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In this series we construct an effective field theory (EFT) in curved spacetime to study gravitational

radiation and backreaction effects. We begin in this paper with a derivation of the self-force on a compact

object moving in the background spacetime of a supermassive black hole. The EFT approach utilizes the

disparity between two length scales, which in this problem are the size of the compact object rm and the

radius of curvature of the background spacetime R such that " � rm=R � 1, to treat the orbital

dynamics of the compact object, described as an effective point particle, separately from its tidal

deformations. The equation of motion of an effective relativistic point particle coupled to the gravitational

waves generated by its motion in a curved background spacetime can be derived without making a slow

motion or weak field approximation, as was assumed in earlier EFT treatment of post-Newtonian binaries.

Ultraviolet divergences are regularized using Hadamard’s partie finie to isolate the nonlocal finite part

from the quasilocal divergent part. The latter is constructed from a momentum space representation for the

graviton retarded propagator and is evaluated using dimensional regularization in which only logarithmic

divergences are relevant for renormalizing the parameters of the theory. As a first important application of

this framework we explicitly derive the first-order self-force given by Mino, Sasaki, Tanaka, Quinn, and

Wald. Going beyond the point particle approximation, to account for the finite size of the object, we

demonstrate that for extreme mass ratio inspirals the motion of a compact object is affected by tidally

induced moments at Oð"4Þ, in the form of an effacement principle. The relatively large radius-to-mass

ratio of a white dwarf star allows for these effects to be enhanced until the white dwarf becomes tidally

disrupted, a potentially Oð"2Þ process, or plunges into the supermassive black hole. This work provides a

new foundation for further exploration of higher order self-force corrections, gravitational radiation, and

spinning compact objects.
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I. INTRODUCTION AND MAIN POINTS

In two previous papers [1,2] (see also [3]), using a
stochastic field theory approach based on open system
concepts, we derive the scalar, electromagnetic, and gravi-
tational self-force to leading order on a particle moving in
an arbitrary curved background spacetime. We begin with
the particle following a quantum mechanical path while
interacting with a linear quantum field [4–6]. The condi-
tions on a stochastic field theory (for open systems) to
emerge from a quantum field theory (of closed systems)
are that the mass and size of the particle are large enough
so the particle worldline is sufficiently decohered from its
interactions with the quantum fluctuations of the field that
it can be considered as quasiclassical, and yet sufficiently
small that quantum fluctuations manifest as classical sto-
chastic forces [7].

A. Quantum, stochastic, and effective field theories

When there is a significant discrepancy between the two
mass (or energy or length) scales in a problem, as in the
extreme mass ratio binary systems under consideration

here, one could use an open system stochastic description
for their dynamics, such as developed in [1,2]. When this
discrepancy is huge (such as between the QCD and GUT
scales in particle physics), the stochastic component is
strongly suppressed in the wide range between the two
scales, away from the threshold region [8]. Then the sto-
chastic field theory description will give rise to an effective
field theory (EFT) description [9] for the motion of the
small mass subsystem. Because of the large separation in
the mass scales quantum loop corrections from the field
and the intrinsic quantum mechanical worldline fluctua-
tions are very strongly suppressed. These two factors ren-
der a quantum field theory (QFT) into a stochastic field
theory (with sufficiently decohered histories) and in turn
(with sufficiently small stochasticity) an effective field
theory for the dynamics of the reduced systems. We shall
explain the essence and demonstrate the advantages in
taking a field theory approach to treat radiation-reaction
of classical systems. The application of EFT to the treat-
ment of gravitational radiation from post-Newtonian (PN)
binary systems was first introduced by Goldberger and
Rothstein [10]. Our formulation of a curved spacetime
effective field theory (CS-EFT) goes beyond with two
important features: it is for any curved spacetime back-
ground and there is no slow motion or weak field restric-
tions [11].
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In this and three subsequent papers [12–14] we construct
a CS-EFTand apply it to derive the self-force on a compact
object moving in an arbitrary curved background For con-
creteness, the background spacetime is assumed to be that
of a supermassive black hole (SMBH) with curvature scale
R much larger than the size of the compact object rm. The
smallness of the ratio " � rm=R makes it a good expan-
sion parameter for a perturbation theory treatment describ-
ing the extreme mass ratio inspiral (EMRI) of the compact
object. These binary systems are expected to be good
candidates for detecting gravitational wave signatures us-
ing the space-based gravitational wave interferometer
LISA [15].

We emphasize that the formalism we construct here is of
a sufficiently general nature that it can be applied to any
compact object moving in an arbitrary curved background,
including those spacetimes sourced by some form of stress
energy and those possessing a cosmological constant.

B. Relevant scales in EMRIs

Consider the motion of a compact object (a black hole,
neutron star, or white dwarf with a mass m ranging from
about 1 to 100 solar masses) moving through the spacetime
of a SMBH with a mass M� 105–7M�. We have in mind
that the compact object moves in a stationary background
provided by the supermassive black hole, such as the
Schwarzschild or Kerr spacetimes. Such spacetimes are
appropriate for a description of the EMRI in which the
compact object is bound by the gravitational pull of the
SMBH. By emitting gravitational waves, the binary system
loses energy until the compact object plunges into the
SMBH. The emission of gravitational radiation from
such a system is expected to be detected with the antici-
pated construction and launch of the LISA space-based
interferometer [15].

It is believed that most SMBHs lurking in the middle of
galaxies, which are thought to host the prime sources of
gravitational wave emissions detectable by LISA, are spin-
ning and clean in the sense that most, if not all, of the
surrounding material has already fallen into the black hole.
(Active galactic nuclei are a notable exception [16].)
Because of this the Kerr background is perhaps the most
astrophysically relevant spacetime for the extreme mass
ratio inspiral. The Kerr solution is vacuous, stationary, and
stable under small perturbations [17].

There are two relevant length scales in EMRIs. The
smaller scale is set by the size of the compact object
itself, denoted rm. For an astrophysical black hole its
radius is rbh ¼ 2GNm�m=m2

pl, where m�2
pl ¼ 32�GN in

units where @ ¼ c ¼ 1 [18]. For a neutron star with a mass
� 1:4M� and a radius of 10–16 km, it follows that rns �
4:8–7:7GNm�m=m2

pl. Therefore, it is to be expected that

the size of the compact object, be it a black hole or a
neutron star, is of the order of its mass [19].

The second relevant scale is the radius of curvature of
the background spacetime,R. We takeR to be the follow-
ing curvature invariant:

R ¼ ðR����R
����Þ�1=4: (1.1)

For a (possibly rotating) stationary SMBH the radius of

curvature is R� ðm2
plr

3=MÞ1=2, where r is the typical

orbital distance for the compact object away from the
central black hole. For example, r is the geometric mean
of the semimajor and semiminor axes of a compact object
in an inclined elliptical orbit. In an approximately circular
orbit r is the orbital radius, and for a particle moving faster
than the escape velocity r is the impact parameter.
In the strong-field regime where r�M=m2

pl, the curva-

ture scale is also �M=m2
pl implying that r=R�m=M

when a perturbative expansion in " is equivalent to one
in m=M.
The typical variation in time and space of the back-

ground is * R. The wavelength � of radiated metric
perturbations from the compact object in a bound orbit is
��R, which shows that the wavelength of the gravita-
tional waves does not provide a separate scale indepen-
dently from R.

C. The CS-EFT approach: Issues and main features

The effective field theory approach was first introduced
for the consideration of gravitational radiation from post-
Newtonian binary systems in [10], spinning compact ob-
jects in [20–23], and dissipative effects due to the absorp-
tion of gravitational waves in [24,25]. See [26–28] for
introductory reviews. Let us call these theories PN-EFT:
they are constructed to describe the motion of two slowly
moving compact objects in a flat background. In particular,
the compact objects are treated as effective point particles,
the worldlines of which carry nonminimal operators de-
scribing the multipole moments from companion-induced
tidal deformations as well as possible spin degrees of
freedom and other intrinsic moments. Below we describe
briefly some general features of EFT and the specific
differences between our new CS-EFT approach and the
existing PN-EFT.
The use of point particles to source the metric perturba-

tions about the flat background spacetime (note that the
high frequency waves in a quantum description corre-
sponds to massless spin-two particles, the gravitons, in
flat space quantum field theory) prompts the appearance
of divergences. Fortunately there exists a well-established
bank of tools and techniques in quantum field theory for
regularizing these divergences and renormalizing the pa-
rameters and coupling constants of the theory. A theory is
renormalizable in the effective field theory sense if observ-
ables are calculated in the low energy limit: the divergen-
ces can always be absorbed into a renormalization of the
coupling constants of the infinite number of nonminimal
worldline operators. The use of dimensional regularization

CHAD R. GALLEYAND B. L. HU PHYSICAL REVIEW D 79, 064002 (2009)

064002-2



is particularly useful in effective field theories because the
renormalization group equations are mass independent for
this scheme indicating that only logarithmic divergences
contribute to the renormalization procedure [29].

