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Abstract
Mathematical implications of adding Gaussian white noise to the Burton–
Cabrera–Frank model for N terraces (‘gaps’) on a crystal surface are studied
under external material deposition for large N. The terraces separate straight,
non-interacting line defects (steps) with uniform spacing initially (t = 0).
As the growth tends to vanish, the gaps become uncorrelated. First, simple
closed-form expressions for the gap variance are obtained directly for small
fluctuations. The leading-order, linear stochastic differential equations are
prototypical for discrete asymmetric processes. Second, the Bogoliubov–
Born–Green–Kirkwood–Yvon (BBGKY) hierarchy for joint gap densities is
formulated. Third, a self-consistent ‘mean field’ is defined via the BBGKY
hierarchy. This field is then determined approximately through a terrace
decorrelation hypothesis. Fourth, comparisons are made of directly obtained
and mean-field results. Limitations and issues in the modeling of noise are
outlined.

PACS numbers: 81.15.Aa, 05.10.Gg, 68.35.−p, 05.40.−a, 02.10.Yn

1. Introduction

The drive toward ever smaller and faster devices has fueled interest in crystal surface dynamics
and fluctuations across scales. For broad reviews, the reader may consult [1–3]. A related
direction of active research in non-equilibrium statistical mechanics is the connection of
particle schemes to macroscopic evolution laws [4, 5].

Material deposition (growth) on crystal surfaces is used to create building blocks of
quantum wires and dots, and other nanoscale structures [3]. On vicinal crystals, nanoscale
terraces are oriented in the high-symmetry direction and separated by line defects (steps)
typically one atomic layer high. At temperatures of interest, the steps are monotonic (of
the same ‘sign’) with their number fixed by the miscut angle set by the experiment [2].
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Understanding how microscale processes for steps are linked to the fluctuation of surface
features at larger scales paves the way to controlling epitaxy.

Here, we study a stochastic particle model for crystal terraces. A solvable case is treated
by methods of kinetic theory, revealing an interplay of time and material parameters. ‘Mean-
field’ ideas are examined in the light of kinetic hierarchies and compared to an exact result for
the terrace variance. This leads to a simple correlation criterion.

The microscale constituents of crystal surfaces were introduced by Kossel [6], Stranski
[7] and Burton, Cabrera and Frank (BCF) [8]. Surfaces evolve because steps move as adsorbed
atoms (adatoms) hop on terraces, attach–detach at and move along step edges. This picture
leads to a system of differential equations for step positions. An alternative description invokes
macroscopic evolution laws for the surface height, e.g., in [9, 10]. Both of these descriptions
have been connected to Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchies for
step position correlation functions [11].

Distinctly different approaches have been followed for step fluctuations [2, 12].
Equilibrium properties such as the terrace width, or step gap [13], distribution1 for repulsively
interacting steps have been studied extensively [2, 12, 14–16]. A key idea is to map steps onto
worldlines of spinless fermions, because steps do not cross [14, 17]. The relaxation of the gap
distribution is described by a mean field, via a Fokker–Planck equation (FPE), and by kinetic
Monte Carlo simulations [18, 19]. In the former approach, stochastic differential equations
(SDEs) for gaps approximately decouple, yielding a one-dimensional (1D) FPE for the one-
gap density. The relation of this simplified mean-field approach to BBGKY hierarchies,
which form the basis of any statistical–mechanical system with particle correlations, is not
well understood and needs to be explored. This issue lies at the core of computational physics
and motivates our work.

In this paper, a BCF-type model in 1D under growth is explored by the addition of
Gaussian white noise for initially uniform step trains. One goal is to reconcile BBGKY
hierarchies for joint gap probability densities with mean-field ideas for coupled SDEs [18, 16,
20]. Another goal is to treat the SDEs for N step gaps under a small-fluctuation expansion.
The zeroth-order equations are linear and solved explicitly for all times and large N.

This problem was inspired by the recent work of Hamouda et al [20], who addressed
non-equilibrium properties of terrace width fluctuations during growth. These authors apply
a mean field for the one-gap density, and compare analytical results for long times with
kinetic Monte Carlo simulations. Their density approaches a steady state captured both by the
mean field and the kinetic Monte Carlo simulations. Here, the analysis complements [20] by
focusing on (i) the relation of their mean field to the exact formalism of kinetic hierarchies,
and (ii) the behavior of the one-gap density for finite times. This study aims to clarify the
precise nature of previous, simple mean-field approximations, especially their limitations due
to terrace correlations.

Sources of surface fluctuations were laid out by Wolf [21], and aspects of noisy continuum
theories were discussed by Krug [22, 23] over a decade ago. A similar, minimal 1D model
of growth is analyzed in [24] with emphasis on continuum equations for the surface height.
The small-fluctuation model solved here (sections 5 and 6.1) is prototypical for a class of
asymmetric discrete processes: a parameter (p) captures limiting forms of effects such as
finite step velocity [20, 25, 26], Ehrlich–Schwoebel barrier [27–30], electromigration [31] and
fluctuations in the number of atoms impinging on the surface [32]. This list is not exhaustive.
Our approach, especially the modeling of noise, is compared to a few previous works, e.g.
[30, 33, 34], in section 6.4.

1 Throughout this paper, the terms terrace width and step gap are used interchangeably.
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The SDE system for N terrace widths has the general (nondimensional) form

dG(t) = Ǎ(G;F) dt + dB(t) (t : time, t � 0), (1)

where G(t) = (G0(t),G1(t), . . . , GN−1(t)) is a vector-valued stochastic process with
component Gi (t) representing the ith step gap; B(t) = (B0(t),B1(t), . . . , BN−1(t)) is vector
Brownian motion (with independent and identically distributed components Bi (t)); the vector-
valued Ǎ is smooth and has components Ǎi = A(Gi−1,Gi ,Gi+1) and F is the material deposition
flux (see section 2 for a formulation). The gaps are subject to screw periodic boundary
conditions, i.e. the N particles corresponding to terraces lie on a ring.

The main contributions of our work are: (i) SDEs (1) are converted to a BBGKY hierarchy
for joint gap densities; (ii) by expansion of Ǎ for sufficiently small fluctuations of G(t), an
explicit solution of the leading-order SDEs and the corresponding gap variance are obtained;
(iii) a self-consistent mean field f is introduced systematically via the BBGKY hierarchies,
where Gi−1(t) ≡ f (t,Gi ) ≡ Gi+1(t) in (1) and (iv) the mean-field gap variance is compared to
an exact result for the linear model. The mean field f of [20] follows as a special case under
the ansatz of two-gap independence.

The limits N → ∞ and t → ∞ do not commute in the main computation of section 5.2.
The time t is taken to be fixed, which is physically meaningful (and better illustrates the relation
of white noise to gap variance). Specifically, if t is physical time, (Fa�)2t/D < O(N) where
� is the initial step gap, a is the step size and D is the terrace diffusivity. This time restriction
is, nonetheless, relaxed in section 6.1, revealing finite-size effects within a linear stochastic
model.

For the main derivations, the assumption is made that steps are entropically and
energetically non-interacting [8]. The terrace widths in SDEs (1) interact only through surface
diffusion. This simplification, which retains the essential physics of growth and offers some
advantages, can be motivated as follows. (i) The terrace fluctuations, partly controlled by the
deposition flux F and initial step gap � , can be kept sufficiently small so that leaving out
step interactions has a negligible effect. This is further discussed in section 6.3. (ii) Without
interactions, the coefficient Ǎ in (1) is well behaved. Thus, for reasonable initial data, a unique
strong solution exists2. By contrast, repulsive step interactions would result in a singular Ǎ

[36, 37]. Although it is expected physically that step gaps do not vanish (and thus Ǎ does not
blow up), the analysis of step energies would require much more care. (iii) SDEs (1) have
the appeal of a minimal model for gap correlations with noise. As F → 0, the gaps become
independent for all t > 0 [24]. Hence, F parameterizes in a simple nontrivial setting terrace
correlation.

A shortcoming of our model, without step interactions, appears to be its violation of the
non-crossing condition for steps: gap densities acquire tails of nonzero probability for negative
gaps. However, if the gap variance is much smaller than the mean terrace width squared, as
can happen, e.g., by controlling the initial terrace width � and flux F, negative gaps are
unlikely and their probability is small. Hence, the results are deemed physical provided � , F
and t suitably conspire to keep fluctuations small enough [20]. This possibility is quantified
in section 5 as an outcome of our analysis.

