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Abstract. We revisit the classical work of Caflisch [C] for compressible Euler limit
of the Boltzmann equation. By using a new L2-L∞ method, we prove the validity
of the Hilbert expansion before shock formathions in the Euler system with moderate
temperature variation.

1. Introduction

We study the Boltzmann equation

(1) ∂tF
ε + v · ∇xF

ε =
1

ε
Q(F ε, F ε)

where F ε(t, x, v) ≥ 0 is the density of particles of velocity v ∈ R3, and position x ∈ Ω =
R3 or T3, a periodic box. Throughout this paper, the collision operator takes the form

(2)

Q(F1 , F2) =

∫
R3

∫
S2

|v − u|γF1(u
′)F2(v

′)q0(θ) dµ du

−
∫

R3

∫
S2

|v − u|γF1(u)F2(v)q0(θ) dµ du ,

where u′ = u + (v − u) ·ω, v′ = v − (v − u) ·ω, cos θ = (u − v) ·ω/|v − u|, 0 ≤ γ ≤ 1
(hard potential) and 0 ≤ q0(θ) ≤ C| cos(θ)| (angular cutoff). We assume hard-sphere
interaction for Q in this paper, i.e. γ = 1. We believe the result could be generalized to
broader class of the collision kernels. We define a special distribution function µ, the local
Maxwellians by

(3) µ(t , , , v) =
ρ(t, x)

[2πT (t, x)]3/2
exp

{
− [v − u(t, x)]2

2T (t, x)

}
which are in equilibrium with the collision process, i.e.

(4) Q(µ , µ) = 0 .

ρ , u , T are the macroscopic density, bulk velocity and temperature, respectively. If ρ, u, T
are constant in x and t, µ is called a global Maxwellian.

The fluid dynamics description of a gas is given by the compressible Euler equations:

∂tρ +∇x ·(ρu) = 0,

∂t(ρu) +∇x ·(ρu⊗ u) +∇xp = 0,(5)

∂t

[
ρ(e + 1

2
|u|2)

]
+∇x ·

[
ρu(e + 1

2
|u|2)

]
+∇x ·(pu) = 0

with the equation of state p = ρRT = 2
3
ρe. These are the local conservation laws of mass,

momentum, and energy.
In [C], Caflisch showed that any smooth solution to the compressible Euler system

(5) can be used to construct the corresponding solution to the Boltzmann equation (1).
1
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The solution was founded as a Hilbert expansion with remainder which was decomposed
into low and high velocity components. After the linearized version of the decomposed
remainder equation was estimated, the nonlinear equations are solved by iteration.

However, a crucial but undesirable assumption was made in [C] that the remainder
vanishes initially. The truncated Hilbert expansion with such a remainder term can lead
to physically unreasonable negative data. This assumption was essentially needed in the
linear estimates on the remainder equation.

In this paper, we basically follow Caflisch’s approach, give a new a priori estimate.
Applying the so-called nonlinear energy method developed by the first author, especially
some new L2-L∞ interplay estimates in [G2], we can remove the assumption on the initial
data of the remainder in [C]. Furthermore, we establish the uniform L2-L∞ estimate for
the remainder. This key improvement allows us to apply the result of the current paper
to the hydrodynamic limits of the Boltzmann equation, for example, acoustic limits. This
work is under preperation currently.

The paper is organized as follows: the next section contains the statement of the main
theorem and some key lemmas. Section 3 is devoted to the proof of L2 estimate. In
Section 4, we establish the L∞ estimate for the high velocity part.

2. The Main Theorem

As in [C], we take the truncated Hilbert expansion with the form

F ε =
6∑

n=0

εnFn + ε3F ε
R,

where F0, ..., F6 are the first 6 terms of the Hilbert expansion, independent of ε, which
solve the equations

0 = Q(F0, F0),

{∂t + v · ∇x}F0 = Q(F0, F1) +Q(F1, F0),

{∂t + v · ∇x}F1 = Q(F0, F2) +Q(F2, F0) +Q(F1, F1),

...

{∂t + v · ∇x}F5 = Q(F0, F6) +Q(F6, F0) +
∑

i+j=6
1≤i≤5,1≤j≤5

Q(Fi, Fj).