Our CS-EFTapproach differs from this group of work in
two ways. First, we work with an arbitrary curved space-
time. Second, we allow for the compact object to move
with relativistic speeds in strong-field regions of the back-
ground spacetime. The post-Newtonian effective field the-
ory of [10] treats bodies moving slowly through a weak
gravitational field.

1. In-in formulation for real and causal equations of
motion

Technically there are also fundamental differences. In
the in-out formalism (see, e.g., in the present context, [10])
the generating functional Z, given by

Z½j�; J��� ¼ h0; outj0; inij;J; (1.2)

yields the transition amplitude of the system from the
vacuum state in the asymptotic past j0; ini to the vacuum
state in the asymptotic future j0; outi. The current densities
j� and J�� couple linearly to the particle’s worldline
coordinate and the metric perturbation, respectively. In a
curved or time-dependent spacetime or background field,
j0; outi is in general different from j0; ini as a result of
particle production and other quantum field processes ow-
ing to the changing background. The in-out generating
functional Z yields matrix elements but not expectation
values and the in-out effective action (obtained as the
Legendre transform of Z) generates equations of motion
for ẑ�ð�Þ that are neither real nor causal in general [30].

In flat or stationary spacetimes where the in and out
vacua are equal, one may think that such problems are
moot. Even in these special geometries the in-out formal-
ism fails to give real and causal equations of motion for the
expectation value of the particle worldline coordinates.
The reason for this is as follows. To compute the effective
action the field is integrated out from the transition ampli-
tude Z. In the process, certain boundary conditions are
imposed on the structure of the field modes in the asymp-
totic past and future. In the in-out formulation, which is
useful for the calculation of scattering amplitudes, one
often chooses the Feynman propagator as the appropriate
Green’s function thereby giving the radiation and particle
dynamics a nonretarded structure. For the EMRI case
under study, using the in-out formalism, the leading order
gravitational perturbation from (A18) is given by

Re

�
im

2mpl

Z
d�DF

����ðx; z�Þu�u�
�

¼ m

4mpl

Z
d�½Dret

����ðx; z�Þ þDadv
����ðx; z�Þ�u�u�;

(1.3)

which includes radiation from the source in the future. At
higher orders in perturbation theory the problems become
worse due to the appearance of nonlocal integrations that
manifest even in flat spacetime.
It is possible to construct true expectation values within

the in-out formalism by summing over a set of complete
states in the asymptotic future so that, for example, the
graviton one-point function is

h0; injĥ��j0; ini ¼
X
�

h0; inj�; outih�; outjĥ��j0; ini:

This construction requires knowing the Bogoliubov coef-
ficients h0; inj�; outi, which relate the in vacuum to the out
states. Even in spacetimes with isometries these can be
quite difficult to compute and do not necessarily have
simple functional forms. Having computed these coeffi-
cients, one still needs to perform the sum over intermediate
final states making this a demanding calculation all around.
The proper procedures described above are systemati-

cally accounted for in the in-in [or closed-time-path (CTP)
or Schwinger-Keldysh] formalism [31–36]. The in-in or
CTP generating functional is defined as

Z½j�1 ; j�2 ; J��
1 ; J��

2 � ¼ X
�

h0; inj�ij2;J2h�j0; inij1;J1 ; (1.4)

where fj�ig forms any complete set of states on a constant-
time hypersurface �ðTÞ at some possibly finite time T. See
Fig. 1. Within this framework we do not need to know the
states at the asymptotic future since only the initial states
on a constant-time hypersurface in the asymptotic past
need to be specified. As such, the in-in formalism is an
initial value formulation (rather than a boundary value
formulation, as contained in the in-out formalism) of quan-

FIG. 1. A cartoon representation of (a) the in-out vacuum
transition amplitude and (b) the in-in (or CTP) generating func-
tional. In the in-in formalism the currents and trajectories are set
equal to each other at the end of a calculation to obtain equations
of motion, physical observables, etc.
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tum field theory. The CTP effective action produces real
and causal equations of motion and true expectation values
of correlations [34,36]. For example, using the in-in for-
malism the leading order gravitational perturbation is caus-
ally propagated from the source to the field point

m

2mpl

Z
d�Dret

����ðx; z�Þu�u�; (1.5)

in contrast to (1.3).
The in-in functional (or CTP integral) formalism (1.4) is

therefore the correct framework for describing the causal
dynamics of the relativistic particle and the gravitational
radiation, and it is what we shall use in this series of papers.

2. Effective point particle description

Another important ingredient in our construction is an
effective point particle description for the motion of the
compact object. Going beyond the point particle approxi-
mation is necessary to include the effects of tidal deforma-
tions induced by the background curvature as well as the
effects from spin and other intrinsic moments. Following
[10], we introduce all possible terms into the point particle
action that are consistent with general coordinate invari-
ance and reparametrization invariance [and invariance
under SOð3Þ rotations for a nonspinning spherically sym-
metric compact object].

By implementing a matching procedure using coordi-
nate invariant observables we can match the observables of
the effective point particle theory with the long-wavelength
limit of observables in the full ‘‘microscopic’’ theory to
determine the values of the coupling constants of the non-
minimal terms. As wewill show in Sec. IV, this allows us to
deduce the order at which finite size effects affect the
motion of the compact object through the statement of an
effacement principle. To our knowledge this has not been
explicitly given in the literature before for the EMRI
scenario.

3. The power counting rules

Power counting is a generalization of dimensional
analysis. In our perturbative treatment it is crucial for
determining how the Feynman rules scale with the parame-
ter ". Once the scaling of the Feynman rules are known we
determine all of the tree-level Feynman diagrams that
appear at a particular order. Those diagrams containing
graviton loops are safely ignored. We also assemble the
diagrams that include the nonminimal worldline operators
describing the finite size of the compact object. Sig-
nificantly, this allows us to determine the order in " at
which finite size effects enter the particle equations of
motion.

With the power counting rules, the EFT approach be-
comes an efficient and systematic framework for calculat-
ing the self-force to any order in perturbation theory.

Furthermore, by knowing how each Feynman diagram
scales with ", we can study a particular physical interaction
that is of interest by focusing our attention on a single
diagram or on a few diagrams without having to calculate
every contribution that appears at that order and at lower
orders. For example, the leading order spin-spin interaction
(spin here refers to that of the compact object, not of the
SMBH) contributes to the self-force at third order in " for a
maximally rotating compact object and can be calculated
from the appropriate Feynman diagram [3,14]. The power
counting rules, the Feynman rules, and their scaling with "
are derived in Secs. III B and III C.

4. Divergences and regularization

In Sec. III D we propose a method for regularizing the
divergences in the effective action that is applicable at
higher orders in perturbation theory. Our approach utilizes
a mixture of distributional and momentum space tech-
niques within the context of dimensional regularization.
We know from previous work that the finite part of the self-
force is generally nonlocal and history dependent.
However, the ultraviolet divergences are quasilocal and
independent of the history of the effective point particle’s
motion. To isolate the quasilocal divergence from the non-
local finite part, we use the method of Hadamard’s partie
finie, or finite part, from distribution theory. (See
Appendix B for a brief review of the definitions and con-
cepts of distribution theory relevant in this work.)
After isolating the divergence from the nonlocal, finite

remainder we then use a momentum space representation
for the propagator in a curved background, first derived for
a scalar field by Bunch and Parker [37], to calculate the
divergent contributions. Their method is straightforward
but not efficient for higher spin fields, including gravitons
in a curved space. (See also the related work of [38].)
A novel method applicable for any tensor field is devel-

oped in [39] for computing the momentum space repre-
sentation of the Feynman propagator. The method is
sufficiently general to do the same for any quantum two-
point function, including the retarded propagator
Dret

���0	0 ðx; x0Þ. This approach makes use of diagrammatic

techniques borrowed from perturbative quantum field the-
ory. In Riemann normal coordinates, we expand the field
action in terms of the displacement from the point x. The
series can be represented in terms of Feynman diagrams,
which allows for an efficient evaluation of each term in the
expansion. Furthermore, we prove that some of the dia-
grams are zero to all orders. This identity is not recognized
in [37] even though its relation to certain steps made in
their calculations is evident.

D. MST-QW equation

Assembling all these essential ingredients, in Sec. III we
give a demonstration of how the curved spacetime effective
field theory construction is implemented, outline the steps
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in the regularization of divergences, perform an actual
calculation of the effective action, and from it derive the
equation of motion for the compact object including the
effect of gravitational self-force. As an application we
work to first order in the mass ratio (i.e., ") and obtain
the well-known Mino-Sasaki-Tanaka-Quinn-Wald (MST-
QW) equation [40,41]. This also sets the stage for calcu-
lating the second order self-force, the emitted gravitational
waves, and the motion of compact objects with spin [12–
14].