The BCF theory—which forms the core of this treatment—has an intrinsically near-
equilibrium character. Hence, the model is expected to break down if the deposition flux,
F, is too large [20]. In the other extreme limit, F → 0, the inclusion of step interactions
is compelling since fluctuations tend to grow. The view is adopted that step interactions are

2 For uniqueness, it suffices to have a Lipschitz continuous coefficient Ǎ and initial data with finite mean and variance.
For an exposition to strong and weak solutions of SDEs, see, e.g., [35].
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negligible for F > Fth where 0 < Ftha� 2/D � 1. The idealized limit Fa� 2/D → 0 is
invoked in the analysis as a reference case, to show how terraces tend to decorrelate.

A bothersome feature of (1) is that the form of the noise term is assumed ad hoc rather than
derived. This approach relies on widely appealing features of the (Brownian motion-based)
white noise. The relation of this noise to geometry and the random hopping of adatoms, e.g.,
any plausible settings of kinetic Monte Carlo-type simulations, is not touched upon. In the
same vein, aspects of step meandering [30, 34] are beyond our present scope. The steps are
straight moving boundaries. Considering step meandering leads to a more elaborate setting
and formulation (see section 6.4 for a discussion).

The present treatment is distinct from the renormalization group ideas by Haselwandter
and Vvedensky [38], who derive stochastic partial differential equations for the surface height
from an atomistic model. The connection of their approach to fluctuating steps and terraces is
not addressed.

Despite its idealizations, the present setting is viewed as a minimal model for linking
discrete stochastic schemes to large-scale fluctuations. The role of BBGKY hierarchies is
exemplified with relative ease. In this analytically tractable context, an explicit result for
the gap variance is compared to a previous mean-field formula. This indicates a ‘measure’
of terrace correlations which, although quantified here in the absence of step interactions,
is believed to capture universal features of fluctuations such as the narrowing of the terrace
width distribution with increasing flux F. The study of richer models can be guided by this
treatment.

The paper is organized as follows. In section 2, the governing SDE system in 1D is
formulated in the BCF framework [8]. In section 3, an equivalent formulation is provided
in terms of BBGKY hierarchies for joint probability step gap densities. In section 4, a self-
consistent mean field is introduced via the two-gap density. In section 5, the one-gap variance
is computed explicitly for fixed time. Section 6 addresses extensions and implications of these
results. In section 7, the main results and pending issues are summarized. The appendices
provide technical derivations needed in the main text.

Note on notation. Calligraphic capital letters denote scalar or vector stochastic processes.
Matrices are boldface; a vector y ∈ R

N (N-dimensional space) is not boldface and has
components yk, k = 0, . . . , N − 1, whereas �yl ≡ (y0, . . . , yl−1) ∈ R

l , 1 � l � N − 1. Joint
gap densities are ρn with n = 1, . . . , N . The symbol f = O(g) implies that f/g is bounded
by a constant as a parameter or variable approaches a certain limit.

2. Stochastic scheme: formulation via the BCF model

In this section, the SDE system for N step gaps under growth is formulated in the physical
setting of Hamouda et al [20]. First, the geometry and deterministic equations of motion
for terrace widths are described via BCF principles [8]. The effects include adatom terrace
diffusion, atom attachment-detachment at steps and material deposition from above. Second,
the governing equations are nondimensionalized. Third, Gaussian white noise is added to the
equations of motion.

2.1. Deterministic equation of motion

Consider noiseless dynamics. The step geometry is shown in figure 1. The step train is
monotonic, steps have (nonrandom) positions xi(t) and height a, where gi = xi+1 − xi > 0
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Figure 1. Schematic (cross section) of step configuration: x = xi(t) at the ith step edge, a is the
step height and h is the surface height; the ith step gap is gi = xi+1 − xi .

and i = 0, . . . , N − 1.3 Apply screw periodic boundary conditions, i.e. set xi(t) = xi+kN (t)

where k is any integer.
The adatom concentration Ci(t, x) on the ith terrace satisfies the diffusion equation

∂tCi = D∂2
xCi + F, xi < x < xi+1 (∂t ≡ ∂/∂t), (2)

where D is the terrace diffusion constant and F is the external deposition rate.
A usual approach to solving (2) for F = 0 is the quasi-steady approximation, ∂tCi ≈ 0.

In growth (F 	= 0), a nonzero relative step velocity, v ∝ F , is included via the Galilean
transformation (x ′, t ′) = (x − vt, t) [26]. Thus, (2) becomes [20, 26](

D∂2
x ′ + v∂x ′

)
Ci + F = ∂t ′Ci. (3)

It is reasonable to set v = Fa� , the mean step velocity, where � is the initial or mean gap
(see section 5). So, the diffusion equation is transformed to the comoving frame [20]. Apply
the quasi-steady approximation ∂t ′C ≈ 0 in the kinetic regime where deviations of the actual
step velocity from this v are small compared to the speed D/(xi+1 − xi). Now, remove the
primes for ease of notation (i.e. x ′ ⇒ x).

Next, linear kinetics are enforced at steps bounding the ith terrace [2]:

− ji(xi) = k
[
Ci(xi) − C

eq
i

]
, ji(xi+1) = k

[
Ci(xi+1) − C

eq
i+1

]
, (4)

where ji(x) = −D∂Ci/∂x−vCi is the ith-terrace adatom flux, Ceq
i is the ith-edge equilibrium

adatom concentration and k is the rate for atom attachment–detachment. The time dependence
of Ci and ji is suppressed. Each C

eq
i accounts for step energetics, i.e. elastic-dipole step

interactions [2, 36, 37] (see section 6). Kinetic rates different for up- and down-step edges
(i.e. the Ehrlich–Schwoebel barrier [27]) can be included.

By mass conservation, the velocity of the ith step edge is

ẋi = dxi/dt = (�/a)[ji−1(xi) − ji(xi)], (5)

where � is the atomic volume, � ≈ a2. Once each Ci is obtained for fixed positions {xi}, (5)
leads to a system of ordinary differential equations for xi(t).

Equations (3) and (4) are solved explicitly, but the details are omitted; ji(x) reads

ji(x) = FDv−1 + F (x − xi) − �i, (6)

where �i = �
(
gi;C

eq
i , C

eq
i+1

)
, gi = xi+1 − xi , and

�(g;α, β) = F [(1 + e−vg/D)D/k + (1 + v/k)g] + v(β − α e−vg/D)

1 + v/k − (1 − v/k) e−vg/D
. (7)

3 Figure 1 and the discussion of this section imply that steps have a fixed ordering. Consistent with this picture, the
starting formulation in this subsection incorporates step repulsions via the C

eq
i in (4).
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By virtue of (5), the differential equations for the step gaps, gi, read

ġi = (�/a)[F(gi − gi−1) + �i+1 − 2�i + �i−1]. (8)

A distinguished limit of (8) follows by taking

vgi/D � O(1), v/k � 1, D/k � gi, vC
eq
i � Fgi.

Consequently, �i ∼ Fgi(1 − e−vgi/D)−1 and (8) reduces to [20]

ġi = �F

2a

[
gi+1 evgi+1/(2D)

sinh
(

vgi+1

2D

) − 2gi cosh
(

vgi

2D

)
sinh

(
vgi

2D

) +
gi−1 e−vgi−1/(2D)

sinh
(

vgi−1

2D

) ]
. (9)

If gi(0) = � = const., then gi(t) ≡ � solves (9) for all t > 0.

2.2. Nondimensional equations

Consider Na/L � O(1) where L is the size of the sample. Each gap gi, and thus � , is
comparable to or larger than the step height, a. The positive surface slope m0 = a/�

(0 < m0 < 1) is independent of N. In many physically appealing situations v�/D � 1.
A few related observations are in order.
Deposition rate. The continuum analog of the step velocity law (5) is ∂th + �∂xj = �F

where � = O(a2), h(t, x) is the surface height and j (t, x) is the large-scale flux [9]. Thus, it
is reasonable to think of F� as an O(1), macroscopically measurable parameter.

Length scales. Two obvious length scales are (i) the, usually microscopic, length 	1 = � ,
set by the initial condition for a vicinal crystal and (ii) 	2 = O(D/v). For a fixed surface
slope, 	2 is considered as N-independent.