Let [ρ(t, x), u(t, x), T (t, x)] be a smooth solution of the Euler equations (5) for t ∈ [0, τ ],
x ∈ Ω and let

F0 = µ(t, x, v)

from the local Maxwellian µ(t, x, v) from ρ, u and T as in (3). We further construct
smooth F1(t, x, v), F2(t, x, v), ...F6(t, x, v) for 0 ≤ t ≤ τ. For more detailed discussion, see
[C]. Now we put F ε =

∑5
n=0 εnFn+ε3F ε

R (notice we drop F6) into the Boltzmann equation
(1) to derive the equation of the remainder. Recall that in [C], the remainder F ε

R satisfies

∂tF
ε
R + v · ∇xF

ε
R −

1

ε
{Q(µ, F ε

R) +Q(F ε
R, µ)}(6)

= ε2Q(F ε
R, F ε

R) + {Q(F1 + εF2 + ε2F3, F
ε
R) +Q(F ε

R, F1 + εF2 + ε2F3)}+ ε2A
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where

(7) A = −{∂t + v · ∇x}F5 +
∑

i+j≥6,1≤i,j≤5

εi+j−6Q(Fi, Fj).

Note that in the above equation, we drop out the higher order term ε3{Q(F4 +εF5 , F ε
R)+

Q(F ε
R , F4 + εF5)}. We define the linearized Boltzmann operator at µ as

Lg = − 1
√

µ
{Q(

√
µg, µ) +Q(µ,

√
µg)} = ν(µ)g + Kµg,

Γ(g1, g2) =
1
√

µ
Q(
√

µg1,
√

µg2).

We use 〈· , ·〉 to denote the standard L2 inner product in R3
v, while we use (· , ·) to denote

L2 inner product in Ω×R3 with corresponding L2 norm ‖ · ‖2. We denote the standard
L∞ norm in Ω×R3 by ‖ · ‖∞. We also define a weighted L2 norm

‖g‖2
ν =

∫
Ω×R3

g2(x , v)ν(v) dx dv ,

where the collision frequency ν(v) ≡ ν(µ)(v) is defined as

ν(µ) =

∫
R3

|v − v′|µ(v′) dv′ .

Theorem 1. Assume that the solution to the Euler equations (ρ(t, x), u(t, x), T (t, x)) is
smooth and ρ(t, x) has a positive lower bound for 0 ≤ t ≤ τ . Furthermore, assume that
the temperature T (t, x) satisfies the condition:

(8) TM < max
t∈[0,τ ],x∈Ω

T (t, x) < 2TM ,

where TM = min
t∈[0,τ ],x∈Ω

T (t, x). Let

F ε(0, x, v) = µ(0, x, v) +
5∑

n=1

εnFn(0, x, v) + ε3F ε
R(0, x, v) ≥ 0.

Then there is an ε0 > 0 such that for 0 ≤ ε ≤ ε0, and for any β ≥ 7
2
, there exists a

constant Cτ (µ, F0, F1, ..F6) such that

sup
0≤t≤τ

ε
3
2

∥∥∥√µ−1(1 + |v|2)βF ε
R(t)

∥∥∥
∞

+ sup
0≤t≤τ

∥∥∥√µ−1F ε
R(t)

∥∥∥
2

≤ Cτ

{
ε

3
2

∥∥∥√µ−1(1 + |v|2)βF ε
R(0)

∥∥∥
∞

+
∥∥∥√µ−1F ε

R(0)
∥∥∥

2
+ 1
}

.

We give a few remarks on the Theorem 1: First, based on the a priori estimates given
in Theorem 1, following the arguments in [C], we can immediately derive the compressible
Euler limit as well as the existence of the solutions to the Boltzmann equation (1). We
skip the details here. Second, we make the assumption (8) on the temperature, which
seems restrictive. However, one of the main applications of this new uniform L2-L∞

interplay estimate is to derive the hydrodynamic limits from the Boltzmann equation
to fluid dynamics which is in the regime close to constant states. For those cases, the
condition (8) is easy to be achieved. Third, as we mentioned in the introduction, the main
new ingredient of the theorem is the removal of the crucial but undesirable assumption
F ε

R(0, x, v) ≡ 0 in [C].
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The solutions to the Boltzmann equation are constructed near the local Maxwellian of
the compressible Euler system. So it is natural to rewrite the remainder

(9) F ε
R =

√
µf ε.