II. EFFECTIVE FIELD THEORY FOR POST-
NEWTONIAN BINARIES AND EMRIS

Before proceeding to construct a curved spacetime ef-
fective field theory for extreme mass ratio inspirals, we
briefly summarize the original work of [10], which intro-
duces effective field theory techniques for describing post-
Newtonian binary sources of gravitational radiation.

A. EFT in flat space for post-Newtonian binaries

The aim of [10] is to describe the motion of two slowly
moving bodies through a weak gravitational field using
effective field theory techniques in order to generate a
perturbative expansion in powers of the relative velocity.
One of the many benefits of using an effective field theory
approach is that the method is systematic and efficient so
that there is in principle no obstacle calculating to any
order in the velocity.

The authors in [10] start by replacing the compact
objects with effective point particles. These are described
by an action consisting of the usual point particle action
plus all possible self-interaction terms that are consistent
with general coordinate invariance and reparametrization
invariance of the worldline. Then, the in-out generating
functional is introduced to derive an effective action,

expfiSeff½z�g �
Z

Dh�� expfiSpp½z; 
þ h� þ iS½
þ h�g;
(2.1)

where Spp is the effective point particle action, S½
þ h� is
the Einstein-Hilbert action for the full spacetime metric,
and z� are the coordinates of the particle worldline.

Before integrating out the metric perturbations, the au-
thors observe that it is useful to separate h�� into potential

H�� and radiation �h�� contributions:

h�� ¼ H�� þ �h��: (2.2)

This is suggested by the fact that the slowly moving bodies
see a nearly instantaneous gravitational potential and yet
radiate gravitational waves due to their relative accelera-
tions. This decomposition is also required to make the
Feynman diagrams all scale homogeneously with the rela-

tive velocity, v. In this way, the perturbative expansion in v
is consistent and can be constructed to any order.
Integrating out the potential gravitons using perturbation

theory yields a theory of point particles moving in poten-
tials. The radiation gravitons and the particle worldlines
are nondynamical at this stage and can be treated as
external sources. In this effective theory, valid at the orbital
scale of the binary, the authors derive the Einstein-Infeld-
Hoffman potential [42] as a check of their method.
The last effective theory the authors have constructed

involves integrating out the radiation gravitons. They then
derive the famous power spectrum for quadrupolar gravi-
tational radiation by calculating the first nonvanishing
contribution to the imaginary part of the effective action;
the real part of the effective action generates equations of
motion while the imaginary part is related to the power of
the emitted gravitational radiation.
Using an effective field theory approach, it is not too

surprising that some of the parameters of the theory
undergo classical renormalization group (RG) scaling. In
fact, the appearance of such RG scaling is used by the
authors to show that there are no finite size effects up to v6

order. In their words, ‘‘whenever one encounters a log
divergent integral at order v6 in the potential, one may
simply set it to zero. Its value cannot affect physical
predictions.’’ [10]. This is how they resolve the problem
of the undetermined regularization parameters that appear,
at third post-Newtonian order, from regularizing the sin-
gular integrals encountered with the traditional PN expan-
sion techniques. See [43] and references therein for a
complete discussion of the regularization ambiguity.

B. EFT in curved spacetime for EMRIs

Our construction of an EFT does not rely on the slow
motion of the bodies nor on the assumption that they move
through a weakly curved region of spacetime. Quite the
contrary, we allow for the compact object to move relativ-
istically through the strong-field region of the SMBH
background spacetime. As a result, the metric perturba-
tions generated by the motion of the compact object cannot
be partitioned simply into an instantaneous potential and
radiation contributions.
Utilizing the dissimilar magnitudes of the compact ob-

ject’s size and the background curvature scale, we can
construct two kinds of effective field theories. The first
describes the compact object, in isolation from other ex-
ternal sources, as an effective point particle, and the second
comes from integrating out the long-wavelength gravita-
tional perturbations. The resulting theory is that of an
effective point particle subjected to a self-force from the
gravitational radiation reaction as a result of its motion in
the background spacetime, with the force and the radiation
evolving self-consistently. Using a matching procedure we
can establish the values of the coupling constants appear-
ing in the effective point particle action.
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C. EFT of a compact object

In applying the EFT formalism we first construct an
effective point particle theory for the compact object
with mass m. This allows for a point particle description
of the compact object’s motion through the background
spacetime while taking into account any tidally induced
moments, or finite size effects, that might affect its motion.
An example is provided in classical electromagnetism
wherein long-wavelength radiation scatters off a small,
metallic sphere possessing no residual charge. The inter-
action of the field induces a time-varying dipole moment
on the surface of the sphere. Since the wavelength is much
larger than the sphere, this system can effectively be de-
scribed by radiation interacting with a point particle carry-
ing an induced dipole moment on its worldline.

The effective point particle description of the compact
object is constructed by ‘‘integrating out’’ the short wave-
length gravitational perturbations up to the scale rm �
m=m2

pl. In doing so, we describe the motion of the compact

object moving in the combined geometry (with metric �g��)

of the background SMBH plus long-wavelength gravita-
tional perturbations by the action

Stot ¼ S½ �g� þ Spp½z; �g�: (2.3)

Here z�ð�Þ are the coordinates of the particle worldline and
� is its affine parametrization.

Being a description of the extended compact object, the
effective point particle action should include all possible
self-interaction terms that are consistent with the symme-
tries of the theory [9], which are general coordinate invari-
ance and worldline reparametrization invariance. For the
discussion here, we will assume that the compact object is
perfectly spherical when removed from external influences
(e.g. background curvature) so that it carries no permanent
moments. This implies, for example, excluding spinning
compact objects in our construction, at least for now [44].
Hence, Spp should also be invariant under SOð3Þ rotations.

Such a general action contains many terms that are
redundant and can therefore be eliminated from the effec-
tive point particle action [45,46]. In this theory, the terms
involving the Ricci curvature tensor and scalar can be
removed from Spp leaving

Spp½z; �g� ¼ �m
Z

d�þ cE
Z

d�E��E��

þ cB
Z

d�B��B�� þ � � � ; (2.4)

which was first shown in [10]. The symmetric and traceless
tensors E�� and B�� are the electric and magnetic parts of

the Weyl curvature, defined as

E �� ¼ C���� _z� _z� (2.5)

B �� ¼ �����C
��

�� _z
� _z�; (2.6)

where _z� is the particle’s 4-velocity.
The terms containing the square of the Riemann curva-

ture (and higher powers) represent tidal effects on the
compact object that are induced by the spacetime curva-
ture. This is seen by noting that the equations of motion no
longer have vanishing acceleration so that the effective
point particle does not move along a geodesic of the space-
time,

ma�ð�Þ ¼ 2cEE��E��;� þ � � � : (2.7)

Such deviation from geodesic motion is typical of tidally
distorted bodies. We will show in a later section that these
tidal effects will affect the motion of a black hole or
neutron star at Oð"4Þ in perturbation theory.
In the next section we derive the first-order equations of

motion for the compact object using the CS-EFTapproach.
These equations, which describe the self-force on the mass
m, were previously found by Mino, Sasaki, and Tanaka
[40] using matched asymptotic expansions and indepen-
dently by Quinn and Wald [41] using axiomatic methods.
In principle, we can compute the formal equations of
motion to higher orders in " thereby extending the work
of [40,41]. The second paper in this series [12] will give
results through the second order in ".

III. CS-EFT DERIVATION OF MST-QW EQUATION
FOR FIRST-ORDER SELF-FORCE

In the previous section, we outlined the construction of
an effective field theory that replaces the extended compact
object by an effective point particle. In this section we
construct an EFT for the motion of the effective particle by
integrating out the metric perturbations at the scale of the
radius of curvatureR. In doing so, we derive the MST-QW
self-force on the compact object.
Denote the background (unperturbed) metric by g�� so

that �g�� is given by the background geometry plus the

perturbations generated by the presence of the moving
compact object:

�g�� ¼ g�� þ
h��

mpl

: (3.1)

The metric perturbations h�� are presumed to be small so

that jh��j � mpl. We will occasionally make use of the

shorthand notation �h�� ¼ h��=mpl for the (dimensionless)

ratio of the metric perturbation to the Planck mass. From
(2.3) the total action describing the interactions between
the metric perturbations and the particle is given by the
sum of the Einstein-Hilbert and effective point particle
actions,

Stot½gþ �h; z� ¼ S½gþ �h� þ Spp½gþ �h; z�: (3.2)

We expand the Einstein-Hilbert action in orders of h��:

CHAD R. GALLEYAND B. L. HU PHYSICAL REVIEW D 79, 064002 (2009)

064002-6



S½gþ �h� ¼ X1
n¼2

1

n!

Z
d4x1 � � �d4xnh�1�1

� � �h�n�n

	 VðnÞ�1����nðx1; . . . ; xnÞ
� Sð2Þ þ Sð3Þ þ � � � ; (3.3)

where SðnÞ denotes the part of the action containing terms
proportional to n factors of h��. The quadratic contribution

is the kinetic term for h�� and provides the propagator

corresponding to some appropriate boundary conditions
(e.g., retarded, Feynman). The action is invariant under
infinitesimal coordinate transformations on the back-
ground spacetime.

