϕkK = Jϕk, ϕkK + JJϕk, ϕkKJ∗

τ(Ju, vK) = Jξ, ηK + JJξ, JηK = Jξ, ηK + JJξ, ηKJ∗

where ϕk = j(fk) and ξ = j(u), η = j(v) and J∗ is the adjoint of J . A direct computation
using J∗ = −J shows that

〈τ(Fk), JJξ, JηK〉 = 〈τ(Fk), Jξ, ηK〉

Thus

〈τ(Fk), τ(Ju, vK)〉 = 2〈ϕkϕ∗k + Jϕkϕ
∗
kJ
∗, Jξ, ηK〉 = 2[〈ξ, ϕk〉〈ϕk, η〉+ 〈ξ, Jϕk〉〈Jϕk, η〉]
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With the equation (2.36) we obtain

〈τ(Fk), τ(Ju, vK)〉 = 2〈Φkξ, η〉 ⇒
m∑
k=1

|〈τ(Fk), τ(Ju, vK)〉|2 = 4〈R(ξ)η, η〉

Now the right-hand side of (3.90) is processed as follows. Note ‖u‖ = ‖ξ‖, ‖v‖ = ‖η‖, and

real(〈iu, v〉) = 〈iu, v〉R = 〈Jξ, η〉

Thus

‖u‖2‖v‖2 − (real(〈iu, v〉))2 = ‖ξ‖2‖η‖2 − (〈Jξ, η〉)2 = 〈(‖ξ‖21− Jξξ∗J∗)η, η〉

Substituting in (3.90) we obtain (3.43).
(3)⇔(4). Assume rank(R(ξ)) = 2n − 1 for all ξ 6= 0. A direct computation shows that

R(ξ)(Jξ) = 0. Hence Jξ is the only independent vector in ker(R(ξ)). It follows there is an
a = a(ξ) > 0 so that

R(ξ) ≥ a(ξ)P⊥Jξ

Note the a(ξ) represents the smallest nonzero eigenvalue of R(ξ) which must be the 2n−1th.
Since the eigenvalues of a matrix depend continuously with the matrix entries, it follows that
a(ξ) is a continuous function on ξ. Let a0 = min‖ξ‖=1 a(ξ). Since the minimum is achieved
somewhere on the unit sphere, a0 > 0. Using the homogeneity of degree 2 of R(ξ), we get
a(ξ) = ‖ξ‖2a( ξ

‖ξ‖) ≥ a0‖ξ‖2 which proves (3.43). Conversely, if (3.43) holds true, then R(ξ)

has rank at least 2n− 1. Again since Jξ is in the kernel of R(ξ), it follows that R(ξ) must
be of rank exactly 2n− 1. 2

Proof of Corollary 3.5
(1)⇔(2) follows from Theorem 3.1 (2) and equation (3.52) and the fact that imag(〈u, v〉) =

0 for all u, v ∈ H ′.
(2)⇔(5) follows from the relation

m∑
k=1

|〈Φ′ku, v〉|2 = 〈

(
m∑
k=1

Φ′kuu
∗Φ′k

)
v, v〉.

(4)⇔(5). Note first dimRH
′ = n since HR = j(H ′)⊕j(iH ′) is an orthogonal decomposition

of the 2n-dimensional real space HR into two isomorphic subspaces. Hence R′(u) is of rank-n
if and only if it is bounded below by a multiple of the identity restricted to H ′. Thus (3.56)
follows by the homogeneity of R′(u) with respect to ‖u‖.

(2)⇒(3). For u 6= 0, (3.53) implies {Φ′ku , 1 ≤ k ≤ m} spans H ′. This is equivalent with
(3.54).

(3)⇒(2). From (3.54) we obtain that {Φ′ku , 1 ≤ k ≤ m} is a frame for H ′. Then (3.53)
follows from the lower frame bound condition. 2
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4. Performance Bounds on Reconstruction Algorithms

In this section we present two performance bounds applicable to any reconstruction algo-
rithm. One bound is deterministic and is based on the constants a0 introduced in Theorem
3.1. The second bound represents the Cramer-Rao Lower Bound for the stochastic model
(2.3).

4.1. Lipschitz bounds of the inverse map. Consider the nonlinear map α : H → Rm.
We shall establish a deterministic performance bound for any inversion algorithm in terms
of the Lipschitz bounds of the map:

(4.91) A : S1,0 → Rm , A(xx∗) = α(x)

Specifically we want to bound from above and below the following expression:

(4.92) U(x, y) =
‖A(xx∗)−A(yy∗)‖2

‖xx∗ − yy∗‖21
Since xx∗ − yy∗ = Ju, vK ∈ S1,1 for some u, v ∈ H it follows:

sup
x,y∈H

U(x, y) = sup
u,v∈H

∑m
k=1 |〈Fk, Ju, vK〉|2

‖Ju, vK‖21
(4.93)

inf
x,y∈H

U(x, y) = inf
u,v∈H

∑m
k=1 |〈Fk, Ju, vK〉|2

‖Ju, vK‖21
(4.94)