Because µ is a local Maxwellian, the equation of the remainder includes the new term√
µ−1(∂t + v·∇x)

√
µf ε, thus at large velocities, the distribution functions may be growing

rapidly due to streaming. To remedy this difficulty, following Caflisch, we introduce a
global Maxwellian

µM =
1

(2πTM)3/2
exp

{
− |v|2

2TM

}
.

Note that under the assumption (8), there exist two constants c1 , c2 such that for all
(t , x , v) ∈ [0, τ ]× Ω×R3, the following holds

c1µ ≤ µM ≤ c2µ.

We further define

(10) F ε
R = {1 + |v|2}−β√µMhε ≡ 1

w(v)

√
µMhε

for some β ≥ 7/2. It then suffices to estimate ‖f ε(t)‖2 and ‖hε(t)‖∞ to conclude the
theorem.

Let Pg be the L2
v projection with respect to [

√
µ, v

√
µ, |v|2√µ]. We have that there

exists a positive number δ0 > 0 such that

(11) 〈Lg, g〉 ≥ δ0‖{ I−P}g‖2
ν .

The proof of Theorem 1 relies on an interplay between L2 and L∞ estimates for the
Boltzmann equation [G2]: L2 norm of f ε is controlled by the L∞ norm of the high
velocity part and vice versa. These uniform L2-L∞ estimates are stated in the following
two lemmas:

Lemma 2. (L2-Estimate): Let f ε , hε be defined in (9) and (10), and δ0 > 0 be as
in the coercivity estimate (11). Then there exists ε0 > 0 and a positive constant C =
C(µ , F0, F1 , · · · , F6) > 0, such that for all ε < ε0

(12)
d

dt
‖f ε‖2

2 +
δ0

2ε
‖{I−P}f ε‖2

ν ≤ C{
√

ε‖ε3/2hε‖∞ + 1}(‖f ε‖2
2 + ‖f ε‖2) .

Lemma 3. (L∞-Estimate): Let f ε , hε and δ0 > 0 be the same as in Lemma 2. Then
there exist ε0 > 0 and a positive constant C = C(µ , F0, F1 , · · · , F6) > 0, such that for all
ε < ε0

(13) sup
0≤s≤τ

{ε3/2‖hε(s)‖∞} ≤ C{‖ε3/2h0‖∞ + sup
0≤s≤τ

‖f ε(s)‖2 + ε7/2}.

The proof of Theorem 1 is an easy consequence of Lemmas 2 and 3.

Proof. of Theorem 1:

d

dt
‖f ε‖2

2 +
δ0

2ε
‖{I−P}f ε‖2

ν

≤C

{√
ε

[
‖ε3/2h0‖∞ + sup

0≤s≤τ
‖f ε(s)‖2 + ε7/2

]
+ 1

}(
‖f ε‖2

2 + ‖f ε‖2

)
.
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A simple Gronwall inequality yields

‖f ε(t)‖2 + 1 ≤ (‖f ε(0)‖2 + 1)eCt{2+
√

ε‖ε3/2h0‖∞+
√

ε sup0≤s≤τ ‖fε(s)‖2} .

For ε small, using the Taylor expansion of the exponential function in the above inequality,
we have

(14) ‖f ε‖2 ≤ C1(‖f ε(0)‖2 + 1)

{
1 +

√
ε‖ε3/2h0‖∞ +

√
ε sup

0≤s≤τ
‖f ε(s)‖2

}
.

For t ≤ τ, letting ε small, we conclude the proof of our main theorem as:

sup
0≤t≤τ

‖f ε(t)‖2 ≤ Cτ{1 + ‖f ε(0)‖2 + ‖ε3/2h0‖∞}.