We also need to expand the point particle action in
powers of h��. Using (2.4) we find

Spp½z; gþ �h� ¼ X1
n¼0

1

n!

Z
d4x1 � � � d4xnh�1�1

� � � h�n�n

	 VðnÞ�1����n
pp ðx1; . . . ; xnÞ

� Sð0Þpp þ Sð1Þpp þ Sð2Þpp þ � � � ; (3.4)

where SðnÞpp denotes the part of the action for the point
particle containing terms proportional to n factors of
h��. The leading order term is the usual point particle

action Sð0Þpp ¼ �m
R
d� and the first vertex operator is

Vð1Þ��
pp ðxÞ ¼ m

2mpl

Z
d�

	4ðx� zÞ
g1=2

_z� _z�

ð�g�� _z
� _z�Þ1=2 ; (3.5)

which is the point particle stress tensor.

A. The closed-time-path effective action

The construction of an effective field theory for the point
particle motion in a curved spacetime begins from (1.4)
with a path integral representation for the CTP, or in-in,
generating functional

Z½j�1 ; j�2 ; J��
1 ; J��

2 � ¼
Z

Dz�1 Dz�2 Dh��
1 Dh��

2 exp

�
iS½gþ �h1� � iS½gþ �h2� þ iSpp½z1; gþ �h1� � iSpp½z2; gþ �h2�

þ i
Z

d�ðj1�z�1 � j2�z
�
2 Þ þ i

Z
d4xg1=2ðJ1��h

��
1 � J2��h

��
2 Þ

�
; (3.6)

where the conditions z�1 ¼ z�2 and h��
1 ¼ h��

2 are met on
the constant-time hypersurface where the complete set of
intermediate states fj�ig are summed over as in (1.4).

To guarantee a well-defined graviton propagator on the
background spacetime, we adopt the Faddeev-Popov [47]
gauge-fixing procedure by introducing the action

Sgf ¼ �m2
pl

Z
d4xg1=2G�G

�; (3.7)

which is equivalent to picking the gauge G�½h��� � 0 for

the metric perturbations. (The � denotes weak equality in
the sense of Dirac [48].) Since wewill be dealing with tree-
level interactions only, there is no need to introduce ghost
fields into the gravitational action.

We choose the Lorenz gauge for the trace-reversed
metric perturbations, defined as

c �� � h�� � 1
2g��h; (3.8)

so that the gauge-fixing function is G�½h��� ¼ c ��
;�. In

this gauge, the leading order (kinetic) term in (3.3) is

Sð2Þ ¼ � 1

2

Z
d4xg1=2

�
h��;�h

��;� � 1

2
h;�h

;�

� 2h��R�
�
�
	h�	

�
: (3.9)

Perturbation theory in the in-in formalism is formulated
similar to that in the in-out formalism. In particular, the
generating functional can be written as

Z½j�1;2; J��
1;2 � ¼

Z
Dz

�
1 Dz

�
2 exp

�
iSð0Þpp½z1� � iSð0Þpp½z2�

þ i
Z

d�ðj1�z�1 � j2�z
�
2 Þ

þ i
Z

d4xLint

�
z
�
1 ; z

�
2 ;�i

	

	J��1
;�i

	

	J��2

��

	 Z0½J��
1;2 �; (3.10)

which is expressed as a certain functional derivative op-
erator acting on a Gaussian functional of the external
currents J

��
1;2 and where the interaction Lagrangian is

Z
d4xLint ¼

X1
n¼1

ðSðnÞpp½z1; �h1� � SðnÞpp½z2; �h2�Þ

þ X1
n¼3

ðSðnÞ½ �h1� � SðnÞ½ �h2�Þ: (3.11)

The quantity Z0 is the free field generating functional for
the metric perturbations
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Z0½J��
1;2 � ¼

Z
Dh

��
1 Dh

��
2 exp

�
iSð2Þ½ �h1� � iSð2Þ½ �h2�

þ i
Z

d4xg1=2ðJ1��h
��
1 � J2��h

��
2 Þ

�
(3.12)

and is calculated by integrating the Gaussian along the
CTP contour giving

Z0½J��

 � ¼ expf�1

2J
��
a �Dab

���0	0 � J�0	0
b g; (3.13)

where a � denotes spacetime integration,
R
d4xg1=2ðxÞ. In

this expression we introduce the averaged and differenced
variables

J��� ¼ J��
1 � J��

2 (3.14)

J��
þ ¼ 1

2ðJ��
1 þ J��

2 Þ (3.15)

so that the matrix of free graviton two-point functions (in
the so-called Keldysh representation [32]) is

Dab
���0	0 ðx; x0Þ ¼ 0 �iDadv

���0	0

�iDret
���0	0

1
2D

H
���0	0

 !
; (3.16)

where a; b ¼ 
 and Dþþ
���0	0 ¼ 0. Specifically, these are

the retarded/advanced propagators and the Hadamard two-
point function. See Appendix A for their definitions, iden-
tities, and useful relations. The indices a; b are raised and
lowered by the ‘‘CTP metric’’

cab ¼ cab ¼ 0 1
1 0

� �
: (3.17)

Momentarily leaving out the tensor indices, Dcd ¼
ccacdbD

ab and J
 ¼ J�, etc.
Computing the partial Legendre transform of the gen-

erating functional with respect to the particle current gives
the effective action

�½hẑ�
i; J��

 � ¼ W½j�
; J��


 � �
Z

d�ja�hẑ�a i; (3.18)

where W ¼ �i lnZ. The equations of motion for the ex-
pectation values of the worldline coordinates are then
found by varying the effective action,

0 ¼ 	�

	hẑ��i
��������z�¼0;zþ¼z;j
¼J
¼0

: (3.19)

The gravitational waves radiated by the compact object can
be computed from the graviton one-point function

hĥ��ðx�Þi ¼ hĥþ��ðx�Þijz�¼0;zþ¼z;j
¼J
¼0 (3.20)

¼ 	W

	J��� ðx�Þ
��������z�¼0;zþ¼z;j
¼J
¼0

(3.21)

and will be discussed further in [13].

Before calculating the effective action we make a few
remarks. A classical equation of motion does not ade-
quately describe the particle’s motion when the quantum
mechanical fluctuations of the worldline are not negligible.
However, the particle’s quantum trajectories can be deco-
hered by interactions with the quantum fluctuations of the
metric perturbations, or other matter fields present, result-
ing in a classical worldline for the particle. We call this the
semiclassical limit (classical particle in a quantum field).
The condition for the existence of a semiclassical limit and
the appearance of stochastic behavior are stated in the
beginning of the Introduction. See [1,2] and references
therein for more details of the issues pertaining to a particle
moving in an arbitrary curved background.

B. Power counting rules

The interaction terms Sðn>2Þ and Sðn>0Þ
pp represent self-

interactions of the field and various particle-field interac-
tions, respectively. Each of these terms may be represented
by a Feynman diagram. To write down all of the relevant
diagrams that contribute to the effective action at a specific
order in ", we need to know how each of the interaction
terms scale with " and R. The scaling behaviors that we
develop here are called power counting rules and are
essentially a generalization of dimensional analysis. We
first develop the power counting rules for the parameters of
the effective field theory; we ignore for now the nonmini-
mal point particle couplings in Spp (i.e., cE; cB; . . . ).

As discussed previously, the curvature scaleR describes
the length scale of temporal and spatial variations of the
curvature in the background geometry. This implies that
each of the spacetime coordinates scale according to

x� �R: (3.22)

From the kinetic term for the metric perturbations we

deduce that if Sð2Þ � 1 then

1�R4h2
�
1

R

�
2 �R2h2 (3.23)

and the metric perturbation scales with R as

h�� � 1

R
: (3.24)

The particle-field interactions, indicated by the terms

SðnÞpp for n � 1, contain inverse powers of the Planck
mass, mpl. To power count these terms we form the ratio

m

mpl
�
�

m

m2
plR

��
mpl

m

�
ðmRÞ: (3.25)

The factor mR is the scale of the (conserved) angular
momentum for a test particle following a geodesic in the
strong-field region of the background spacetime [49] since

L ¼ mg��c
� _x� �mR; (3.26)
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where _x� is the 4-velocity of the geodesic. We therefore
find that

m

mpl
� ffiffiffiffiffiffiffi

"L
p

: (3.27)

The four scaling laws in (3.22), (3.24), (3.26), and (3.27)
determine the power counting rules for identifying the
appropriate Feynman diagrams that enter into the evalu-
ation of the effective action. See Table I.