These ratios can be further processed as follows∑m
k=1 |〈Fk, Ju, vK〉|2

‖Ju, vK‖21
=
〈R(ξ)η, η〉
‖ξ‖2〈P⊥Jξη, η〉

where ξ = j(u) and η = j(v). Since R(ξ)η = R(ξ)P⊥Jξη if follows:

sup
ξ,η 6=0

〈R(ξ)η, η〉
‖ξ‖2〈P⊥Jξη, η〉

= sup
ξ 6=0

‖R(ξ)‖
‖ξ‖2

= max
ξ∈HR,‖ξ‖=1

‖R(ξ)‖

and

inf
ξ,η 6=0

〈R(ξ)η, η〉
‖ξ‖2〈P⊥Jξη, η〉

= aopt0 .

Note the constant aopt0 obtained above is the same as the one given in (3.45). Thus we proved:

Theorem 4.1. Assume the nonlinear map α is injective. Then the map A : S1,0 → Rm

defined in (4.91) is bi-Lipschitz between (S1,0, ‖ · ‖1) and (Rm, ‖ · ‖) with the Euclidian norm,
and it has the upper Lipschitz bound

(4.95) B0 =
√

max
ξ∈HR,‖ξ‖=1

‖R(ξ)‖
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and the lower Lipschitz bound

(4.96) A0 =

√
aopt0 =

√
min

ξ∈HR,‖ξ‖=1
a2n−1(R(ξ))

Specifically

(4.97) A0‖xx∗ − yy∗‖1 ≤ ‖A(xx∗)−A(yy∗)‖ ≤ B0‖xx∗ − yy∗‖1
for all x, y ∈ H.

4.2. The Cramer-Rao Lower Bound (CRLB). Consider now the noise model (2.3). We
are interested in obtaining a lower bound for any unbiased estimator of x. The derivation
of the CRLB in this paper coincides with the one presented in [8] (see Theorem 23 there).
In turn this follows the recipe presented in [6]. We will just present the key steps of this
derivation. Note that our derivation is canonical, that is basis independent.

Due to non-holomorphy of the nonlinear map α, the analysis is done in the realification
space HR. We denote ζ = j(x) for the signal x ∈ H. The frame set is F = {f1, · · · , fm} and
Fk = fkf

∗
k ∈ S1,0(H) denotes the measurement operators. Recall our notation Φk = τ(Fk) =

ϕkϕ
∗
k + Jϕkϕ

∗
kJ
∗ ∈ S2,0(HR). First we compute the Fisher information matrix associated to

ζ. The likelihood for this problem is
(4.98)

p(y|ζ) =
1

(2π)m/2σm
exp

(
− 1

2σ2
‖y − α(x)‖2

)
=

1

(2π)m/2σm
exp

(
− 1

2σ2

m∑
k=1

|yk − 〈Φkζ, ζ〉|2
)

where σ2 is the noise variance. The Fisher information matrix is given by (see [26])

(4.99) I(ζ) = E
[
(∇ζ log(p(y|ζ)))(∇ζ log(p(y|ζ)))T

]
.

The canonical form of this operator is

(4.100) I(ζ) = E [J∇ζ log(p(y|ζ)),∇ζ log(p(y|ζ))K] .

A little bit of algebra shows

(4.101) I(ζ) =
4

σ2

m∑
k=1

Φkζζ
∗Φk =

4

σ2
R(ζ).

In general the covariance of any unbiased estimator is bounded below by the inverse of the
Fisher information matrix (operator). However in this case the Fisher information operator
is not invertible. This fact simply expresses the statement that x is not identifiable from the
measurements y = α(x) ∈ Rm alone. As we know the nonlinear map α is not injective on H

but instead it is injective on Ĥ. The nonuniqueness on H is reflected in having a singular
Fisher information matrix on HR. To solve this issue we need to fix the global phase factor.
One solution is to fix a basis and decide that a particular component (say the last component)
is real. Such an approach was taken in [8]. Here we propose a canonical solution to this
normalization. An oracle provides us with a vector z0 ∈ H, so that 〈x, z0〉 > 0 is positive
real. Assume z0 is normalized ‖z0‖ = 1. Note there are two pieces of information that can
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be extracted from here: First the fact that x is not orthogonal to z0; in particular x 6= 0.
Second, the global phase to recover x from its rank-1 operator xx∗ is uniquely determined
by the fact that imag(〈x, z0〉) = 0 and real(〈x, z0〉) > 0.

Under this scenario we want to analyze the Fisher information operator obtained earlier.
Let ψ0 = j(z0) ∈ HR. We know

〈ζ, ψ0〉 = real(〈x, z0〉) > 0 , 〈ζ, Jψ0〉 = imag(〈x, z0〉) = 0

with ζ = j(x). Let Π denote the orthogonal projection onto the complement of Jψ0,

(4.102) Π : HR → E , Π = 1− Jψ0ψ
∗
0J
∗

where E = {Jψ0}⊥. Let Hz0 denote the following closed set

(4.103) Hz0 = {ξ ∈ HR , 〈ξ, ψ0〉 ≥ 0 , 〈ξ, Jψ0〉 = 0} ⊂ E.