Time scales. By the inspection of (9), two possible time scales are (i) τ1 = O[(Fa)−1]
and (ii) τ2 = O[D/(Fa2)2], which is considered as N-independent. To unravel τ2 when
v�/D � 1, think of (9) as a second-order difference scheme for a step-continuous equation.
By the Taylor expansion in i, the right-hand side manifestly becomes O

(
τ−1

2 �
)
.

Equation (9) can be recast to a nondimensional form for later algebraic convenience.
Emphasis is placed on manifestly N-independent scales. Define4

g̃i = gi/	2, t̃ = t/τ2; 	2 = 2D

v
, τ2 = 2D

F�

1

Fa2
(� ≈ a2). (10)

Next, we drop the tildes (g̃i ⇒ gi and t̃ ⇒ t). The units are chosen so that vm0a/(2D) ≡ 1
(m0 = a/� ) and the factor of 1/2 is included for later algebraic convenience; see also
section 5. Equation (9) is written accordingly (see (11)).

2.3. Gaussian white noise

Consider the N-dimensional Brownian motion B(t) = (B0(t) , . . . ,BN−1(t)) ∈ R
N (R: set of

real numbers). The white noise, N (t), is the generalized stochastic process N (t) = dB(t)/dt .
Such an N (t), if interpreted as the usual derivative of B(t), suffers from pathologies, e.g. lack
of continuous paths. The relation dB(t) = N (t)dt amounts to

∫ t

t0
N (τ ) dτ = B(t) −B(t0) for

any t0, t . Hence, this N (t) has units of (time)−1/2.
Next, the vector-valued function g(t) = (g0(t), . . . , gN−1(t)) is replaced by the stochastic

process G(t) = (G0(t), . . . ,GN−1(t)). The components Gi (t) satisfy the SDEs

dGi (t) = 1

2

(
Gi+1eGi+1

sinhGi+1
− 2Gi cothGi +

Gi−1e−Gi−1

sinhGi−1

)
dt + dBi (t), (11)

4 Alternatively, one may define τ2 = (F� 2)−1(2D/(F�)), replacing a by � .

6



J. Phys. A: Math. Theor. 43 (2010) 065003 D Margetis

where 0 � i � N − 1. Apply (nonrandom) initial data Gi (0) = ν ≡ v�/(2D) = ℵi where
ℵ ≡ (ν, . . . , ν) ∈ R

N .

Definition 1. By 1 − Prob[supt∈[0,T )|Gi (t)| � 1] � 1, SDEs (11) become

dGi = 1
2 (Gi+1 − Gi−1)dt + dBi , Gi (0) = ν. (12)

This model will be referred to as the ‘reference case’.

Equation (11) relies on an ad hoc introduction of noise. The coefficient of dBi (t) is a
constant. Thus, the solution to (11) admits a unique interpretation. By contrast, the inclusion
of a G-dependent noise coefficient, not precluded by any physical principle [32], poses a
question as to what stochastic calculus (e.g. of Itô or Stratonovich) would be more appropriate
[35]. An advantage of the Itô calculus is the relative ease by which connections can be made
to BBGKY hierarchies. Issues of noise are discussed in section 6.

Note in passing that, upon returning to dimensional variables, the dBi (t) acquires the
dimensional coefficient 	2/

√
τ2 = m0

√
2D, independent of N (with � = a2).

3. BBGKY hierarchy

In this section, the SDE system for step gaps (Lagrangian coordinates) is recast to coupled
partial differential equations for joint probability densities (Eulerian variables). The starting
point is a generalization of SDEs (11), namely,

dGi (t) = A(Gi−1(t),Gi (t),Gi+1(t)) dt + dBi (t). (13)

3.1. Formulation

First, appropriate probability densities are introduced. The N-gap density is

ρN(t, y) dy = Prob
[ ∩N−1

k=0 {yk < Gk(t) < yk + dyk}
]
, dy =

N−1∏
k=0

dyk, (14)

where yk is the value of the kth gap, and y = (y0, . . . , yN−1) ∈ T
N , the N-dimensional torus.

In view of (13), the joint density of any n consecutive gaps is defined by

ρn(t, �sn) := 1

N

N−1∑
k=0

∫
TN−n

ρN(t, (�y ′
N−n, �sn)

c
k) d�y ′

N−n, 1 � n < N, (15)

where �y ′
l , �sl are l-dimensional vectors (�sl ∈ R

l , 0 � l � N − 1) with �sl = (s0, . . . , sl−1).
The vector ζk ≡ (�y ′

N−n, �sn)
c
k ∈ R

N is formed by the cyclic permutation of coordinates
in (�y ′

N−n, �sn), i.e. ζk = (y ′
k, . . . , y

′
N−n−1, �sn, y

′
0, . . . , y

′
k−1) if 0 � k � N − n − 1 while

ζk = (sk−N+n, . . . , sn−1, �y ′
N−n, s0, . . . , sk−N+n−1) if N − n � k � N − 1. Note that, for

N � 1 and n = O(1), this latter possibility has a small, O(n/N), likelihood. The factor of
1/N in (15) accounts for each terrace in the step train with equal probability. Of particular
interest is the density of any single gap, given explicitly by

ρ1(t, s ∈ T) = N−1
N−1∑
k=0

∫
TN−1

ρN(t, y ′
0, . . . , y

′
k−1, s, y

′
k, . . . , y

′
N−2) d�y ′

N−1. (16)
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Second, equations of motion for ρn are derived under N � 1 and n = O(1). Define
the N-dimensional vector field Ǎ(y) that has the kth component Ǎk = A(yk−1, yk, yk+1),
0 � k � N − 1; cf (13). The FPE (or, the forward Kolmogorov equation) for ρN(t, y) reads

∂tρN(t, y) + divN [Ǎ(y)ρN ] = 1

2
NρN(t, y); divNF ≡

N−1∑
k=0

∂yk
Fk, (17)

and n is the n-dimensional Laplacian (with n = N above). For a vicinal crystal, the initial
condition is ρN(0, y) = δℵ(y), where ℵ = (ν, . . . , ν) ∈ R

N , ν ≡ ℵi = v�/(2D) and δℵ(y)

is the Dirac measure (‘delta function’) on R
N centered at the point ℵ.

The BBGKY hierarchy stems (formally) from differentiation of (15) with respect to t.
For n = 1, the equation for ρ1(s) (by suppression of the t dependence) is

∂tρ1(s) = −∂s

[
N−1

N−1∑
k=0

∫
T2

dy ′
k−1 dy ′

k A(y ′
k−1, s, y

′
k)

×
∫

TN−3
d�y ′

N−3 ρN((�y ′
N−1, s)

c
k)

]
+

1

2
∂2
s ρ1, s ∈ T;

⇒ ∂tρ1(s) + ∂s

[∫
ds ′

0 ds ′
1 A(s ′

0, s, s
′
1) ρ3(s

′
0, s, s

′
1)

]
= 1

2
∂2
s ρ1. (18)

Terms pertaining to the permutations (s, s ′
0, s

′
1) and (s ′

0, s
′
1, s) are O(1/N) and neglected. The

integration range is implied by the variables and omitted.
The hierarchy for ρn is generalized for n � 2:

∂tρn(�sn) + ∂s0

[∫
ds ′ A(s ′, s0, s1) ρn+1(s

′, �sn)

]
+

n−2∑
k=1

∂sk
[A(sk−1, sk, sk+1) ρn(�sn)]

+ ∂sn−1

[∫
ds ′ A(sn−2, sn−1, s

′) ρn+1(�sn, s
′)

]
= 1

2
nρn(�sn). (19)

As an initial condition for a vicinal crystal, set ρn|t=0 =∏n−1
k=0 δν(sk).

The analysis here is distinct from [11], where noise is absent, the hierarchies involve
correlation functions for step positions (not terrace widths), and delta functions are invoked
explicitly in the derivation; cf equations (3.17)– (3.19) in [11].