We now turn our attention to power counting the inter-
action terms in (3.10). We consider first the diagram for the
interaction of n gravitons with the effective particle world-
line, as shown in Fig. 2(a). The curly line denotes a two-
point function Dab

���0	0 of the metric perturbation (i.e. of a

graviton). The straight line denotes the effective point
particle. We remark that from the point of view of the
gravitons, the particle acts as an external source that cou-
ples to the metric perturbations. As such, the straight line in
Fig. 2(a) does not represent the physical propagation of the
compact object but acts as an external field, which is
determined in the end via the consistent solution to the
particle equations of motion.

The power counting of n gravitons interacting with the
effective particle is given by

Fig : ð2aÞ ¼ iSðnÞpp � m

mn
pl

d�hn � "

�
L

"

�
1�ðn=2Þ

: (3.28)

The self-interaction vertices that result from the nonline-
arity of the Einstein-Hilbert action are given in Fig. 2(b).
The power counting for the self-interaction of n gravitons

gives

Fig : ð2bÞ ¼ iSðnÞ �m2
pld

4xr2 hn

mn
pl

�
�
L

"

�
1�ðn=2Þ

: (3.29)

From Table I we see that the power counting indicates that
every type of interaction term involving any number of
gravitons scales as Lp where p  1.

C. Feynman rules and calculating the effective action

We now turn to calculating the effective action from
(3.18) for J��

a ¼ 0. Standard quantum field theory argu-
ments [50–52] demonstrate that the effective action is
given by

i�½hz�1;2i� ¼ iSð0Þpp½hz�1 i� � iSð0Þpp½hz�2 i�
þ ðsum of all 1PI connected diagramsÞ:

(3.30)

By ‘‘connected diagrams’’ we mean those contiguous dia-
grams constructed using the Feynman rules for the inter-
action terms in (3.11). By ‘‘1PI connected diagrams’’ we
mean those connected diagrams that are one-particle-
irreducible [51,52]. However, we are only interested in
those connected diagrams that contribute at the classical
level since the quantum corrections due to graviton loops
on the motion of an astrophysical body are utterly negli-
gible. Therefore, the effective point particle worldline is
assumed to be totally decohered and we will simply rep-
resent the expectation value of the worldline coordinates
operators hẑ�a i by their semiclassical values z

�
a .

A diagram with ‘ graviton loops scales as L1�‘, in units
where @ ¼ 1. Therefore, classical processes correspond to
those diagrams that scale linearly with L (i.e., tree-level
diagrams) and provide the dominant contributions to the
effective action so that

i�½z1;2� ¼ iSð0Þpp½z1� � iSð0Þpp½z2�
þ ðsum of all tree-level connected diagramsÞ
þ � � � : (3.31)

In this manner we have a systematic method for computing
the self-force equations order by order in ".
The relationship between the connected diagrams, the

interaction terms, and the power counting is provided by
the Feynman rules so that, given a diagram at a given order
in ", we can translate these into mathematical expressions.
The Feynman rules are the following:
(1) A vertex represents the particle-field interaction

iVðnÞ�1����n
ppa1���an or the graviton self-interaction

iVðnÞ�1����n
a1���an as appropriate.

(2) Include a factor of the graviton two-point function
Dab

���0	0 ðx; x0Þ connecting vertices labeled by CTP

indices a and b at spacetime points x and x0.

TABLE I. Power counting rules.

x� h�� L m
mpl

SðnÞpp SðnÞ

R 1
R mR

ffiffiffiffiffiffiffi
"L

p
"ðL"Þ1�n=2 ðL"Þ1�n=2

FIG. 2. Interaction vertices. Diagram (a) shows the interaction
vertex for n gravitons, denoted by curly lines, coupling to a point
particle, denoted by a straight line. Diagram (b) shows the self-
interaction vertex of n gravitons. The labels a1; a2; . . . and b are
CTP indices, which take values of 
.
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(3) Include a factor of D�a
���0	0 ðx; x0Þ for each graviton

that propagates from the worldline at event x0 with
CTP index a to the field point x.

(4) Sum over all CTP indices and integrate over all
spacetime for each vertex.

(5) Divide by the appropriate symmetry factor, S.

The symmetry factor S for a particular diagram is found by
counting the number of ways one can permute the internal
CTP indices while retaining the same set of propagators
appearing in the diagram. Wewill show how these rules are
implemented as we continue.

To derive the MST-QW self-force equation, we only
need those diagrams that contribute at Oð"LÞ. From the
Feynman rules for the interactions in Fig. 2 it follows that
there is only one such diagram at this order, which is shown
in Fig. 3. Therefore, the effective action to first order in " is

i�½z1;2� ¼ �im
Z

d�1 þ im
Z

d�2 þ Fig:ð3Þ þOð"2LÞ;
(3.32)

where

Fig :ð3Þ ¼ ð12ÞiVð1Þ��
pp a �Dab

���0	0 � iVð1Þ�0	0
pp b: (3.33)

The symmetry factor here is 1=2 and

Vð1Þ��
pp� � Vð1Þ��

pp ½z1� � Vð2Þ��
pp ½z2� (3.34)

Vð1Þ��
ppþ � 1

2ðVð1Þ��
pp ½z1� þ Vð2Þ��

pp ½z2�Þ; (3.35)

where Vð1Þ��
pp is essentially the point particle stress tensor

given in (3.5).
According to (3.19), only those terms linear in z�� ¼

z
�
1 � z

�
2 contribute to the equations of motion so that

expanding Vð1Þ��
pp
 through Oðz�Þ gives

i�½z
� ¼ �im
Z

d�z��g��a
�þ

þ im2

2m2
pl

Z
d�

Z
d�0z��ð�Þw�

���½z�þ�

	 r�D
ret
���0	0 ðz�þ; z�0

þ Þ _z�0
þ _z	

0
þ þOðz2�Þ: (3.36)

Here the 4-acceleration is

a
�
þð�Þ ¼

D _z�þ
d�

; (3.37)

� is the proper time associated with the worldline described

by z�þ so that

g��ðzþÞ _z�þ _z�þ ¼ �1; (3.38)

and the tensor w����½z� is defined by

w���� ¼ 1
2u

�u�w�� � w�ð�u�Þu� (3.39)

w�� ¼ g�� þ u�u�: (3.40)

Notice that the Hadamard two-point function DH
���0	0 does

not enter at Oðz�Þ and can consistently be ignored when
deriving the classical equations of motion for the CO since
it always appears at higher orders in z��.
We observe that the retarded propagator in (3.36) is

divergent when �0 ¼ �. In order to have a finite and well-
behaved force on the compact object from the metric
perturbations, we will need to regularize this divergence
and possibly renormalize the appropriate couplings of the
theory.

D. Regularization of the leading order self-force

The CS-EFT approach is founded in the theory of quan-
tum fields in curved spacetime [50,53]. The renormaliza-
tion of divergences in this context has received much
attention over the decades and a considerable body of
techniques has been developed to remove these divergen-
ces in a systematic and self-consistent manner. We there-
fore find it natural to renormalize the divergence in (3.36)
using these methods even if they are somewhat unfamiliar
in classical gravitational problems.
Of these approaches the method of dimensional regu-

larization [54] is particularly useful. This regularization
scheme preserves the general coordinate and gauge sym-
metries of the theory but is also a natural choice to use
within an effective field theory framework [9,55,56].
From (3.36) we may write the divergent integral

I�ð�Þ ¼
Z 1

�1
d�0w����r�D

ret
���0	0 ðz�þ; z�

0
þ Þu�0

þu	
0

þ

�
Z 1

�1
d�0��ð�; �0Þ (3.41)

as the sum of a regular and divergent contribution,

I�ð�Þ ¼ Fp
Z 1

�1
d�0��ð�; �0Þ þ

Z 1

�1
d�0��

divð�; �0Þ
¼ I�finð�Þ þ I�divð�Þ; (3.42)

where Fp denotes the finite part of the divergent integral in
the sense of Hadamard [57]. We refer the reader to
Appendix B for our notations and definitions regarding
distribution theory as well as to the excellent texts of
[58,59].
To calculate the finite and divergent parts we write the

proper time integral as

FIG. 3. The diagram contributing to the first-order self-force
described by the MST-QW equation.
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I�ð�Þ ¼
�Z �<

�1
þ
Z �>

�<

þ
Z 1

�>

�
d�0w����r�

	Dret
���0	0 ðz�þ; z�0

þ Þu�0
þu	

0
þ ; (3.43)

where �<=> denotes the values of proper time when the

worldline enters/leaves the normal convex neighborhood
of z�þð�Þ. Using Hadamard’s construction for the retarded
propagator [57,60], the second integral can be written as

Z �>

�<

d�0w����r�½ð�� �0Þ�1=2	ð�ðz�; z�0 ÞÞu�þu�þ
þ ð�� �0ÞV���0	0 ðz�; z�0 Þu�0

þu	
0

þ�; (3.44)

where V���0	0 ðx; x0Þ is a regular function,�ðx; x0Þ is the van
Vleck determinant, and �ðx; x0Þ is Synge’s world function.
See [60] for further details about Hadamard’s construction.
The divergent contribution to I�ð�Þ therefore arises solely
from the first integral in (3.44) and we may write the finite
part as

I�finð�Þ ¼ lim
�!0

Z ���

�1
d�0w����r�D

ret
���0	0 ðz�þ; z�0

þ Þu�0
þu	

0
þ

(3.45)

upon recalling that the retarded propagator vanishes for
�0 > �.