Note ζ belongs to the relative interior of Hz0 . The class of estimators for ζ should include
only functions

(4.104) ω : Rm → Hz0

In this case the appropriate Fisher information operator should be

(4.105) Ĩ(ζ) := ΠI(ζ)Π =
4

σ2

m∑
k=1

ΠΦkζζ
∗ΦkΠ

The following lemma proves that under the scenario described here, Ĩ(ζ) is invertible on
Hz0 .

Lemma 4.2. Assume α is injective on Ĥ and z0 ∈ H is so that 〈x, z0〉 > 0. Let ζ = j(x).
Then

(4.106) Ĩ(ζ) := ΠI(ζ)Π ≥ 4

σ2
a0|〈x, z0〉|2 Π

where a0 = aopt0 is the same lower bound introduced in Theorem 3.1 whose optimal value is
given by (3.45). Furthermore this bound is tight.

Proof
Using (2.35) the left-hand side of (4.106) is Ĩ(ζ) = 4

σ2 ΠR(ζ)Π. We know R(ζ) ≥ a0‖ζ‖2P⊥Jζ
from Theorem 3.1 (4). Therefore we only need to show

‖ζ‖2 ΠP⊥Jζ Π ≥ |〈ζ, ψ0〉|2 Π

where ψ0 = j(z0), and the inequality is tight. Without loss of generality we can assume
‖ζ‖ = 1 since all expressions are homogeneous in ‖ζ‖. Then we need to show that for any
ξ ∈ E, ‖ξ‖ = 1,

〈P⊥Jζξ, ξ〉 ≥ |〈ζ, ψ0〉|2

This follows from

inf
‖ξ‖=1,ξ∈E

1− |〈ξ, Jζ〉|2 = 1− max
‖ξ‖=1,ξ∈E

|〈ξ, Jζ〉|2 = 1−
∣∣∣∣〈 ΠJζ

‖ΠJζ‖
, Jζ〉

∣∣∣∣2 = |〈ζ, ψ0〉|2
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The last equality follows by direct computation from:

ΠJζ = J(ζ − 〈ζ, ψ0〉ψ0) , ‖ζ − 〈ζ, ψ0〉ψ0‖2 = 1− |〈ζ, ψ0〉|2.
Note also the inequality in (4.106) is tight since the lower bound is achieved for ζ = ψ0 =
argminξ∈HR,‖ξ‖=1a2n−1(R(ξ)), the optimizer in (3.45). 2

Thus we established that Ĩ(ξ) is invertible on Hz0 . See also [8], Lemma 22, for a similar
statement.

Recall an estimator ω : Rm → Hz0 is said to be unbiased if

(4.107) E[ω(y)|ζ = j(x)] = ζ

We can now state the main result of this section:

Theorem 4.3. Assume the nonlinear map α is injective and fix a vector z0 ∈ H. For any
vector x ∈ H with 〈x, z0〉 > 0 the covariance operator of any unbiased estimator ω : Rm →
Hz0 of x is bounded below by the Cramer-Rao Lower Bound (CRLB) given by

(4.108) Cov[ω(y)|ζ = j(x)] ≥ σ2

4

(
m∑
k=1

ΠΦkζζ
∗ΦkΠ

)†
where † denotes the pseudoinverse operator, ζ = j(x) and Π = 1 − Jψ0ψ

∗
0J
∗. In particular

the Mean Square Error of ω is bounded below by

(4.109) MSE(ω) = E[‖x− ω(y)‖2|ζ = j(x)] ≥ σ2

4
tr


(

m∑
k=1

ΠΦkζζ
∗ΦkΠ

)†
Proof
The key observation is that Hz0 is a relatively open subset of the real linear space E, the

orthogonal complement of Jψ0 in HR, E = {Jψ0}⊥ ∩HR. Consider an orthonormal basis in
E of the form {e1, · · · , e2n−1}. Thus {e1, · · · , e2n−1, Jψ0} is an orthonormal basis in HR. The
(column vector) gradient with respect to E, ∇E

ζ has the form ∇E
ζ = Π∇ζ where ∇ is the

gradient with respect to the local coordinates in HR and Π is the orthogonal projection onto
E. This shows the Fisher information matrix associated to the Additive White Gaussian
Noise (AWGN) measurement process (2.3) with ζ ∈ Hz0 is Ĩ(ζ) given by (4.105). Theorem 3.2
in [26] implies the covariance matrix of ω is bounded below by the inverse of Ĩ(ζ) restricted to
E. This implies (4.108). Equation (4.109) follows from MSE(ω) = tr{Cov[ω(y)|ζ = j(x)]}
and (4.108). 2

Lemma 4.2 allows us to predict an upper bound for the MSE of any efficient estimator
(that is an unbiased estimator that achieves the CRLB):