3.2. Example: Growth model

In correspondence to (11), equations (18) and (19) are now written for the coefficient

A(y1, y2, y3) ≡ Ka(y1) − Kab(y2) + Kb(y3), Kab ≡ Ka + Kb, (20)

where, e.g., Ka(s) = s es/(2 sinh s) and Kb(s) = s e−s/(2 sinh s) = Ka(−s):

∂tρ1(s) + ∂s

{∫
ds ′ [Ka(s

′)ρ2(s
′, s) + Kb(s

′)ρ2(s, s
′)] − Kab(s)ρ1(s)

}
= 1

2
∂2
s ρ1, (21)

∂tρn(�sn) + ∂s0

{∫
ds ′ Ka(s

′)ρn+1(s
′, �sn) + [Kb(s1) − Kab(s0)]ρn(�sn)

}
+

n−2∑
k=1

∂sk
{[Ka(sk−1) − Kab(sk) + Kb(sk+1)]ρn(�sn)}

8
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+ ∂sn−1

{∫
ds ′ Kb(s

′) ρn+1(�sn, s
′) + [Ka(sn−2) − Kab(sn−1)]ρn(�sn)

}
= 1

2
nρn, n � 2. (22)

3.3. Linear model and decorrelation

Consider scheme (12) in definition 1 (section 2.3), which amounts to the small-fluctuation,
linear model A(y1, y2, y3) = (1 − p)y1 − (1 − 2p)y2 − py3 of section 5.2 for p = 1/2; see
also [20, 24] as well as (34) and (35). First, it is shown that the step gaps are uncorrelated
for any N and t > 0. An underlying assumption is that the evolution equation (FPE) for the
density ρN and the ensuing BBGKY hierarchy for ρn—supplemented with the initial data for
a vicinal surface—have at most one solution.

The step gap independence amounts to the product form

ρN(t, y) =
N−1∏
k=0

ρ1(t, yk), ρ1(0, s) = δν(s). (23)

Then, ρn(�sn) =∏n−1
k=0 ρ1(sk), suppressing time dependence unless indicated otherwise.

By (17), the N-dimensional FPE for the reference case is

∂tρN(y) +
1

2

N−1∑
k=0

∂yk
[(yk+1 − yk−1)ρN ] = 1

2

∑
k

∂2
yk

ρN, y ∈ R
N. (24)

The first equation of the hierarchy stems from (21) with Ka(s) = 1
2 (1 + s) = Kb(−s).

Start with (24). The substitution of (23) into (24) yields
N−1∑
l=0

{(
∂t − 1

2
∂2
yl

)
ρ1(yl) + ∂yl

[
1

2
(yl+1 − yl−1)ρ1(yl)

]}∏
k 	=l

ρ1(yk) = 0.

This is satisfied if ρ1 solves the heat equation, ∂tρ1 = 1
2∂2

s ρ1. The solution is ρ1(t, s) =
(2πt)−1/2 e− (s−ν)2

2t , i.e. a Gaussian of mean μ = ν and variance σ 2 = t . (For the derivation,
note that ∂sρ1 = −(s − μ)ρ1(s)/σ

2 while y lies on a torus:
∑

l(yl+1 − yl−1)∂yl
ρ1(yl) = 0.)

This result is consistent with (21) under ρ2(s0, s1) = ρ1(s0)ρ1(s1).
One can show (as a trivial exercise) that for p = 1/2 the remaining equations of the

BBGKY hierarchy collapse to the same equation for ρ1 under ρn(�sn) =∏n−1
k=0 ρ1(sk).

By contrast, this product form does not satisfy the BBGKY hierarchy in the
physical range 0 < p < 1/2 (see section 5.2). The equation for ρ1(s) collapses to
∂tρ1 + (1 − 2p)∂s[(ν − s)ρ1] = 1

2∂2
s ρ1, solved by a Gaussian of mean ν and variance

[2(1 − 2p)]−1(1 − e−2(1−2p)t ) (see also [20] and section 4.2). However, equation (22) for
the pair density ρ2 (if n = 2), under ρ2(s0, s1) ∼ ρ1(s0)ρ1(s1) and ρ3(�s3) ∼ ρ2(s0, s1)ρ1(s2),
yields (1−p)(s1 −ν)∂s0ρ1(s0)/ρ1(s0) = p(s0 −ν)∂s1ρ1(s1)/ρ1(s1), which is false if p 	= 1/2.

Remark 1. By the model A(y1, y2, y3) = (1 − p)y1 − (1 − 2p)y2 − py3, gap correlations
are induced if 0 < p < 1/2. By contrast, the step gaps are uncorrelated if p = 1/2.

4. Mean-field formalism

In this section, a self-consistent mean field is defined via exploiting the BBGKY hierarchy of
(18) and (19) at the level of the one-gap density. This formulation will facilitate comparisons
of a previous approach based on step gap independence [20] to results obtained in section 5.2
from an explicit large-N computation (see section 6.2).

9
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4.1. Formal generalities

Consider the stochastic scheme (13). A goal is to reduce these coupled SDEs to a single SDE
by slaving Gi−1 and Gi+1 to Gi through an (a priori unknown) function f [20]. A starting
point is to introduce the stochastic processes Ĝi (t) satisfying

dĜi (t) = A(f (t, Ĝi ), Ĝi , f (t, Ĝi )) dt + dBi (t), 0 � i � N − 1, (25)

under the initial data Ĝi (0) = Gi (0). The function f (t, s) is to be determined (see
definition 2). Assume that A and f are such that (25) is solvable. Note that (25) comes
from (13) with replacement of the variables Gi−1 and Gi+1 by f (t, Ĝi ).

Definition 2. Suppose that f = f mf exists such that this f mf generates a probability density,
ρ̂1(t, s; [f ]), for Ĝi (t) equal to the density ρ1(t, s) for Gi (t) in a weak sense (wk),∫

ds ρ1(t, s) ϑ(s) =
∫

ds ρ̂1(t, s; [f mf]) ϑ(s) (26)

for every reasonably arbitrary (smooth) test function ϑ(s) and fixed time t > 0. Then, f mf is
called the mean field for SDEs (13).

A way to introduce f mf is this. By (25), for fixed initial data and reasonably arbitrary
f , think of ρ̂1 as a functional of f : ρ̂1 = ρ̂1[f ]. By variations of f , it is presumed that
there exists some f = f mf for which ρ̂1[f mf] = ρ1. No guarantee is given here that this f mf

exists. Equation (26) has been invoked for static variables in other physical contexts, e.g.,
non-uniform liquids where f amounts to an external potential [39]. The BBGKY formalism
here will allow us to place this idea in a dynamical context.

It is of interest to derive an (implicit) formula for f mf via the BBGKY hierarchy of (18)
and (19). One only needs to use evolution law (18) for ρ1.

Proposition 1. Suppose that a mean field f mf exists. Then, f mf is given by the formula

A(f mf(s), s, f mf(s))ρ1(s) =
∫

ds ′
1 ds ′

2 A(s ′
1, s, s

′
2) ρ3(s

′
1, s, s

′
2) (wk). (27)

Proof. This follows directly from (18), (25) and (26). Note that ρ̂1(t, s; [f ]) obeys

∂t ρ̂1 + ∂s[A(f (t, s), s, f (t, s))̂ρ1] = 1
2∂2

s ρ̂1. (28)

The multiplication of (28) by a test function, φ(s), and integration result in

∂t

∫
ds ρ̂1 φ(s) − 1

2

∫
ds ρ̂1 ∂2

s φ =
∫

ds ρ̂1 A∂sφ ∀ φ. (29)

In view of (26), now replace f by f mf and thus ρ̂1 by ρ1 in (29). A similar result involving
ρ3 is obtained via multiplication of (18) by φ(s) and subsequent integration. Equation (27)
follows by comparison of (29) and its counterpart involving ρ3 for ρ̂1 = ρ1. �

4.2. Growth model

If A is given by (20), then (27) is simplified to

Kab(f
mf(s)) =

∫
ds ′ [Ka(s

′)ρ1/2(s
′, s) + Kb(s

′)ρ2/1(s
′, s)]

= E[Ka(Ga)
∣∣Gb = s] + E[Kb(Gb)

∣∣Ga = s] (s ∈ T). (30)

10
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Here, ρ1/2(s
′, s) ≡ ρ2(s

′, s)/ρ1(s) and ρ2/1(s
′, s) ≡ ρ2(s, s

′)/ρ1(s) are conditional probability
densities for any pair of consecutive step gaps (Ga,Gb), given that one of these gaps equals s.
E[Kc(Gc)

∣∣s] (c = a, b) denotes the respective mean.
In the special case with the linear model A(y1, y2, y3) = (1 − p)y1 − (1 − 2p)y2 − py3,

0 < p < 1/2 (see section 5.2), (30) reduces to the more explicit formula

f mf(s) = (1 − 2p)−1{(1 − p) E[Ga|Gb = s] − pE[Gb|Ga = s]}. (31)

4.2.1. Pair decorrelation approximation. By ρ2(s0, s1) ∼ ρ1(s0) ρ1(s1), (31) entails
f mf ∼ E[Ga], where the gaps are taken identically distributed. This relation is consistent
with the approach in [20]. Thus, the processes Ĝi satisfy [20]

dĜi = (1 − 2p)(ν − Ĝi ) dt + dBi , ν = E[Gi] = Gi (0).