�

3. L2 Estimate For f ε

Proof. of Lemma 2: In terms of f ε, we obtain

∂tf
ε + v · ∇xf

ε +
1

ε
Lf ε

=
{∂t + v · ∇x}

√
µ

√
µ

f ε + ε2Γ(f ε, f ε) + Γ(
F1 + εF2 + ε2F3√

µ
, f ε)

+ Γ(f ε,
F1 + εF2 + ε2F3√

µ
) + ε2Ā

where Ā = −{∂t+v·∇x}F5√
µ

+
∑

i+j≥6,i≤5,j≤5 εi+j−6Γ( Fi√
µ
,

Fj√
µ
).

Taking L2 inner product with f ε on both sides, since
{∂t+v·∇x}

√
µ

√
µ

is a cubic polynomial

in v, we have, for any κ > 0,〈
{∂t + v · ∇x}

√
µ

√
µ

f ε, f ε

〉
=

∫
|v|≥ κ√

ε

+

∫
|v|≤ κ√

ε

≤ {‖∇xρ‖2 + ‖∇xu‖2 + ‖∇xT‖2} × ‖{1 + |v|2}3/2f ε1|v|≥ κ√
ε
‖∞ × ‖f ε‖2

+{‖∇xρ‖∞ + ‖∇xu‖∞ + ‖∇xT‖∞} × ‖{1 + |v|2}3/4f ε1|v|≤ κ√
ε
‖2

2

≤ Cκε
2‖hε‖∞‖f ε‖2 + C‖{1 + |v|2}3/4Pf ε1|v|≤ κ√

ε
‖2

2 + C‖{1 + |v|2}3/4{I−P}f ε1|v|≤ κ√
ε
‖2

2

≤ Cκε
2‖hε‖∞‖f ε‖2 + C‖f ε‖2

2 +
Cκ2

ε
‖{I−P}f ε‖2

ν .

Here we have used the fact {1 + |v|2}3/2f ε ≤ {1 + |v|2}−2hε, for β ≥ 7/2 in (10), and the
fact µM < Cµ, under the assumption (8).

By Lemma 2.3 in [G1] and (10):

ε2〈Γ(f ε, f ε), f ε〉 ≤ Cε2{‖ν(µ)f ε‖∞}‖f ε‖2
2 ≤ C

√
ε‖ε3/2hε‖∞‖f ε‖2

2.
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Similarly, by Lemma 2.3 in [G1] and (10):,

〈Γ(
F1 + εF2 + ε2F3√

µ
, f ε), f ε〉+ 〈Γ(f ε,

F1 + εF2 + ε2F3√
µ

), f ε〉

≤ C‖f ε‖2
ν‖
∫

R3

F1 + εF2 + ε2F3√
µ

dv‖∞

≤ C{‖Pf ε‖2
ν + ‖{I−P}f ε‖2

ν}
≤ C{‖f ε‖2

2 + ‖{I−P}f ε‖2
ν}.

Clearly, 〈ε2Ā, f ε〉 ≤ C‖f ε‖2. We therefore conclude our lemma by choosing κ small. �

4. L∞ Estimate For hε

Proof. of Lemma 3: As in [C], we define

LMg = − 1
√

µM

{Q(µ,
√

µMg) +Q(
√

µMg, µ)} = {ν(µ) + KM}g.

Letting KM,wg ≡ wKM( g
w
), from (6) and (10), we obtain

∂th
ε + v · ∇xh

ε +
ν(µ)

ε
hε +

1

ε
KM,whε

=
ε2w
√

µM

Q(
hε√µM

w
,
hε√µM

w
) +

5∑
i=1

εi−1 w
√

µM

{Q(Fi,
hε√µM

w
) +Q(

hε√µM

w
, Fi)}+ ε2Ã,

where Ã = −w{∂t+v·∇x}F5√
µM

+
∑

i+j≥6,i≤5,j≤5 εi+j−6 w√
µM
Q(Fi, Fj).