Corollary 4.4. Assume ω : Rm → Hz0 is an unbiased estimator that achieves the CRLB
(4.108). Then its Mean-Square Error is bounded above by

(4.110) MSE(ω) = E[‖x− ω(y)‖2|x] ≤ (2n− 1)σ2

4aopt0 |〈x, z0〉|2
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Proof
If ω is unbiased and achieves the CRLB (in other words, if ω is efficient) then

MSE(ω) =
σ2

4
tr


(

m∑
k=1

ΠΦkζζ
∗ΦkΠ

)† = tr

{(
Ĩ(ζ)

)†}
Then (4.110) follows from (4.106) by noting that tr{Π} = 2n− 1. 2

5. The Iterative Regularized Least-Square (IRLS) Algorithm

Consider the additive noise model in (2.3). Our data is the vector y ∈ Rm. Our goal is to
find an x ∈ H that minimizes ‖y − α(x)‖, where we use the Euclidian norm. Set

(5.111) J0(X) =
m∑
k=1

|yk − 〈Xfk, fk〉|2 , J0 : Sym(H)→ R

and notice J0(xx
∗) = ‖y − α(x)‖2. The least-square error minimizer represents the Maxi-

mum Likelihood Estimator (MLE) when the noise is Gaussian. In this section we discuss an
optimization algorithm for this criterion.

Consider now J0 = ‖y −A(X)‖2 where is X is restricted to S̊1,0, which is an analytic
manifold. Consider a current point X(t) = x(t)(x(t))∗ in an iterative process. Then a descent
direction can be thought of as a vector in the tangent space to the manifold. According to
Lemma 3.11 (1), the tangent space at X(t) is given by operators of the form Jx(t), δK. Since
X(t)+Jx(t), δK = Jx(t), x(t) + δK ∈ S1,1, one would need to project X(t)+Jx(t), δK back into S1,0

and choose direction δ that minimizes (or at least decreases) J0(P (X(t) + Jx(t), δK)), where
P is the (nonlinear) projection in Sym(H) onto S1,0. However since J0 is well defined on
S1,1 we choose to optimize δ without projecting back onto S1,0. Thus we obtain the iterative
process:

x(t+1) = argminuJ0(Jx(t), uK)
However this process is not robust to noise, the main reason being ill-conditioning and
multiple local minima of J0 on S1,0. Instead we choose to regularize this process and thus
to introduce a different optimization criterion.

Consider the following functional

J : H ×H × R+ × R+ → R+(5.112)

J(u, v, λ, µ) =
m∑
k=1

|yk −
1

2
(〈u, fk〉〈fk, v〉+ 〈v, fk〉〈fk, u〉)|2 + λ‖u‖2 + µ‖u− v‖2 + λ‖v‖2.

Our ultimate goal is to minimize J0(uu
∗) = ‖y − α(u)‖2 = J(u, u, 0, µ) over u, for some (and

hence any) value of µ ∈ R+. Our strategy is based on the following iterative process:

Algorithm 5.1. The Iterative Regularized Least-Square (IRLS) Algorithm
Step 0. Initialize x0 as the global optimal solution for a specific pair (λ0, µ0).
Step 1. Iterate:
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1.1 Solve for

(5.113) x(t+1) = argminuJ(u, x(t), λt, µt)

1.2 Update λt+1, µt+1 according to a specific policy;
Step 2. Stop when some tolerance level is achieved.

As we describe below the update (5.113) can be modified to achieve a more robust behavior
(see (5.131)).

5.1. Initialization. Consider the regularized least-square problem:

minuJ(u, u, λ, 0) = minu‖y − α(u)‖2 + 2λ‖u‖2

Note the following relation

J(u, u, λ, 0) = ‖y‖2 + 2λ‖u‖2 − 2
m∑
k=1

yk|〈u, fk〉|2 +
m∑
k=1

|〈u, fk〉|4

= ‖y‖2 + 2〈(λI −Q)u, u〉+
m∑
k=1

|〈u, fk〉|4(5.114)

where

(5.115) Q =
m∑
k=1

ykfkf
∗
k =

m∑
k=1

ykFk

For λ > ‖Q‖ the optimal solution is u = 0. Note that if Q ≤ 0 (as a quadratic form) then
the optimal solution of minu‖y − α(u)‖2 is u = 0. Consequently in the following we assume
the largest eigenvalue of Q is positive. As λ decreases the optimizer remains small. Hence
we can neglect the forth order term in u in the expansion above and obtain:

J(u, u, λ, 0) ≈ ‖y‖2 + 2〈(λI −Q)u, u〉

Thus the critical value of λ for which we may get a nonzero solution is λ = maxeig(Q),
which is the maximum eigenvalue of Q. Let us denote by a1 this (positive) eigenvalue and e1
its associated normalized eigenvector. This suggests to initialize λ = ρa1 for some 0 < ρ ≤ 1
and x(0) = βe1, for some nonzero scalar β. Substituting into (5.114) we obtain