For fixed t, the solution is the Gaussian random variable with variance

σ̂pc(t)
2 =

∫ t

0
e−2(1−2p)τ dτ = [2(1 − 2p)]−1{1 − e−2(1−2p)t }, (32)

in agreement with [20]. This approximation is further discussed in section 6.2.

5. Small fluctuations and large-N limit

SDEs (11) are now expanded for small fluctuations. The leading-order equations are treated
explicitly as N → ∞ for fixed t > 0 (see section 6.1 for an extension). Deviations ofGi (t) from
their initial value ν ≡ ℵi = v�/(2D) are small in the sense 1 − Prob[supt∈[0,T ) |G(t) − ℵ| �
|ℵ|] � 1.5 Set ℵ = (ℵ0, . . . ,ℵN−1).

In the following, it is assumed that material parameter groups—which depend on F and
enter through ν coefficients of related SDEs—are fixed, i.e. independent of the deviation of
Gi from E[Gi]. So, the fluctuation of Gi , which depends on F, is considered as controllable
mainly by the time t, where t ∈ [0, T ) for some suitable T, while ν = O(1).

5.1. Small-fluctuation expansion

Apply the substitution

G(t) = ℵ + Ḡ(t); ℵ = G(0), Ḡ(0) = 0.

Equation (11) leads to

dḠi = {(1 − p)(Ḡi+1 − Ḡi ) + p(Ḡi − Ḡi−1) + q1
(
Ḡ2

i+1 + Ḡ2
i−1 − 2Ḡ2

i

)
− q2

(
Ḡ3

i+1 + Ḡ3
i−1 − 2Ḡ3

i

)
+ O

(
Ḡ4

i−1, Ḡ4
i , Ḡ4

i+1

)}
dt + dBi (t). (33)

The parameter p = O(1) is defined by

p = 1

2

(
ν

sinh2 ν
− e−ν

sinh ν

)
, (34)

in accord with [20], whereas q1 and q2 are not needed for our purposes. Expansion (33) can
be extended to higher orders, but the algebra becomes increasingly cumbersome.

5 The term small fluctuations refers to deviations of G(t) from G(0), rather than from the mean E[G(t)] as is, strictly
speaking, more appropriate. This distinction is practically unimportant here [20].

11
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Equation (33) is now simplified via the formal expansion Ḡ(t) ∼ ∑k−1
j=0 Ḡ(j)(t) where

k = 3 and 1 − Prob[sup |Ḡ(j+1)(t)| � sup |Ḡ(j)(t)|] � 1.6 The Ḡ(0)
i satisfy

dḠ(0)
i = [(1 − p)

(
Ḡ(0)

i+1 − Ḡ(0)
i

)
+ p
(
Ḡ(0)

i − Ḡ(0)
i−1

)]
dt + dBi (t), (35)

with the initial condition Ḡ(0)
i (0) = 0. Higher order equations of the Ḡ(j)-cascade are linear

but not considered here. Equation (35) forms the basis of the perturbation scheme.

5.2. One-gap variance to zeroth order: derivation for t = O(1), N → ∞
Next, (35) is solved as N → ∞ (see proposition 2). Note that, by (34), p(ν) ↑ 1/2 as ν ↓ 0;
p ↓ 0 as ν → ∞ and dp(ν)/dν < 0 for ν > 0. Hence, we have 0 < p < 1/2 for ν > 0. By
Taylor expansion, we obtain p = 1/2 − ν/3 + O(ν2) as ν ↓ 0.7

So, consider 0 < p < 1/2. Equation (35) is recast to the vector form

dḠ(0)(t) = −A(p) · Ḡ(0)(t) dt + dB(t), Ḡ(0)(0) = 0 (Ḡ(0) ∈ T
N), (36)

where A = [Ai,k]0�i,k�N−1 is a sparse circulant matrix. The first row (i = 0) of A has zero
entries except A0,k = 1 − 2p if k = 0; −(1 − p) if k = 1 and p if k = N − 1. The remaining
rows (1 � i � N − 1) form cyclic permutations of the first row. Set

A(p) ≡ A0(p) + (1 − 2p)1,

where 1 denotes the N × N unit matrix. So, the first row (i = 0) of the circulant matrix
A0 = [(A0)i,k] has entries (A0)0,k = −(1 − p) if k = 1; p if k = N − 1 and 0 otherwise.

Evidently, the solution to (36) is written as

Ḡ(0)(t) =
∫ t

0
e−A(t−τ) dB(τ ) =

∫ t

0
e−(1−2p)(t−τ) e−A0(t−τ) dB(τ ). (37)

Thus, the mean is E[Ḡ(0)(t)] = 0, by the known property E[dB(τ )] = 0.

Remark 2. By (37), each component Ḡ(0)
i of Ḡ(0)(t) is a sum of increments of linear

superpositions of 1D independent Brownian motions. Thus, for fixed t and p, Ḡ(0)
i (t) are,

in principle correlated, Gaussian variables with zero mean.

Therefore, it suffices to compute the variance, σ (0)
i

2
, of each Ḡ(0)

i (t). By (37), this variance
is i-independent and given by

σ (0)(t)2 = E
[
Ḡi

(0)
(t)2
] =

∫ t

0
e−2(1−2p)τ |e−A0τ |2 dτ, (38)

where |C|2 denotes the magnitude squared of any row-vector of the circulant matrix C. Given
σ (0), and in view of remark 2, the density of any step gap is

ρ1(t, s) ≈ ρ
(0)
1 (t, s) = 1√

2πσ (0)(t)2
exp

{
− (s − ν)2

2σ (0)(t)2

}
, (39)

where ≈ is used loosely to imply that the difference of the two sides approaches 0 in the limit
of small fluctuations.

6 It appears perhaps paradoxical that no small parameter is involved in this expansion. To remedy this, consider
dBi (t) as small. For instance, multiply dBi by a (presumably temperature-dependent) parameter ε̄, ε̄ � 1. Expand
Ḡ(t) ∼ ε̄

∑k−1
j=0 ε̄j Ḡ(j)(t). The interpretation of the perturbation scheme is the subject of work in progress. Related

rigorous theory can be found in Freidlin and Wentzell [40].
7 The symbol x ↓ a (x ↑ a) implies that x approaches a from the right (left).

12
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To explicitly compute σ (0), consider t = O(1) and set

e−A0t =
∞∑

n=0

(−1)n
An

0t
n

n!
∼

N−1∑
n=0

(−1)n
An

0t
n

n!
, N � 1. (40)

This replacement is justified provided A0 has a finite norm and the series converges accordingly
as N → ∞ 8 [41]. Note that the n in the summand of finite sum (40) does not exceed the
dimension of A0.

The large-N computation of e−A0t on the basis of (40) is outlined in two lemmas
(lemmas 1 and 2), proved in appendix A.

Lemma 1. The circulant matrix An
0 has the first-row entries(

An
0

)
0,k

=
n∑

j=0

(−1)n−jpj (1 − p)n−j

(
n

j

)
δn
k+2j ;

(
n

j

)
= n!

j !(n − j)!
,

δn
k is Kronecker’s delta, modulo N

(
δn
k+lN = δn

k for any integer l
)
, and 0 � j, n � N − 1.

Lemma 2. For large N, the matrix e−A0t has the first-row entries

(e−A0t )0,k ∼
(

1 − p

p

)k/2

Jk(t̆) + (−1)N−k

(
p

1 − p

) N−k
2

JN−k(t̆),

where t̆ = 2[p(1 − p)]1/2 t and Jk is the kth-order Bessel function [42]. This approximation
is interpreted in the sense of an appropriate matrix norm [41].