By Duhamel’s principle, we have hε(t, x, v) =

exp{−νt

ε
}hε(0, x− vt, v)−

∫ t

0

exp{−ν(t− s)

ε
}
(

1

ε
KM,whε

)
(s, x− v(t− s), v)ds

+

∫ t

0

exp{−ν(t− s)

ε
}
(

ε2w
√

µM

Q(
hε√µM

w
,
hε√µM

w
)

)
(s, x− v(t− s), v)ds

+

∫ t

0

exp{−ν(t− s)

ε
}

(
5∑

i=1

εi−1 w
√

µM

Q(Fi,
hε√µM

w
)

)
(s, x− v(t− s), v)ds

+

∫ t

0

exp{−ν(t− s)

ε
}

(
5∑

i=1

εi−1 w
√

µM

Q(
hε√µM

w
, Fi)

)
(s, x− v(t− s), v)ds

+

∫ t

0

exp{−ν(t− s)

ε
}ε2Ã(s, x− v(t− s), v)ds.(15)

Since | w√
µM
Q(

hε√µM

w
,

hε√µM

w
)| ≤ C{ν(µ)|hε(v)| + ‖hε‖∞}‖hε‖∞ from Lemma 9 of [G2],

and since

ν(µ) = c

∫
|v − u|µdu v |v|ρ(t, x) v νM(v),∫ t

0

exp{−ν(µ)(t− s)

ε
}ν(µ)ds ≤ c

∫ t

0

exp{−cνM(t− s)

ε
}νMds = O(ε),
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the second line in (15) is bounded by

Cε2

∫ t

0

exp{−ν(µ)(t− s)

ε
}C{ν(µ)|hε(s, x− v(t− s), v)|+ ‖hε(s)‖∞}‖hε(s)‖∞ds(16)

≤ Cε3 sup
0≤s≤t

‖hε(s)‖2
∞.

From Lemma 9 from [G2] again,

5∑
i=1

εi−1 w
√

µM

{Q(Fi,
hε√µM

w
) +Q(

hε√µM

w
, Fi)} ≤ νM(v)‖hε‖∞‖

w
√

µM

5∑
i=1

εi−1Fi‖∞,

so that the third and fourth lines in (15) are bounded by

(17) C

∫ t

0

exp{−ν(µ)(t− s)

ε
}νM(v)‖hε(s)‖∞ds ≤ Cε sup

0≤s≤t
‖hε(s)‖∞.

The last line in (15) is clearly bounded by Cε3.
We shall mainly concentrate on the second term in the right hand side of (15). Let

lM(v, v′) be the correspoding kernel associated with KM in [C]. We have

(18) |lM(v, v′)| ≤ C{|v − v′|+ 1

|v − v′|
} exp{−c|v − v′|2 − c

‖v|2 − |v′|2|2

|v − v′|2
}.

Since ν(µ) v νM , we bound the second term by

1

ε

∫ t

0

exp{−ν(t− s)

ε
}
∫

R3

|lM,w(v, v′)hε(s, x− v(t− s), v′)|dv′ds,

where lM,w = w(v)
w(v′)

lM . We now use (15) again to evaluate hε. By (16) and (17), we can

bound the above by

1

ε

∫ t

0

exp{−ν(t− s)

ε
} sup

v

∫
R3

|lM,w(v, v′)|dv′ exp{−νs

ε
}hε(0, x− v(t− s)− v′s, v′)|ds

+
1

ε2

∫ t

0

exp{−ν(t− s)

ε
}
∫

R3×R3

|lM,w(v, v′)lM,w(v′, v′′)

×|
∫ s

0

exp{−ν(v′)(s− s1)

ε
}hε(s1, x− v(t− s)− v′(s− s1), v

′′)|dv′dv′′ds1ds

+
C

ε

∫ t

0

exp{−ν(t− s)

ε
}ds× sup

v

∫
R3

|lM,w(v, v′)|dv′ × {ε3 sup
0≤s≤t

‖hε(s)‖2
∞}

+
C

ε

∫ t

0

exp{−ν(t− s)

ε
}ds× sup

v

∫
R3

|lM,w(v, v′)|dv′ × {ε sup
0≤s≤t

‖hε(s)‖∞}

+
C

ε

∫ t

0

exp{−ν(t− s)

ε
}ds× sup

v

∫
R3

|lM,w(v, v′)|dv′ × {ε2 sup
0≤s≤t

‖Ã‖∞}.(19)

Since supv

∫
R3 |lM,w(v, v′)|dv′ < +∞ from Lemma 7 of [G2], there is an upper bound

except for the seond term as

C{‖hε(0)‖∞ + ε3 sup
0≤s≤t

‖hε(s)‖2
∞ + ε sup

0≤s≤t
‖hε(s)‖∞ + Cε3}.