J(βe1, βe1, ρa1, 0) = ‖y‖2 − 2(1− ρ)a1β
2 + (

m∑
k=1

|〈e1, fk〉|4)β4

For fixed ρ, the minimum over β is achieved at

(5.116) β0 =

√
(1− ρ)a1∑m
k=1 |〈e1, fk〉|4

, x(0) = βe1
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The parameter µ controls the step size at each iteration. The larger the value the smaller the
step. On the other hand, a small value of this parameter may produce an unstable behavior
of the iterates. In our implementation we use the same initial value for both λ and µ:

(5.117) µ0 = λ0 = ρa1

5.2. Iterations. Minimization (5.113) is performed in the space HR. Let ζ(t) = j(x(t)) and
ξ = j(u). Then
(5.118)

J(u, x(t), λt, µt) =
m∑
k=1

|〈
(
Φkζ

(t)(ζ(t))∗Φk

)
ξ, ξ〉 − yk|2 + λt‖ξ‖2 + µt‖ξ − ζ(t)‖

2
+ λt‖ζ(t)‖

2

Note the criterion is quadratic in ξ. The unique minimum is given by solving the linear
equation:

(5.119)

(
m∑
k=1

Φkζ
(t)(ζ(t))∗Φk + (λt + µt)1

)
ζ(t+1) =

(
m∑
k=1

ykΦk + µt1

)
ζ(t)

for ζ(t+1). In our implementations we decrease (λt, µt) but we limit µt to a minimum value.
Thus our adaptation policy is

λt+1 = γλt(5.120)

µt+1 = max(γµt, µ
min)(5.121)

where 0 < γ < 1 is the rate parameter.

5.3. Stopping Criterion. One approach is to repeat the iterations until λ reaches a preset
value λmin. As proved later in this section, the error is linearly dependent on λ.

Alternatively, one can stop the iterations once the modeling error becomes comparable to
the noise variance. Specifically, a stopping criterion could be

(5.122)
m∑
k=1

|yk − |〈x(t), fk〉|2|2 ≤ κmσ2

where κ ≥ 1, for instance κ = 3.

5.4. Convergence and Optimality. Consider the following three functionals J1, J2, J3 :
Sym(H)× R+ × R+ → R defined by

J1(X,λ, µ) =
m∑
k=1

|yk − 〈X,Fk〉|2 + 2(λ+ µ)‖X‖1 − 2µ tr{X}(5.123)

J2(X,λ, µ) =
m∑
k=1

|yk − 〈X,Fk〉|2 + 2λ amax(X)− (2λ+ 4µ) amin(X)(5.124)

J3(X,λ, µ) =
m∑
k=1

|yk − 〈X,Fk〉|2 + 2λ ‖X‖1 − 4µ amin(X)(5.125)
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where amax(X) and amin(X) are the maximum and minimum eigenvalue of X, respectively.
We can prove the following result:

Lemma 5.2. (1) When restricted to S1,1 the three criteria coincide:

(5.126) J1(X,λ, µ) = J2(X,λ, µ) = J3(X,λ, µ) , ∀X ∈ S1,1, λ, µ ∈ R.

(2) On Sym(H), the three criteria J1, J2, J3 are convex.
(3) The minimum value of J1, J2, J3 on S1,1 coincides with the minimum value of J on

H ×H:

(5.127) min
X∈S1,1

J1(X,λ, µ) = min
X∈S1,1

J2(X,λ, µ) = min
X∈S1,1

J3(X,λ, µ) = min
u,v∈H

J(u, v, λ, µ)

for any λ, µ ≥ 0. Any minimizer X̂ ∈ S1,1 for J1, J2, J3 and (û, v̂) for J satisfy

(5.128) X̂ = Jû, v̂K , ‖û‖ = ‖v̂‖ , imag(〈û, v̂〉) = 0

(4) Restricted to S1,0 all four criteria coincide:

(5.129) J(u, u, λ, µ) = J1(uu
∗, λ, µ) = J2(uu

∗, λ, µ) = J3(uu
∗, λ, µ) = ‖y − α(u)‖2 + 2λ‖u‖2

and are independent of µ.

Proof
For (1), the quadratic error term is the same in all three criteria, whereas the regularization

terms are equal to each other:

2(λ+ µ)‖X‖1 − 2µtr{X} = 2(λ+ µ)(a1 + a2)− 2µ(a1 − a2) = 2λa1 + (2λ+ 4µ)a2

2λamax(X)− (2λ+ 4µ)amin(X) = 2λa1 + (2λ+ 4µ)a2

2λ‖X‖1 − 4µamin(X) = 2λ(a1 + a2)− 4µ(−a2) = 2λa1 + (2λ+ 4µ)a2

where X = a1e1e
∗
1 − a2e2e∗2 with a1, a2 ≥ 0 and {e1, e2} orthonormal set.