Some requisite formulas involving Bessel functions are derived in appendix B. A few
observations on properties of the matrix e−A0t are outlined in appendix C. In particular, it is
shown that lemma 2 is consistent with det(e−A0t ) = 1, valid for all N and t.

It remains to compute the one-gap variance via (38) and lemma 2. Note that

|e−A0τ |2 ∼
N−1∑

k=−N

(
1 − p

p

)k

Jk(τ̆ )2 + 2
N−1∑
k=0

(−1)N−k

(
1 − p

p

) 2k−N
2

JkJN−k(τ̆ )

∼
∞∑

k=−∞

(
1 − p

p

)k

Jk(τ̆ )2 = I0[2(1 − 2p)τ ], τ̆ = 2
√

p(1 − p)τ,

with recourse to appendix B, where Ik is the kth-order modified Bessel function of the first
kind [42]. The following result is obtained directly by use of an integral of I0 [42].

Proposition 2. For N → ∞ and fixed t, the leading-order variance of each gap is

σ (0)(t)2 ∼ t e−2(1−2p)t [I0(2(1 − 2p)t) + I1(2(1 − 2p)t)]. (41)

For an extension of this result to arbitrarily large values of t, see section 6.1.
For fixed t, the density ρ1 of any step gap is given by (39). Formula (41) diverges as

O(
√

t/(1 − 2p)) if (1 − 2p)t � 1. Hence, the system does not settle to a steady state.
The procedure leading to (41) is questionable if t is of the order of N or larger. Most

importantly, the stochastic model needs to be revised if σ (0) > ν. Then, the step-crossing
probability is appreciable and step interactions must be included. If σ (0) � ν (say, for
sufficiently small times or large ν), the present model provides a reasonable description for
fixed t. Compare (41) to the mean-field result (32) (see section 6.2).

8 Consider the weak (Hilbert-Schmidt) norm, | · |2: for an N × N matrix A, |A|2 ≡ (N−1∑
i,k |(A)i,k |2)1/2. For a

circulant matrix C, |C|2 = |C| where | · | is introduced in (38). Note that |A0| = [p2 + (1 − p)2]1/2 < ∞. In this
metric, the remainder in (40) approaches 0 as N → ∞.

13
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6. Extension and discussion

In this section, the terrace width variance is computed for arbitrary t > 0 within the linear
model (36). In addition, the exact result is compared to mean-field formula (32), also derived
in [20]. The neglect of step interactions, and possible connections of the present approach to
experiments and other models are also discussed.

6.1. Extension: exact variance for arbitrary N and t > 0

To explore the limitations of model (36), we study how the gap variance behaves if t and N
are unrestricted. The methodology leading to proposition 2 (section 5.2) must be modified
since in that approach the limits N → ∞ and t → ∞ do not commute. In particular, (40) is
inapplicable if t is larger than O(N).

Consider formula (38) for the variance. The key idea here is to use the relation [41]

|e−A0t |2 = N−1 tr[(e−A0t )T e−A0t ] = N−1 tr[e−(AT
0 +A0)t ] = N−1

N−1∑
k=0

e−λ̃k t ,

since A0 and its transpose, AT
0 , commute. The set {̃λk} consists of all eigenvalues of

the circulant A0 + AT
0 , and is the discrete Fourier transform of its first row. We compute

λ̃k = −2(1 − 2p) cos(2πk/N). By substitution in (38), we obtain

σ (0)(t)2 = N−1
N−1∑
k=0

1 − e−2(1−2p)[1−cos(2πk/N)]t

2(1 − 2p)[1 − cos(2πk/N)]
. (42)

The task is to evaluate (42) when t and N are large. Distinguish the following cases.

Case 0 � (1 − 2p)t � O(1): sum (42) is converted to an integral by use of the continuous
variable ψ = 2πk/N , where 2π/N → dψ and 0 � ψ < 2π as N → ∞:

σ (0)(t)2 ∼
∫ 2π

0

dψ

2π

1 − e−2(1−2p)(1−cos ψ)t

2(1 − 2p)(1 − cos ψ)
=
∫ t

0
dτ

∫ 2π

0

dψ

2π
e−2(1−2p)(1−cos ψ)τ ,

which reduces to (41) by integration. Hence, this alternate procedure confirms proposition 2.
Further, it can be inferred that the correction term for σ (0)(t)2 is O(1/N).

Case (1 − 2p)t � 1: the major contribution to sum (42) comes from the vicinity of
n = 0, N − 1. Then, by 1 − cos(2πn/N) ∼ 2π2n2/N2 the sum reduces to

σ (0)(t)2 ∼ 2t

N

[
1 +

∞∑
n=1

1 − e−ζ(t)n2

ζ(t)n2

]
, ζ(t) ≡ 4π2(1 − 2p)t

N2
. (43)

It has been impossible to simplify this formula if ζ(t) = O(1), i.e. (1 − 2p)t = O(N2)

or σ (0)(t)2 = O(N). The underlying stochastic model is not reliable if σ (0)(t) > ν, since
negative terrace widths are predicted with appreciable probability. On the other hand, having
σ (0) < ν in this regime would imply that ν may be too large for the BCF theory to be
meaningful. Note that the size(N)-dependent result (43) has been influenced by the assumed
boundary conditions.

As a check, take ζ(t) � 1 in (43). Then, σ (0)(t)2 ∼ √
t/(π(1 − 2p)), which matches the

limit of proposition 2. Thus, (43) connects smoothly to the fixed-t behavior of σ (0)2
.
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Figure 2. Two (scaled) variances, as functions of 2εt (ε = 1 − 2p), for model (11) under small
fluctuations: (i) 2εσ (0)(t)2 (solid line), by (41) from explicit large-N limit; and (ii) 2εσ̂pc(t)

2

(dashed line), by (32) via mean field under two-gap independence.

6.2. Comparison to mean-field variance

The mean field is defined rigorously via the pair density ρ2 (see (27)). The independence ansatz
ρ2(s0, s1) ∼ ρ1(s0)ρ(s1), which underlies the approximation in [20], provides an appealing
alternative to fully computing ρ2 for N � 1. We next show how terrace correlations cause
deviations of the one-gap variance from its mean-field approximation.

Figure 2 depicts the two (scaled) variances as functions of 2(1 − 2p)t . The discrepancy
between them implies that two consecutive step gaps are correlated for t > 0, regardless
of how large N is. The analysis indicates that a plausible ‘measure’ of gap correlation is[
σ (0)2 − σ̂ 2

pc

]/
t . For 2(1 − 2p)t � 1, we find [42]

σ̂pc(t)
2 = 1

2ε
(1 − e−2εt ) = t

[
1 − εt +

2

3
ε2t2 + O(ε3t3)

]
,

σ (0)(t)2 = t
[
1 − εt + ε2t2 + O(ε3t3)

]
, ε ≡ 1 − 2p,

⇒ σ (0)(t)2 − σ̂pc(t)
2

t
= 1

3
ε2t2 + O(ε3t3). (44)

Note the influence of p: as p gets closer to the value 1/2 (ε ↓ 0) of the reference case
(definition 1), i.e. as the deposition flux decreases, correlations tend to disappear.

6.3. Step interactions under small fluctuations

Thus far, we have neglected step interactions. If repulsive elastic-dipole and entropic
interactions are included in the deterministic equations, C

eq
i in (4) is expressed as [2]

C
eq
i = Cse

μi/T , μi = ξa3
(
g−3

i − g−3
i−1

)
,

where μi is the step chemical potential, and ξ and Cs are positive constants.
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For small fluctuations, μi can be expanded around gi(0) = � . If μi � T , which is
typical in semiconductor vicinal surfaces [2], the ith step equilibrium density is

C
eq
i ∼ Cs

[
1 +

3ξa3

� 4T
(gi−1 + gi)

]
. (45)

By inspection of (7), (8) and (45), the SDEs for gaps acquire terms proportional to
(a/�)3(aCs)(ξ/T )Gi±2e±vGi±1/(2D); cf (11). By aCs � 1, these terms are deemed negligible
if (ξ/T ) (a/�)3 � 1. The last condition is met in typical situations. For example, for
Si(1 1 1), by table I in [43] we obtain ξ/T ∼ 1 at T ∼ 1000 K while a/� � 0.1. This
estimate indicates that the neglect of step interactions, which simplifies the analysis, can be
made compatible with the small-fluctuation limit.