The divergent part of I�ð�Þ can be extracted using a
momentum space representation for the graviton propaga-
tor that is initially introduced by Bunch and Parker for a
scalar field in an arbitrary curved spacetime in [37]. We
show in [39] that the retarded propagator is given in
Riemann normal coordinates (RNC) by

Dret
â b̂ ĉ d̂

ðyÞ ¼ �1=2ðyÞ
Z
C

ddk

ð2�Þd e
ik�y
�
Pâ b̂ ĉ d̂ð
Þ

k2
þ � � �

�
;

(3.46)

where yâ denotes the RNC of z�ð�0Þ with respect to the
origin at z�ð�Þ, C is the appropriate contour for the retarded
propagator, and

Pâ b̂ ĉ d̂ð
Þ ¼
1

2

�

â ĉ
b̂ d̂ þ 
â d̂
b̂ ĉ �

2

d� 2

â b̂
ĉ d̂

�
:

(3.47)

The terms in (3.46) given by þ� � � contribute to the
coincidence limit expansion of V���0	0 ðx; x0Þ, as we dem-

onstrate in [39], and are already included in (3.45). We
therefore identify the divergent part of I�ð�Þ with

Im̂divð�Þ ¼ wm̂ â b̂ n̂Pâ b̂ ĉ d̂u
ĉud̂

Z 1

�1
d�0@n̂

	
�
�1=2ðyÞ

Z
Cret

ddk

ð2�Þd
eik�y

k2

�
: (3.48)

We provide the computational details in Appendix C and
show that

I�divð�Þ ¼ 0: (3.49)

Having regularized the leading order contribution to the
effective action in Fig. 3 we use the variational principle

	�½z
�
	z��ð�Þ

��������z�¼0;zþ¼z
¼ 0 (3.50)

to give the self-force on a compact object moving in a
vacuum background spacetime,

a�ð�Þ ¼ m

2m2
pl

w����lim
�!0

Z ���

�1
d�0r�D

ret
���0	0 ðz�; z�0 Þu�0

u	
0
;

(3.51)

which was originally derived by Mino, Sasaki and Tanaka
[40] and by Quinn and Wald [41].

IV. MATCHING AND FINITE SIZE EFFECTS

We outline a matching procedure for fixing the non-
minimal couplings cE; cB; . . . , which contain information
about the internal structure of the compact object. We also
determine the lowest order at which the finite size of the
compact object affects its motion via tidal deformations
induced by the background curved geometry. Using coor-
dinate invariant arguments we demonstrate that such finite
size effects from a small Schwarzschild black hole or
neutron star unambiguously enter the self-force at Oð"5Þ
and as deviations from a point particle motion atOð"4Þ. We
also discuss the tidal deformations of a white dwarf star,
which are more sensitive to the curvature of the back-
ground geometry.

A. Nonspinning black holes and neutron stars

To begin we recall the effective point particle action
given in (2.4). The coefficients cE;B are parameters that

depend upon the internal structure of the extended body.
We must therefore match the effective point particle theory
onto the full theory in order to encode this microscopic or
‘‘high-energy’’ structure onto the long-wavelength effec-
tive theory.
The matching procedure involves calculating (coordi-

nate invariant) observables in both the effective theory and
the full theory [61]. By expanding the observable of the full
theory in the long-wavelength limit, where the effective
theory is applicable, we can simply read off the values of
cE;B as well as any other coefficients in (2.4).

Consider the amplitude for Compton graviton scattering
shown in Fig. 4, which represents the scattering of gravi-
tational waves in the spacetime of the isolated compact
object. Power counting this amplitude in the effective point
particle theory gives

iA� � � �& cE;B
m2

pl

�
1

R2

�
2
& � � � ; (4.1)

where the 1=R2 comes from the two spacetime covariant
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derivatives in the background Riemann tensor and the &
denotes ‘‘and a term that scales as.’’ While the cross
section includes contributions from other terms in the
effective particle action, it will contain one term propor-
tional to c2E;B,

�pp � jiAj2 � � � �& c2E;B
m4

pl

1

R8
& � � � ; (4.2)

where the pp subscript indicates that this is the cross
section computed in the effective point particle theory.

We turn now to the scattering cross section in the full
theory. A cross section represents an effective scattering
area and the only scale present in the full theory of the
isolated compact object is set by its size rm �m=m2

pl. It

follows that

�full ¼ r2mF

�
rm
R

�
; (4.3)

where F is a dimensionless function that can be computed
directly using conventional methods. In the long-
wavelength limit where rm=R � 1, the cross section
will contain a term proportional to R�8,

�full � � � �&r2m

�
rm
R

�
8
& � � � : (4.4)

Since quantities computed in the effective theory ought to
match those computed in the long-wavelength limit of the
full theory, we conclude that

cE;B �m2
plr

5
m � m5

m8
pl

(4.5)

upon identifying the R�8 terms in both �pp and �full.

The first diagram that the finite size terms will contribute
is proportional to cE;B and is shown in Fig. 5(a). This

describes the deviation from the pure point particle motion
experienced by the compact object due to the inclusion of
the nonminimal couplings to the background spacetime,
which scales with " as

Fig :ð5aÞ � cE;Bd�

�
1

R2

�
2 � "4L (4.6)

and enters at fourth order.

This diagram does not couple to metric perturbations; it
persists in the absence of gravitational radiation. As a
result, while Fig. 5(a) will affect the motion of the particle
it is not a correction to the self-force. To find the order at
which the tidal deformations affect the self-force we power
count the diagram in Fig. 5(b) to find that

Fig :ð5bÞ � cE;Bd�

�
1

R2

�
2 h

mpl

ffiffiffiffiffiffiffi
"L

p � "5L: (4.7)

Finite size effects therefore enter the self-force at fifth
order in ".

B. Nonspinning white dwarf stars

In (4.5) we assume that the size of the compact object is
of the same order as its mass, rm �m=m2

pl. While this

holds true for black holes and neutron stars it does not
for white dwarf (WD) stars. WDs are thousands of times
larger than their Schwarzschild radius and subsequently
experience stronger tidal effects than a black hole (BH) or
neutron star (NS) with the same mass. In fact, the tides may
be so severe that the WD is tidally disrupted at some point
along its orbit about the SMBH. As a result, we expect that
finite size effects may be (numerically) enhanced and alter
the WD’s motion, possibly at a lower order in ".
To see how this can arise, we define the ratio of the

compact object’s radius to its mass by fco so that

rm ¼ fcoGm ¼ fco
32�

m

m2
pl

(4.8)

and the bookkeeping parameter " becomes

" � rm
R

� fco
m

m2
plR

(4.9)

with m=mpl �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"L=fco

p
. If the compact object is a black

hole then fbh ¼ 2. For a neutron star having a mass of
1:4M� and a radius between 10 and 16 km, it follows that
fns varies between 4.8 and 7.7, respectively.
Using the new expressions for rm and ", it is not difficult

to show that

FIG. 4. Graviton scattering off the background of a static and
spherically symmetric extended body (e.g., a Schwarzschild
black hole, a nonspinning neutron star).

FIG. 5. Lowest order contributions to (a) deviation from (mini-
mal) point particle motion due to the tidal deformations of the
compact object, and (b) the self-force from the interaction of
gravitational radiation with these deformations.
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cE;B � f5co
m5

m8
pl

�m2
plr

5
m (4.10)

and therefore the leading order finite size effects from
induced tides scales as

Fig :ð5aÞ � fco"
4L: (4.11)

Since " / fco it follows that Fig. 5(a) scales as f5co. We
remark that this observation agrees with that in [62,63]
where the authors observe that the induced quadrupole
moment of a neutron star scales as r5ns.

The parameter " generally depends on some distance
scale, r, set by the orbit of the compact object. As a result,
" takes on different values at different orbital scales.
Similarly, in the post-Newtonian expansion the small pa-
rameter (the relative velocity of the compact objects v)
depends upon the scale of the orbital separation r through

the virial theorem, vðrÞ � ðGm=rÞ1=2.
To determine how the leading order finite size effects

from Fig. 5(a) depend on the orbital scale r, we consider
the SMBH background to be a Schwarzschild black hole. It
then follows from (1.1) and (4.9) that

" ¼ rm
R

¼ 23=431=4fco
m

M

�
r

M

��3=2
: (4.12)

As the orbital scale decreases we observe that " increases.
For a WD, " can be significantly larger than for a BH or

NS with the same mass because fwd is typically much
larger than both fbh and fns. In fact, fwd can be so large
that Fig. 5(a) may be numerically enhanced and important
at orders in " lower than the naive fourth order estimation
given in the previous section. Such enhancement is con-
sistent with our physical intuition that a WD experiences
stronger tidal deformations than a BH or NS with the same
mass.