For (2) notice that the following four functions defined on the real vector space Sym(H)
are convex: X 7→ |yk − 〈X,Fk〉|2 , X 7→ ‖X‖1, X 7→ −tr{X}, X 7→ amax(X), whereas
X 7→ amin(X) is concave. The last two statements are consequences of the Weyl’s Inequality,
Theorem III.2.1 in [10] with i = j = 1 in (III.5), and i− j = n in (III.6).

For (3) and (4) note first the following relation:

J(u, v, λ, µ)− J1(Ju, vK, λ, µ) = (λ+ µ)

[
(‖u‖ − ‖v‖)2 + 2‖u‖‖v‖ − 2

√
‖u‖2‖v‖2 − (imag(〈u, v〉))2

]
≥ (λ+ µ)(‖u‖ − ‖v‖)2 ≥ 0(5.130)

that follows from (3.67) and (3.71). Using part (1) we obtain

min
X∈S1,1

J1(X,λ, µ) = min
X∈S1,1

J2(X,λ, µ) = min
X∈S1,1

J3(X,λ, µ) ≤ min
u,v∈H

J(u, v, λ, µ).

Let X̂ denote the optimizer and let X̂ = a1ê1ê
∗
1 − a2ê2ê

∗
2 be its spectral decomposition

with a1, a2 ≥ 0 and 〈êi, êj〉 = δi,j, 1 ≤ i, j ≤ 2. Set û =
√
a1ê1 +

√
a2ê2 and v̂ =
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√
a1ê1 −

√
a2ê2. Note X̂ = Jû, v̂K and ‖û‖ = ‖v̂‖, imag(〈û, v̂〉) = 0. Then (5.130) im-

plies J(û, v̂, λ, µ) = J1(X̂, λ, µ) which proves (5.127). Furthermore, let (û, v̂) be a minimizer
for minu,v∈H J(u, v, λ, µ) which achieves also equality in (5.127). By (5.130) it follows that
‖û‖ = ‖v̂‖ and imag(〈û, v̂〉) = 0 which proves statement (3).

(4) follows from the first equality in (5.130) and (5.126). 2

Remark 5.3. The criterion J2 shows that the two regularization terms λ(‖u‖2 + ‖v‖2) and
µ‖u− v‖2 have different effects on the optimizer: the larger the parameter µ the closer the

lower eigenvalue is to zero; hence the closer the optimizer X̂ is to a rank-1 operator; on the
other hand, the larger the parameter λ the larger the cost of the S1,0 component in X̂; hence
‖X̂‖ remains bounded.

Remark 5.4. In the optimization problem infu,v∈H J(u, v, λ, µ) the constraint is convex but
the criterion is not jointly convex in (u, v). It is however convex in each individual variable
u and v. On the other hand in the optimization problem infX∈S1,1 Js(X,λ, µ), 1 ≤ s ≤ 3, the
criterion is convex in X, but the underlying constraint X ∈ S1,1 does not define a convex
set.

The optimization procedure outlined in Algorithm 5.1 describes the following mechanism.
Consider a path (x(t))t≥0 in H. Set

X(t+1) = Jx(t), x(t+1)K =
1

2

(
x(t+1)(x(t))∗ + x(t)(x(t+1))∗

)
Thus a trajectory (x(t))t≥0 in H is mappped into a trajectory (X(t))t≥0 in S1,1. Then the
algorithm chooses X(t+1) along a tangent direction to S1,1 at Jx(t), x(t−1)K, namely a direction
of the form Jx(t), uK for some u ∈ H that is of maximum descent for Js, 1 ≤ s ≤ 3. Since the
algorithm performance is completely characterized by the sequence (X(t))t≥0, and since for a
given X ∈ S1,1 the minimum of J(u, v, λ, µ) over u, v ∈ H subject to Ju, vK = X is achieved
at a pair (u, v) so that ‖u‖ = ‖v‖ and imag〈u, v〉 = 0, we chose to rescale the vector x(t+1)

to achieve norm
√
‖ζ(t)‖‖ζ(t+1)‖. Thus:

(5.131) x(t+1) =

√
‖ζ(t)‖
‖ζ(t+1)‖

j−1(ζ(t+1))

5.5. Robustness to noise and the effect of regularization. In this subsection we make
a stronger assumption of injectivity:

Assumption A: For every x ∈ H there is a unique X ∈ S1,1 so that A(X) = A(xx∗),
namely X = xx∗.

A simple heuristic argument (that can be made more precise, but we do not intend to do
so here) suggests that generically this assumption is satisfied for frames of redundancy 6 or
more (that is for m ≥ 6n).

This assumption turns out to be equivalent to a stability bound that we describe next

Lemma 5.5. The following are equivalent:
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(1) The frame F satisfies assumption A.
(2) kerA ∩ S2,1 = {0}.
(3) There is a constant A3 > 0 so that

(5.132) A3‖X − Y ‖21 ≤ ‖A(X)−A(Y )‖2

for all X ∈ S1,1 and Y ∈ S1,0.