We now concentrate on the second term in (19), which will be estimated as in the proof
of Theorem 20 in [G2].
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CASE 1: For |v| ≥ N. By Lemma 7 in [G2],∫ ∫
lM,w(v, v′)lM,w(v′, v′′)dv′dv′′ ≤ C

1 + |v|
≤ C

N
,

and thus we have the following bound

C

ε2N

∫ t

0

∫ s

0

exp{−ν(v)(t− s)

ε
} exp{−ν(v′)(s− s1)

ε
}‖hε(s1)‖∞ds1ds ≤ C

N
sup

0≤s≤t
‖hε(s)‖∞.

CASE 2: For |v| ≤ N, |v′| ≥ 2N, or |v′| ≤ 2N , |v′′| ≥ 3N. Notice that we have either
|v′ − v| ≥ N or |v′ − v′′| ≥ N, and either one of the following is valid correspondingly for
some η > 0:
(20)

|lM,w(v, v′)| ≤ e−
η
8
N2|lM,w(v, v′)e

η
8
|v−v′|2|, |lM,w(v′, v′′)| ≤ e−

η
8
N2|lM,w(v′, v′′)e

η
8
|v′−v′′|2|.

From Lemma 7 in [G2], both
∫
|lM,w(v, v′)e

η
8
|v−v′|2| and

∫
|lM,w(v′, v′′)e

η
8
|v′−v′′|2| are still

finite. We use (20) to combine the cases of |v′ − v| ≥ N or |v′ − v′′| ≥ N as:∫ t

0

∫ s

0

{∫
|v|≤N,|v′|≥2N,

+

∫
|v′|≤2N,|v′′|≥3N

}
≤ C

∫ t

0

∫ s

0

{∫
|v|≤N,|v′|≥2N,

|lM,w(v, v′)|dv′ + sup
v′

∫
|v′|≤2N,|v′′|≥3N

|lM,w(v′, v′′)|dv′′
}

≤ Cη

ε2
e−

η
8
N2

∫ t

0

∫ s

0

exp{−ν(v)(t− s)

ε
} exp{−ν(v′)(s− s1)

ε
}‖hε(s1)‖∞ds1ds

≤ Cηe
− η

8
N2

sup
0≤s≤t

{‖hε(s)‖∞}.(21)

CASE 3: s− s1 ≤ εκ, for κ > 0 small. We bound the last term in (19) by

1

ε2

∫ t

0

∫ s

s−εκ

C exp{−ν(v)(t− s)

ε
} exp{−ν(v′)(s− s1)

ε
}‖hε(s1)‖∞ds1ds

≤ C sup
0≤s≤t

{‖hε(s)‖∞} ×
1

ε

∫ t

0

exp{−ν(v)(t− s)

ε
}ds×

∫ s

s−εκ

1

ε
ds1

≤ κC sup
0≤s≤t

{‖hε(s)‖∞}.(22)

CASE 4. s − s1 ≥ ε, and |v| ≤ N, |v′| ≤ 2N, |v′′| ≤ 3N. This is the last remaining
case because if |v′| > 2N, it is included in Case 2; while if |v′′| > 3N, either |v′| ≤ 2N or
|v′| ≥ 2N are also included in Case 2. We now can bound the second term in (19) by

C

∫ t

0

∫
B

∫ s−εκ

0

e−
ν(v)(t−s)

ε e−
ν(v′)(s−s1)

ε |lM,w(v, v′)lM,w(v′, v′′)hε(s1, x1 − (s− s1)v
′, v′′)|

where B = {|v′| ≤ 2N, |v′′| ≤ 3N}. By (18), lM,w(v, v′) has possible integrable singularity
of 1

|v−v′| , we can choose lN(v, v′) smooth with compact support such that

(23) sup
|p|≤3N

∫
|v′|≤3N

|lN(p, v′)− lM,w(p, v′)|dv′ ≤ 1

N
.
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Splitting

lM,w(v, v′)lM,w(v′, v′′) = {lM,w(v, v′)− lN(v, v′)}lM,w(v′, v′′)