To demonstrate this enhancement consider a simple
example. Assume that the radius of the WD equals the
Schwarzschild radius of the nonspinning SMBH it orbits.
Choosing the radii to be 600 km each, it follows that the
masses of the WD and SMBH are m � 0:6M� [64] and
M ¼ 4000M�, respectively. For these values, (4.8) indi-
cates that

fwd � 6750; (4.13)

which is much larger than both fbh and fns, as expected.
For this scenario, how do the leading order finite size

effects of (4.11) change with the orbital scale, r, of the
WD? Figure 6 shows a log-log plot of fwd"

4 as a function
of the radial distance r=M from the SMBH. The dark line
is fwd"

4 while the dashed gray lines are plots
of "s for s ¼ 0; . . . ; 4. As the orbital scale decreases, the
dark line crosses several dashed gray lines indicating that
Fig. 5(a) is numerically enhanced from the naive "4 esti-
mate for BH’s and NS’s to order "s because of the stronger
WD tidal deformations. It is the scaling of the nonminimal

couplings cE;B in (4.10) with the fifth power of fwd that is
responsible for this enhancement of the leading order finite
size effects.
However, this enhancement cannot proceed indefinitely.

If the tidal deformations become strong enough to transfer
material from the WD to the SMBH (via Roche lobe
overflow) or to disintegrate the WD at its Roche limit,
then the WD is tidally disrupted and can no longer be
described effectively as a point particle. This indicates
that our particular construction of a point mass effective
field theory will no longer satisfactorily describe the
binary.
Using Newtonian estimates we find the Roche limit for

the rigid (fluid) WD to be near r � 24M (r � 47M). These
scales are represented by a triangle (circle) in Fig. 6. The
WD’s Roche lobe begins to overflow and transfer mass that
accretes onto the SMBH when r � 40M [65] and is de-
noted with a square in Fig. 6. In all three cases the WD is
tidally disrupted, a process that occurs near the s ¼ 2 line.
All of this suggests that finite size effects from induced

tidal deformations can be enhanced for a WD until the star
undergoes tidal disruption at Oð"2Þ. If one is interested in
calculating the second order self-force on a WD these tidal
effects may have to be taken into account at some point
during the binary’s evolution to accurately determine the
gravitational waveforms.
If the SMBH mass is increased to 105M�, we estimate

that tidal disruption occurs much closer to the SMBH’s
horizon. Describing theWD as an effective point particle is
therefore valid over much of its orbital evolution.
Increasing the mass of the SMBH further, we find that
WD tidal disruption occurs inside the event horizon and is
therefore ignorable with respect to observables and pro-
cesses outside of the SMBH. Therefore, for the SMBH
masses relevant for LISA’s bandwidth the tidal disruption

FIG. 6. The effects from the finite size of a white dwarf star
can be enhanced as it orbits in closer to the SMBH. The white
dwarf seems to undergo some form of tidal disruption by either
tidal disintegration (triangle and circle) or Roche lobe overflow
(square). In either case, tidal disruption may be numerically
equivalent to a second order process.
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of WDs is likely to be negligible except perhaps near the
plunge and merger phases for a & 105M� Schwarzschild
SMBH.

If the WD is tidally disrupted before it plunges into the
SMBH, one can conceivably construct a new EFT that is
valid at scales much larger than the orbital scale of the
binary in which the SMBH, the WD, and the mass trans-
ferring to the SMBH are treated collectively as an effective
point particle. Given the complexity of such a system an
EFT description would be very useful. However, the
matching procedure to determine the large number of
relevant nonminimal couplings is likely to be difficult
given that high order intrinsic multipoles will need to be
included to accurately describe this system.

We recapitulate our results from this section with an
explicit statement of the effacement principle for nonspin-
ning compact objects.

Effacement principle for EMRIs.—Tidally induced mo-
ments will affect the acceleration of a compact object at
Oð"4Þ.

For a white dwarf orbiting a Schwarzschild SMBH this
effect may be numerically enhanced until the star under-
goes tidal disruption atOð"2Þ, which may be relevant when
the SMBHmass is less than about 105M� for the particular
example discussed here.

V. CONCLUSION

We develop an effective field theory approach for sys-
tematically deriving the self-force on a compact object
moving in an arbitrary curved spacetime without the slow
motion or weak field restrictions. The EFT is a realization
of the open quantum system paradigm in systems with a
large scale separation such that the system’s induced fluc-
tuations from the backreaction of the coarse-grained quan-
tum field is utterly negligible [8]. An initial value
formulation of quantum field theory is adopted here using
the closed-time-path (CTP) formalism for the in-in gener-
ating functional, which guarantees real and causal equa-
tions of motion for the compact object. As an illustration of
the procedures involved in our approach, we showed how
to derive the MST-QWequation describing the (first-order)
self-force on a compact object.

We describe the compact object as an effective point
particle that is capable of accounting for tidally induced
finite size effects. In calculating the effective action we
encounter ultraviolet divergences stemming from a point
particle interacting with arbitrarily high frequency modes
of a graviton field. Using Hadamard’s partie finie to isolate
the nonlocal finite part from the quasilocal divergences, we
are able to implement dimensional regularization within a
(quasilocal) momentum space representation for the gravi-
ton propagator [39]. As such, all power divergences can be
immediately set to zero implying that only logarithmic
divergences are relevant for renormalizing the parameters

of the theory. At first order, the effective action naively
contains a power divergence that identically vanishes.
In the spirit of an effacement principle, we find that the

finite size of the compact object first affects its motion at
Oð"4Þ for a nonspinning black hole and neutron star. For a
white dwarf star we deduce that such effects may be
enhanced until the white dwarf is tidally disrupted at
Oð"2Þ in which case the effective point particle description,
and, in particular, the effective field theory developed here,
breaks down. One may conceivably construct a new effec-
tive field theory by treating the supermassive black hole,
the white dwarf, and the accreting mass as an effective
point particle possessing many relevant nonminimal cou-
plings to the background geometry describing the intrinsic
moments of this composite object.
The leading order finite size corrections cause a devia-

tion from the motion of a minimally coupled point particle
that is not caused by interactions with gravitons but is due
to the torques that develop on the tidally deformed compact
object. On the other hand, the self-force is affected by the
induced moments of the compact object at Oð"5Þ.
In summary, the EFT approach has at least two major

advantages over the existing approaches: It provides a
systematic procedure for carrying out a perturbative treat-
ment, and an economical way to treat the ultraviolet diver-
gences. Our CS-EFT improves on the PN-EFT introduced
in [10] in that it is valid for a general curved spacetime and
not limited to slow motion or weak field conditions. These
will prove to be of special benefit for higher order self-
force calculations. We will apply these steps to calculate
the self-force at second order in " [12], the gravitational
radiation emitted by EMRIs [13], and the self-force on
spinning compact objects [14].
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APPENDIX A: DEFINITIONS AND RELATIONS
FOR THE QUANTUM TWO-POINT FUNCTIONS

In this Appendix we collect some definitions, identities,
and relations for the quantum two-point functions that are
relevant for this work.
The positive and negative frequency Wightman func-

tions are defined as
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Gþ
���0	0 ðx; x0Þ ¼ hĥ��ðxÞĥ�0	0 ðx0Þi (A1)

G�
���0	0 ðx; x0Þ ¼ hĥ�0	0 ðx0Þĥ��ðxÞi; (A2)

respectively. The angled brackets represent the quantum

expectation value of the operator Ô so that

hÔi � Tr½�̂ð�iÞÔ� (A3)

and �̂ð�iÞ is the density matrix of the quantum field given
on a hypersurface �i at constant coordinate time x0 ¼ ti.