Proof
(1)⇒(2). Note first that S1,0 − S1,1 = S2,1 cf. Lemma 3.6 (5). Assume F satisfies

assumption A and let Z ∈ kerA ∩ S2,1. Then Z = X − xx∗ for some X ∈ S1,1 and x ∈ H.
Then A(X) = A(xx∗) and by Assumption A, X = xx∗. Hence Z = 0.

(2)⇒(1). Conversely if (2) holds true, then for every x ∈ H and X ∈ S1,1 so that
A(X) = A(xx∗) it follows Z = X − xx∗ ∈ kerA and Z ∈ S2,1. Thus Z = 0 which means F
satisfies assumption A.

(3)⇒(2) is immediate.
(2)⇒(3). Since S = {W ∈ S2,1 | ‖W‖1 = 1} is compact, it follows

(5.133) A3 = inf
W∈S
‖A(W )‖2 = ‖A(W0)‖2 > 0

for some W0 ∈ S2,1, W0 6= 0. Then since any Z ∈ S2,1 can be written as Z = ‖Z‖1W , with
W = 1

‖Z‖1
Z ∈ S,

‖A(Z)‖2 = ‖Z‖21‖A(W )‖2 ≥ A3‖Z‖21
Then (5.132) follows from noticing that Y −X ∈ S2,1. 2

Now we can state the main stability result of the estimators described in this section.

Theorem 5.6. Fix µ ≥ 0, x ∈ H and let y = α(x) + ν. Assume F satisfies assumption A
and let A3 denote the Lipschitz bound in (5.132). Assume the optimization procedure finds
a pair u, v ∈ H so that J(u, v, λ, µ) ≤ J(x, x, λ, µ). Then

(5.134) ‖Ju, vK− xx∗‖1 ≤
2λ

A3

+ 2

√
λ2

A2
3

+
‖ν‖2

A3

≤ 4
λ

A3

+ 2
‖ν‖√
A3

.

Let Ju, vK = a1e1e
∗
1 − a2e2e∗2, with real a1, a2 ≥ 0 and {e1, e2} orthonormal set in H, be its

spectral decomposition. Assume an oracle provides the global phase ϕ0 so that eiϕ0 = 〈x,e1〉
|〈x,e1〉| .

Set

(5.135) x̂ = eiϕ0
√
a1 e1 .

Then

(5.136) ‖x− x̂‖2 ≤ ‖Ju, vK− xx∗‖1 + a2 ≤
4λ

A3

+
2‖ν‖√
A3

+
‖ν‖2

4µ
+
λ‖x‖2

2µ
.

If, additionally, J(u, v, λ, µ) ≤ J(0, 0, λ, µ) then

(5.137) ‖x− x̂‖2 ≤ 4λ

A3

+
2‖ν‖√
A3

+
‖ν‖2

4µ
.
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Proof
The proof follows from the Lipschitz bound (5.132). Let Y = Ju, vK and X = xx∗. Note

that

J3(Y, λ, µ) ≤ J(u, v, λ, µ) ≤ J(x, x, λ, µ) = J3(xx
∗, λ, µ)

where the first inequality follows from (5.126) and (5.130). Explicitly this means

‖A(Y −X)− ν‖2 + 2λ‖Y ‖1 − 4µamin(Y ) ≤ ‖ν‖2 + 2λ‖X‖1 .

Then

A3‖Y −X‖21 ≤ ‖A(Y −X)‖2 ≤ (‖A(Y −X)− ν‖+ ‖ν‖)2 ≤ 2‖A(Y −X)− ν‖2 + 2‖ν‖2 .

Substituting into the previous inequality we obtain

‖X − Y ‖21 −
4λ

A3

‖X − Y ‖1 −
4‖ν‖2 + 8µamin(Y )

A3

≤ 0 .

Solving for ‖X − Y ‖1 we obtain

‖X − Y ‖1 ≤
2λ

A3

+ 2

√
λ2

A2
3

+
‖ν‖2

A3

+
2µ

A3

amin(Y ) ≤ 2λ

A3

+ 2

√
λ2

A2
3

+
‖ν‖2

A3

since µ ≥ 0 and amin(Y ) ≤ 0 for any Y ∈ S1,1. This proves the first inequality in (5.134).
The second inequality in (5.134) follows from

√
a2 + b2 ≤ a+ b for any a, b ≥ 0.

The second part of the Theorem is obtained as follows. First note x̂x̂∗ = a1e1e
∗
1. Hence

‖x̂x̂∗ − xx∗‖1 ≤ ‖Ju, vK− xx
∗‖1 + a2 .

Next we show that ‖x− x̂‖2 ≤ ‖x̂x̂∗ − xx∗‖1, from where the first inequality of (5.136)
follows. Let T = x̂x̂∗ − xx∗ ∈ S1,1. Its nuclear norm is given by (3.76):

‖T‖1 =

√
(‖x̂‖2 + ‖x‖2)2 − 4|〈x, x̂〉|2 .