+{lM,w(v′, v′′)− lN(v′, v′′)}lN(v, v′) + lN(v, v′)lN(v′, v′′),

we can use such an approximation (23) to bound the above s1, s integration by

C

N
sup

0≤s≤t
{‖hε(s)‖∞} ×

{
sup

|v′|≤2N

∫
|lM,w(v′, v′′)|dv′′ + sup

|v|≤2N

∫
|lN(v, v′)|dv′}

}
(24)

+C

∫ t

0

∫
B

∫ s−εκ

0

e−
ν(v)(t−s)

ε e−
ν(v′)(s−s1)

ε |lN(v, v′)lN(v′, v′′)|hε(s1, x1 − (s− s1)v
′, v′′)|.

Since lN(v, v′)lN(v′, v′′) is bounded, we first integrate over v′ to get

CN

∫
|v′|≤2N

|hε(s1, x1 − (s− s1)v
′, v′′)|dv′

≤ CN

{∫
|v′|≤2N

1Ω(x1 − (s− s1)v
′)|hε(s1, x1 − (s− s1)v

′, v′′)|2dv′
}1/2

≤ CN

κ3/2ε3/2

{∫
|y−x1|≤(s−s1)3N

|hε(s1, y, v′′)|2dy

}1/2

≤ CN{(s− s1)
3/2 + 1}

κ3/2ε3/2

{∫
Ω

|hε(s1, y, v′′)|2dy

}1/2

.

Here we have made a change of variable y = x1−(s−s1)v
′, and for s−s1 ≥ κε, | dy

dv′
| ≥ 1

κ3ε3 .

In the case of Ω = R3, the factor {(s − s1)
3/2 + 1} is not needed. By (10) and (9), we

then further control the last term in (24) by:

CN,κ

ε7/2

∫ t

0

∫ s−κε

0

e−
ν(v)(t−s)

ε e−
ν(v′)(s−s1)

ε {(s− s1)
3/2 + 1}

∫
|v′′|≤3N

{∫
Ω

|hε(s1, y, v′′)|2dy

}1/2

dv′′ds1ds

≤ CN,κ

ε7/2

∫ t

0

∫ s−κε

0

e−
ν(v)(t−s)

ε e−
ν(v′)(s−s1)

ε {(s− s1)
3/2 + 1}

{∫
|v′′|≤3N

∫
Ω

|f ε(s1, y, v′′)|2dydv′′
}1/2

ds1ds

≤ CN,κ

ε3/2
sup

0≤s≤t
‖f ε(s)‖2.

In summary, we have established, for any κ > 0 and large N > 0,

sup
0≤s≤t

{ε3/2‖hε(s)‖∞} ≤ {κ +
Cκ

N
} sup

0≤s≤t
{ε3/2‖hε(s)‖∞}+ ε7/2C + Cε,N‖ε3/2h0‖∞

+
√

εC sup
0≤s≤t

{ε3/2‖hε(s)‖∞}2 + CN,κ sup
0≤s≤t

‖f ε(s)‖2.

For sufficiently small ε > 0, first choosing κ small, then N sufficiently large so that
{κ + Cκ

N
} < 1

2
,

sup
0≤s≤τ

{ε3/2‖hε(s)‖∞} ≤ C{‖ε3/2h0‖∞ + sup
0≤s≤τ

‖f ε(s)‖2 + ε7/2}.

and we conclude our proof. �



10 Y. GUO, J. JANG, AND N. JIANG

References

[C] Caflisch, R. The fluid dynamic limit of the nonlinear Boltzmann equation. Comm. Pure
Appl. Math., Vol XXXIII, 651-666 (1980).

[G1] Guo, Y. The Vlasov-Poisson-Boltzmann system near Maxwellians. Comm. Pure Appl.
Math., Vol LV, 1104-1135 (2002).

[G2] Guo, Y. Decay and continuity of Boltzmann equation in bounded domains. Preprint 2008.

Division of Applied Mathematics, Brown University
E-mail address: guoy@cfm.brown.edu

Courant Institute of Mathemtical Sciences
E-mail address: juhijang@cims.nyu.edu

Courant Institute of Mathemtical Sciences
E-mail address: njiang@cims.nyu.edu