The Feynman, Dyson, Hadamard, and commutator (also
known as the Pauli-Jordan function or the causal function)
two-point functions are, respectively,

GF
���0	0 ðx; x0Þ ¼ hTĥ��ðxÞĥ�0	0 ðx0Þi (A4)

GD
���0	0 ðx; x0Þ ¼ hT�ĥ��ðxÞĥ�0	0 ðx0Þi (A5)

GH
���0	0 ðx; x0Þ ¼ hfĥ��ðxÞ; ĥ�0	0 ðx0Þgi (A6)

GC
���0	0 ðx; x0Þ ¼ h½ĥ��ðxÞ; ĥ�0	0 ðx0Þ�i; (A7)

where T is the time-ordering operator and T� is the anti-
time-ordering operator. The field commutator is indepen-
dent of the particular state used to evaluate it. Given the
Wightman functions in (A1) and (A2), we write the above
two-point functions in the form (ignoring the tensor indices
from here on)

GFðx; x0Þ ¼ ðt� t0ÞGþðx; x0Þ þ ðt0 � tÞG�ðx; x0Þ (A8)

GDðx; x0Þ ¼ ðt0 � tÞGþðx; x0Þ þ ðt� t0ÞG�ðx; x0Þ (A9)

GHðx; x0Þ ¼ Gþðx; x0Þ þG�ðx; x0Þ (A10)

GCðx; x0Þ ¼ Gþðx; x0Þ �G�ðx; x0Þ: (A11)

From these we define the retarded and advanced propaga-
tors by

� iGretðx; x0Þ ¼ ðt� t0ÞGCðx; x0Þ (A12)

þ iGadvðx; x0Þ ¼ ðt0 � tÞGCðx; x0Þ: (A13)

These propagators also satisfy the following useful identi-
ties:

� iGretðx; x0Þ ¼ GFðx; x0Þ �G�ðx; x0Þ (A14)

¼ Gþðx; x0Þ �GDðx; x0Þ (A15)

iGadvðx; x0Þ ¼ GDðx; x0Þ �G�ðx; x0Þ (A16)

¼ Gþðx; x0Þ �GFðx; x0Þ (A17)

from which the Feynman propagator can be written in

terms of its real and imaginary parts as

GFðx; x0Þ ¼ � i

2

�
Gretðx; x0Þ þGadvðx; x0Þ

�
� 1

2
GHðx; x0Þ:

(A18)

The Feynman, Dyson, and Wightman functions are not all
independent since

GHðx; x0Þ ¼ GFðx; x0Þ þGDðx; x0Þ (A19)

¼ Gþðx; x0Þ þG�ðx; x0Þ: (A20)

Under the interchange of x and x0 the Feynman, Dyson, and
Hadamard two-point functions are symmetric, the commu-
tator is antisymmetric, and

Gþðx; x0Þ ¼ G�ðx0; xÞ (A21)

Gretðx; x0Þ ¼ Gadvðx0; xÞ: (A22)

APPENDIX B: DISTRIBUTIONS,
PSEUDOFUNCTIONS, AND HADAMARD’S FINITE

PART

In this Appendix we present the basic structure, con-
cepts, and definitions of distribution theory that are rele-
vant for this work. The reader is referred to [58,59] for
more information.
Consider the set of functions� that are infinitely smooth

C1 and have compact support on any finite interval. These
functions, called testing or test functions, form a set D. A
functional f is a mapping that associates a complex num-
ber to every testing function inD. A distribution is a linear
and continuous functional on the space of test functionsD
and is frequently denoted by the symbols hf;�i and f.
For a locally integrable function fðtÞ, we can associate a

natural distribution through the convergent integral

hf;�i �
Z 1

�1
dtfðtÞ�ðtÞ (B1)

for some testing function� 2 D. Notice that we are using
the same symbol to denote both the distribution and the
function that generates the distribution. This is an example
of a regular distribution. All distributions that are not
regular are singular distributions and will be our main
concern in the rest of this Appendix. An example of a
singular distribution is the well-known delta functional 	.
Often, a singular distribution gives rise to a singular

integral, which can be written in terms of its divergent
and finite parts. For the purposes of clarity and illustration,
it is best to consider a simple example. Let us compute the
integral 	

ðtÞ
t

; �



¼
Z 1

0
dt

�ðtÞ
t

(B2)

for �ðtÞ a testing function in D and ðtÞ the step, or
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Heaviside, function. This integral is obviously divergent
since 1=t is not a locally integrable function at the origin.
Nevertheless, we may extract the finite part (in the sense of
Hadamard [57]) of the integral by isolating the divergences
from the finite terms.

To this end we write

�ðtÞ ¼ �ð0Þ þ tc ðtÞ; (B3)

where c ðtÞ is a continuous function for all t. Putting this
into (B2) and integrating gives	
ðtÞ
t

; �



¼ lim

�!0þ

�
�ð0Þ logb��ð0Þ log�þ

Z b

�
dtc ðtÞ

�
;

(B4)

where we assume that the testing function�ðtÞ vanishes for
t � b for some real number b. The finite part of (B2) is
defined to be the remainder upon subtracting off the diver-
gent contribution(s). In this case, dropping the log� term
gives the finite part of the integral

Fp
Z 1

0
dt

�ðtÞ
t

¼ �ð0Þ logbþ
Z 1

0
dtc ðtÞ; (B5)

where the symbol Fp denotes the Hadamard finite part of
the integral. Therefore, the divergent part of the integral is
given by ��ð0Þ log�.

A distribution that generates the finite part of the integral
is called a pseudofunction, which we now calculate for this
example. Inserting (B3) into the finite part (B5) gives

Fp
Z 1

0
dt

�ðtÞ
t

¼ lim
�!0þ

�Z 1

�
dt

�ðtÞ
t

þ�ð0Þ log�
�
: (B6)

Since

�ð0Þ ¼
Z 1

�1
dt	ðtÞ�ðtÞ ¼ h	;�i; (B7)

it follows that the finite part can be written as an integral of
a distribution with a testing function

Fp
Z 1

0
dt

�ðtÞ
t

¼ lim
�!0þ

Z 1

�
dt

�
1

t
þ 	ðtÞ log�

�
�ðtÞ; (B8)

which defines the pseudofunction,

Pf
ðtÞ
t

¼ ðtÞ
t

þ 	ðtÞ lim
�!0þ

log�: (B9)

Therefore, the finite part of the integral generates a pseu-
dofunction (a regular distribution) that yields a finite value
when integrated with a testing function,

Z 1

�1
dtPf

ðtÞ
t

�ðtÞ ¼ Fp
Z 1

�1
dt

ðtÞ
t

�ðtÞ: (B10)

Quite generally, the value that the distribution assigns to
a testing function will have a divergent part consisting of
both power divergences and powers of logarithmically
diverging terms so that

Ið�Þ ¼ XN
p¼1

ap
�p

þ XM
p¼1

bplog
p� (B11)

for some appropriate integers N, M. This form for Ið�Þ is
related to the so-called Hadamard’s ansatz [57] and ap-
pears often in regularizing divergent quantities involving
two-point functions of a quantum field in curved spacetime
[50,53].

APPENDIX C: DIVERGENT PART OF EFFECTIVE
ACTION

In this Appendix we give the explicit calculation of the
divergent part of the Oð"Þ effective action. In Riemann
normal coordinates, yâ describes the coordinate of a point
x0 relative to the origin at x and is defined in terms of a
tetrad eâ� at x through

yâ ¼ �eâ�ðxÞ��ðx; x0Þ: (C1)

Here�ðx; x0Þ is Synge’s world function, which numerically
equals half the squared geodesic interval between x and x0,
and �� � �;� is proportional to the vector at x that is
tangent to the unique geodesic connecting x and x0. See
[60] for further details. Let us equate the points x and x0
with z�þð�Þ and z�þð�0Þ, respectively, on the leading order
(i.e., geodesic) particle worldline.
The arbitrariness of the tetrad at x implies that we may

choose

e0̂�ð�Þ ¼ �uþ�ð�Þ (C2)

if we maintain the condition eâ�e
�
b̂
¼ 	a

b. Hence, the parti-

cle’s 4-velocity is orthogonal to the components of the

tetrad in the spatial directions, eî�u
�þ ¼ 0 where î ¼

1; . . . ; d� 1. Using these relations and (C1), the
Riemann normal coordinate representation of the point
x0 ¼ z

�
þð�0Þ on the geodesic worldline is given by

yâ ¼ eâ�ð�Þu�þð�Þð�� �0Þ ¼ 	â
0̂
ð�� �0Þ (C3)

implying that

k � y ¼ kây
â ¼ �k0̂ð�� �0Þ: (C4)

With s ¼ �0 � � the divergent integral in (3.48) is

Im̂divð�Þ ¼
1

2

d� 3

d� 2
wm̂ n̂

Z 1

�1
ds
Z
C

ddk

ð2�Þd
eik

0̂s

k2

	 ½ikn̂�1=2 þ @n̂�
1=2�: (C5)

In RNC, the square root of the van Vleck determinant and
its derivative for a vacuum background spacetime is given
by

�1=2ðyðsÞÞ ¼ g�1=4ðyðsÞÞ ¼ 1þOðs4Þ (C6)

@n̂�
1=2ðyðsÞÞ ¼ Oðs3Þ; (C7)
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where the higher order terms yield contributions to (C5)
that scale as �kd�6 and do not contribute since these are
ultraviolet finite in four dimensions. Integrating (C5) over s
gives

Im̂divð�Þ ¼
i

2

d� 3

d� 2
wm̂ î

Z 1

�1
dd�1k

ð2�Þd�1

kî
k2

(C8)

from which it follows that the spatial momentum integral

vanishes identically. Therefore, (C5) vanishes and

I�divð�Þ ¼ e�m̂ð�ÞIm̂divð�Þ ¼ 0; (C9)

as claimed. No parameters are renormalized at this order in
perturbation theory since the naively divergent quantities
are actually zero.
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