The effect of the singularity in the step interactions remains unexplored. It can be
conjectured that the gap density ρ1(s, t) and all its derivatives approach zero rapidly as s ↓ 0
while ρ1 ≡ 0 for s < 0. This result can be derived by a heuristic mean-field approximation
but has not been proved rigorously. Our discussion implies that if the standard deviation of
each terrace is much smaller than the mean gap, the actual behavior of ρ1 at s = 0 should not
affect the predictions of the linear model practically.

6.4. Models of noise and connection to experiments

Next, we comment on a few other models of noise and plausible connections of the present
approach to laboratory experiments.

6.4.1. Modeling noise. Within our zeroth-order model, the fluctuation of the total length of
the step train grows with time. Specifically, N−1∑N−1

i=0 Ḡi = Ḡav ∼ Ḡ(0)
av satisfies the SDE

dḠ(0)
av (t) = N−1∑

i dBi (t), which has solution Ḡ(0)
av (t) = N−1∑

i Bi (t), with variance t/N .
This feature is consistent with the divergence of the one-gap variance found in section 6.1.
By contrast, if white noise is added to the equations of motion for step positions, noise terms
mutually cancel in adding all equations for the time derivatives of terrace widths. Hence,∑N−1

i=0 dḠ(0)
i (t) = 0 which yields G(0)

av (t) = ν. In this case, it can be shown that the one-gap
variance approaches a finite limit for large t [44].

Williams and Krishnamurty [32] proposed related SDEs encapsulating fluctuations in the
number of atoms adsorbed on terraces. Slightly modified, their SDEs read

dGi (t) = [(1 − p)(Gi+1 − Gi ) + p(Gi − Gi−1)] dt +
√

(1 − p)Gi+1 dBi+1(t)

+ (
√

p −
√

1 − p)
√
Gi dBi (t) −

√
p Gi−1 dBi−1(t). (46)

Hence,
∑

i Gi (t) = const. via cancelation of the noise terms. It is expected that the gap
variance from this model approaches a finite limit for long times.

The consideration of Gi-dependent (multiplicative) noise, e.g. equation (46), brings forth
the issue of what is the proper interpretation of the stochastic integrals. An appealing feature
of the Itô (versus, say, Stratonovich) calculus is, e.g. the property that each gap Gi (t) satisfies
E[Gi (t)dBi (t)] = 0, E

[( ∫ t

0 Gi (t
′) dBi (t

′)
)2] = E

[ ∫ t

0 Gi (t
′)2 dt ′

]
.

It is tempting to compare our choice of white noise, Ni (t) = dBi(t)/dt , to the random
force for step meandering in two space dimensions (2D), used, e.g., in [34]. Here, we suppress
any dependence on the position along a step (eliminating meandering). Thus, the noise
autocorrelation function involves only the time variable, and thus differs from the model in
[34], where the noise is white in both time and position along the step. In the same vein, we
have not tried to fix the noise coefficient via any fluctuation-dissipation theorem [34].
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Our formulation, where noise is added to the equations of motion for terrace widths, is
distinct from the work by Pierre-Louis and Misbah [30, 33]. These authors add explicitly
Langevin forces to the adatom diffusion equation and to the boundary conditions for atom
attachment–detachment at steps. Their approach offers a thermodynamically self-consistent
model for step meandering in 2D [30]. The addition of noise at the level of adatom diffusion
apparently leads to SDEs different from (1). An appealing feature of our approach, as in
[20], lies in the ease of defining a mean field for the coupled motion of many steps. The
incorporation of richer Langevin terms in the spirit of [30] for small fluctuations is more
elaborate and left for future work.

6.4.2. Possible connection to experiments. Our analysis complements [20] where narrowing
of the terrace width distribution with increasing flux F is pointed out via mean-field theory
and kinetic Monte Carlo simulations. In [20] the focus is the steady state of the distribution.
Here, we describe the transient behavior of the gap density. This result may be relevant to the
distribution narrowing observed by reflection electron microscopy on Si(1 1 1) at T ≈ 1370 K
[45] (as is also mentioned in [20]).

7. Conclusion

An N-dimensional SDE system for terraces on vicinal crystals was studied analytically
with emphasis on the terrace width variance for large N. In the small-fluctuation limit, the
SDE system was linearized. The resulting equations involve a parameter, p, that expresses
asymmetry in the adatom kinetics. For p = 1/2, the process is symmetric. The present
paper complements the recent work by Hamouda et al [20] who applied kinetic Monte Carlo
simulations and mean-field ideas to predict narrowing of the one-gap density with increasing
deposition flux.

The stochastic model was analyzed from two perspectives. First, a BBGKY hierarchy was
formulated for joint probability gap densities. The hierarchy forms a basis for defining a self-
consistent mean field in terms of the two-gap density (ρ2). By an ansatz of gap decorrelation,
this mean field reduces to a simple form invoked previously, e.g., in [20, 32]. In the symmetric
case, p = 1/2, the mean-field density becomes exact.

Second, the one-gap variance was computed for all times t > 0 when N is large. The
analysis shows how nonzero values of 1 − 2p induce correlations, and thus cause the variance
to deviate from its mean-field limit. If p 	= 1/2 and (the nondimensional) t is large yet
t < O(N), the exact variance of the linear model diverges as O(

√
t). In contrast, the mean-

field variance approaches a finite value, in qualitative agreement with kinetic Monte Carlo
simulations [20]. The variance was also computed for t � O(N).

The BBGKY hierarchy may offer a systematic procedure for predicting features of several-
terrace-width distributions. The mean field provides an approximation at the level of the two-
gap correlation. Finer approximations may be introduced at the level of higher correlations.
This direction should be further explored.

This work admits extensions, has limitations and points to pending issues. The large-t limit
of the gap variance depends on the assumptions for the noise term. By adding properly periodic
white noise, so that the total length of the step train is constant, the variance can approach a
finite value. An open problem is to justify rigorously the small-fluctuation expansion. The
expansion is questionable when the standard deviation becomes comparable to the terrace
width mean. This calls for including energetic and entropic step repulsions to enforce a
non-crossing condition for steps.
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Actual steps and terraces are of course two dimensional, giving rise to much richer
phenomena [46]. The (1+1)-dimensional model fails to capture important features such as
step meandering. The linkage of the kinetic formalism adopted herein with settings in 2D is
left for future work. This aspect is truly crucial for making predictions for lab experiments
and kinetic Monte Carlo simulations.
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Appendix A. Proofs of lemmas 1 and 2

(Proof of lemma 1). Since A0 is a circulant matrix, so is An
0 for every n � 0. From the

definition of A0, the first-row elements of An
0 (n � 1) satisfy the difference scheme(

An
0

)
0,k

= −(1 − p)
(
An−1

0

)
0,k−1 + p

(
An−1

0

)
0,k+1;

(
A0

0

)
0,k

= δ0
k . (A.1)

The main statement of lemma 1 then follows by induction in n.
For n = 0, lemma 1 holds trivially. So, assume that, for some n � 0,(

An
0

)
0,k

=
n∑

j=0

(−1)n−jpj (1 − p)n−j

(
n

j

)
δn
k+2j , 0 � k � N − 1,

and proceed to show that this is also true for n ⇒ n + 1. By (A.1),
(
An+1

0

)
0,k

is (by omission
of the index i = 0 indicating first row)(
An+1

0

)
k

= −(1 − p)
(
An

0

)
k−1 + p

(
An

0

)
k+1

=
n∑

j=0

(−1)n−j+1pj (1 − p)n−j+1

(
n

j

)
δn+1
k+2j

+
n+1∑
j=1

(−1)n+1−jpj (1 − p)n−j+1

(
n

j − 1

)
δn+1
k+2j

=
n∑

j=1

(−1)n+1−jpj (1 − p)n+1−j

[(
n

j

)
+

(
n

j − 1

)]
δn+1
k+2j

+ (−1)n+1(1 − p)n+1δn+1
k + pn+1δn+1

k+2n+2

=
n+1∑
j=0

(−1)n+1−jpj (1 − p)n+1−j

(
n + 1

j

)
δn+1
k+2j .