Recall x̂ is given the global phase so that 〈x̂, x〉 ≥ 0 is real and nonnegative. Thus |〈x̂, x〉|2 =
(〈x̂, x〉)2 and

‖x− x̂‖4 = ‖T‖21 − 4〈x̂, x〉 · ‖x− x̂‖2 ≤ ‖T‖21
which shows ‖x− x̂‖2 ≤ ‖x̂x̂∗ − xx∗‖1 and thus first inequality in (5.136). The second
inequality follows from (5.134) and a bound for a2 from

4µa2 ≤ J3(Y, λ, µ) ≤ J3(X,λ, µ) = ‖ν‖2 + 2λ‖x‖2.

Finally, (5.137) follows from using the second inequality in (5.134) together with a bound
for a2 from

4µ|a2| ≤ J3(Y, λ, µ) ≤ J3(0, λ, µ) = ‖ν‖2.
2
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Remark 5.7. Note the result does not require to finding the global minimum, but only an
estimate that brings the criterion J below the level achieved by the true signal. On the other
hand the result is not unexpected since MLE is asymptotically efficient (i.e. unbiased and
achieves CRLB asymptotically with the number of measurements), see Theorem 7.1 in [26].

6. Numerical Analysis

In this section we present numerical simulations for the Regularized Iterative Least-Square
algorithm presented in the previous section.

We generated random frames or redundancy m
n

= 4,6, and 8, as well as complex random
signals x of size n = 100. All these vectors (frame and signal) are drawn from standard
Gaussian distribution N (0, I). Then we scale the frame vectors to have norm 1. We set
the first component of x to be a positive real, and so the global phase becomes uniquely
determined. The algorithm stopped when λt reached a preset value. In these simulations we
choose λmin = 0.01, µmin = 1 and rate γ = 0.8 in (5.120,5.121).

The magnitude square of signal coefficients α(x) is perturbed additively by Gaussian noise
with variance σ2 to achieve a fixed signal-to-noise-ratio defined as

SNR =

∑m
k=1 |〈x, fk〉|4

mσ2
, SNRdB = 10 log10(SNR) [dB]

We vary SNRdB over 15 values in 5dB increments from -30dB to +40dB. We average
algorithm performance over 100 noise realizations.

Figure 1 includes the mean-square error averaged over 100 noise realizations for one fixed
realization of x, and the C-R lower bound.

In Figure 2 we plot the bias and variance components of the mean-square error for the
same results in Figure 1. Note the bias is relatively small. The bulk of mean-square error is
due to estimation variance.

The mean number of iterations varied between 35 and 50, with a higher value for lower
SNR (-30dB) and a smaller value for higher SNR (40dB).

For m = 800 and three values of SNR (-30dB, 0dB, and 40dB) Figures 3-5 plot traces of
a particular noise realization (different for each SNR). In each figure, we plot four charac-

teristics: top graph plots the estimation error of the clean signal 10 log10 ‖x(t) − x‖
2
; second

graph presents the smallest eigenvalue of X(t) = Jx(t), x(t−1)K (which is negative); third graph

contains the current estimation error of the clean rank-one, that is 10 log10 ‖X(t) − xx∗‖22
(Frobenius norm); bottom graph plots J0 = 10 log10 ‖y −A(X(t))‖2 .

We also analyzed the algorithm sensitivity to initialization. Instead of using the eigenpair
(5.116,5.117) we initialize by a random vector x0 together with the eigenvalue (5.117). Re-
sults for the three values of redundancy are presented in Figure 6 for 0dB to 40dB range of
SNR.
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7. Conclusions

Novel necessary conditions for complex valued signal reconstruction from magnitudes of
frame coefficients have been presented. Deterministic stability bounds (Lipschitz constants)
and stochastic performance bounds (Cramer-Rao lower bound) have been presented. The
entire analysis has been done canonically, that is independent of a particular choice of basis.
Then an optimization algorithm based on the least-square error has been proposed and
analyzed. The algorithm performance has been compared to the theoretical lower bound
given by the Cramer-Rao inequality. Remarkably the algorithm performs very well on a
large range of SNR. In particular, for high SNR, it seems to converge to the correct signal
every time. This behavior suggests the algorithm presented here is able to track the global
minimum of (5.112) very well. A future study shall analyze this tracking hypothesis.
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Figure 1. Mean-Square Error and CRLB bounds for m = 800 (top plot),
m = 600 (middle plot), and m = 400 (bottom plot) when n = 100.
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Figure 2. Bias and variance components of the mean-square error and CRLB
bounds for m = 800 (top plot), m = 600 (middle plot), and m = 400 (bottom
plot) when n = 100.
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Figure 3. Traces for m = 800, n = 100 and SNR = −30dB:
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Figure 4. Traces for m = 800, n = 100 and SNR = 0dB:
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Figure 5. Traces for m = 800, n = 100 and SNR = 40dB:
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Figure 6. Mean-Square Error and CRLB bounds for m = 800 (top plot),
m = 600 (middle plot), and m = 400 (bottom plot) when n = 100 and
random initialization of x0.