The last equation ensures that lemma 1 holds for all n � 0 and concludes the proof. �

(Proof of lemma 2). For definiteness, set N = 2M + 1: odd. The proof is very similar for
even N and hence is omitted. The plan is to use formula (40) for large N in conjunction with
lemma 1, noting that(

An
0

)
k

=
∑

j

k+2j=n mod N

(−1)n−jpj (1 − p)n−j

(
n

j

)
.
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Thus, having 0 � n � N − 1 simplifies the evaluation of this sum, since there are at most two
contributing values of j . These values are: (i) j = (n − k)/2 provided n � k and n−k: even;
(ii) j = (N + n − k)/2 if n + k � N and n−k: odd. Hence,

(
An

0

)
k

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p

n−k
2 [−(1 − p)]

n+k
2

(
n

n−k
2

)
, n − k : even, n � k,

p
n+N−k

2 [−(1 − p)]
n−N+k

2

(
n

n+N−k
2

)
, n − k : odd, n + k � N,

0, otherwise.

By (40), the kth first-row element of the circulant matrix e−A0t is given by

(e−A0t )k ∼
∑

n�N−1
n:even

tn

n!

(
An

0

)
k
−
∑

n�N−1
n:odd

tn

n!

(
An

0

)
k
.

Distinguish the cases k = 2l and k = 2l + 1, where 0 � k � N − 1. For k = 2l,

(e−A0t )k=2l ∼
M∑
m=l

(n=2m)

(−1)m+l t2m pm−l (1 − p)m+l

(m − l)!(m + l)!

−
M−1∑
m=M−l

(n=2m+1)

(−1)m−M+l t2m+1pM+m−l+1(1 − p)m−M+l

(M + 1 + m − l)!(m − M + l)!

= [(1 − p)t]2l

M−l∑
m=0

[−p(1 − p)t2]m

m!�(m + 2l + 1)

− (pt)2(M−l)+1
l−1∑
m=0

[−p(1 − p)t2]m

m!�(m + 2(M − l) + 2)
as M → ∞,

where �(z) is the Gamma function. The first sum of the last equation is negligible if l = O(M)

and is evaluated for l = O(1). In the same vein, the second sum above is negligible if l = O(1)

and is now evaluated for M − l = O(1). In these considerations, p(1 − p)t2 is kept fixed
(finite). Hence, for reasonably all l (0 � l � M),

(e−A0t )k=2l ∼ [(1 − p)t]2l

∞∑
m=0

(−1)m
[p(1 − p)t2]m

m!�(m + 2l + 1)

− (pt)2(M−l)+1
∞∑

m=0

(−1)m
[p(1 − p)t2]m

m!�(m + 2(M − l) + 2)

=
(

1 − p

p

)k/2

Jk(t̆) −
(

p

1 − p

) N−k
2

JN−k(t̆), k : even,

where t̆ = 2
√

p(1 − p) t and Jk is the kth-order Bessel function [42].
For k = 2l + 1, the analogous computation for 0 � l � M − 1 reads

(e−A0t )k=2l+1 ∼
M∑

m=M−l

(−1)m+l−Mt2m pM+m−l (1 − p)m−M+l

(M + m − l)!(m + l − M)!

+
M−1∑
m=l

(−1)l+m t2m+1pm−l (1 − p)m+l+1

(m − l)!(m + 1 + l)!

∼
(

p

1 − p

) N−k
2

JN−k(t̆) +

(
1 − p

p

)k/2

Jk(t̆), k : odd.
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This concludes the proof of lemma 1 for odd N. The case with even N is treated similarly. �

Appendix B. On series of Bessel functions

This appendix addresses the computation of two power series and an integral involving Bessel
functions, which are needed in section 5 and in appendix C.

First, consider the known Fourier series [42]

S1(z = eiθ ; η) =
∞∑

k=−∞
eikθ Jk(η) = eiη sin θ , θ ∈ [0, 2π), η ∈ R, (B.1)

where Jk(η) denotes the kth-order Bessel function. The replacements eiθ = z(χ) =
[(1 + iχ)/(1 − iχ)]1/2 e−i2πn/N , where χ ∈ R and n: integer, and 2i sin θ = z − z−1 in
(B.1) produce the formula

S1(z(χ); η) =
∞∑

k=−∞

(
1 + iχ

1 − iχ

)k/2

e−i2πkn/NJk(η)

= exp

[
1

2
η

(√
1 + iχ

1 − iχ
e−i2πn/N −

√
1 − iχ

1 + iχ
ei2πn/N

)]
. (B.2)

Now let χ be complex: both sides of (B.2) represent analytic functions in the complex χ -plane
except at the points χ = ±i. So, by analytic continuation, it is legitimate to set χ = −iε in
(B.2) where ε ∈ (−1, 1). (Appropriate branch cuts are defined for z(χ).)

As another application of analytic continuation, compute

S̃2(ε) =
∞∑

k=−∞
z(ε)k Jk(η)2, z(ε) = 1 + ε

1 − ε
, −1 < ε < 1, η ∈ R. (B.3)

For complex z and fixed real η, this series S̃2 converges everywhere in {z : 0 < |z| < ∞}.
To find S̃2(ε) apply a version of Graf’s addition formula [42], namely the Fourier series

S2(z = eiθ ; η) =
∞∑

k=−∞
eikθJk(η)2 = J0(η

√
2
√

1 − cos θ), θ ∈ [0, 2π). (B.4)

Next, set 2 cos θ = z + z−1 with z = (1 + iχ)/(1 − iχ), χ ∈ R. Hence, (B.4) becomes

S2(z = (1 + iχ)/(1 − iχ); η) = J0

(
2ηχ√
1 + χ2

)
; χ, η ∈ R. (B.5)

The variable χ is now continued to the complex plane. Both sides of (B.5) represent functions
of χ analytic everywhere except at χ = ±i (for fixed η ∈ R). By analytic continuation, (B.5)
is continued to the imaginary axis, χ = −iε and ε ∈ (−1, 1):

S̃2(ε) ≡ S2(z = (1 + ε)/(1 − ε); η) = J0

( −2iηε√
1 − ε2

)
= I0

(
2ηε√
1 − ε2

)
, (B.6)

where I0 is the zeroth-order modified Bessel function of the first kind [42].

Appendix C. On spectral properties of matrix e−A0t

In this appendix, the eigenvalues and determinant of the N × N matrix e−A0(p)t are
computed. Note that, since e−A0t is circulant, its (normalized to unity) eigenvectors are
�l = N−1/2(1, ei2πl/N , . . . , ei2πlj/N , . . . , ei2πl(N−1)/N ), 0 � l, j � N − 1.

20



J. Phys. A: Math. Theor. 43 (2010) 065003 D Margetis

Result 1. For any N and t, the determinant of e−A0t equals unity: det
(
e−A0t

) = 1.

Proof. By inspection, tr(A0) = 0. Thus, det(e−A0t ) = e−tr(A0) t = 1. �

Result 2. For fixed time t and large N, the eigenvalues of e−A0t are

λl(t) ∼ exp

[
1

2
t̆

(√
1 − p

p
e−i2πl/N −

√
p

1 − p
ei2πl/N

)]
, (C.1)

where t̆ = 2
√

p(1 − p) t and 0 � l � N − 1.

Proof. The desired eigenvalues are the discrete Fourier transform of the first row of e−A0t .
By lemma 2 (section 5.2) in the limit N → ∞,

λl ∼
N−1∑
k=0

[(
1 − p

p

)k/2

Jk(t̆) + (−1)N−k

(
p

1 − p

) N−k
2

JN−k(t̆)

]
e−i2πkl/N

=
N−1∑

k=−N

(
1 − p

p

)k/2

e−i2πkl/NJk(t̆) ∼
∞∑

k=−∞

(
1 − p

p

)k/2

e−i2πkl/NJk(t̆),

which furnishes (C.1) through (B.2) of appendix B with ε ≡ 1 − 2p, ε ∈ [0, 1). �

It is of interest to show that (C.1), although obtained in the large-N limit, is consistent
with result 1. Indeed, by the well-known formula det(e−A0t ) = ∏N−1

l=0 λl(t), result 1 follows
from result 2 via the trivial identities

∑N−1
l=0 e± i2πl/N = 0.
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