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Abstract

The Vicsek model is a very popular individual based model which de-
scribes collective behavior among animal societies. A large-scale limit of the
Vicsek model has been derived in [16] leading to a macroscopic version of
the model. In this work, we want to numerically validate this Macroscopic
Vicsek (MV) model. However, there is no standard theory to study analyti-
cally or numerically the MV model since it is a non-conservative hyperbolic
system with a geometric constraint. Different formulations of the MV model
are presented and lead to several non-equivalent numerical schemes. In par-
ticular, we derive a numerical scheme, denoted by the splitting method, based
on a relaxation of the geometric constraint. To test the veracity of these
schemes, we compare the simulations of the macroscopic and microscopic
models with each other. The numerical simulations reveal that the micro-
scopic and macroscopic models are in good agreement, provided that we use
the splitting method to simulate the MV model. This result confirms the
relevance of the macroscopic model but it also calls for a better theoretical
understanding of this type of equations.
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1 Introduction

The modeling of swarming behavior has received considerable attention in recent
years. There are currently two types of approach which are used to model col-
lective behavior. First, there is a wide range of “microscopic” models, also called
individual based models in biology, which describe the motion of each individual
separately. For example, this type of model is used in the modeling of a flock of
birds [3] or a school of fish [2, 11, 26, 32]. Since collective behavior in a natural
environment can concern up to several million individuals, another type of model
called “macroscopic” model is also in use [10,30]. In this kind of model, the swarm
is described by macroscopic variables (e.g. mean density, mean velocity). On the
one hand, macroscopic models constitute powerful analytical tools to study the dy-
namics at large scales [16–18,33]. On the other hand, the related numerical schemes
are computationally much more efficient compared with particle simulations of a
large number of interacting agents. The price to pay is that finding accurate nu-
merical schemes for a macroscopic model requires much more work compared to a
microscopic model.

Among all the individual based models used in biology, the so-called Vicsek
model [35] has received particular attention [4]. In this model, individuals are mov-
ing at a constant speed and tend to align with their neighbors. From this simple
local rule emerges a collective coherent motion. Due to its simplicity, this model
has been used to describe several phenomena, such as the motion of locusts [6] or
the motion of birds [3]. From a theoretical point of view, many questions remain
open about it. A first field of research concerns phase transitions within the model
depending on the level of noise [1,8,14,15,22,31,35]. Another question arises from
the long time dynamics of the model [12, 13, 23]: does the system convergence to
a stationary state? To study the dynamics of the Vicsek model at large scales, it
is useful to derive a macroscopic limit of this model. For this reason, a macro-
scopic limit, called Macroscopic Vicsek (MV) model, has been derived in [16]. The
macroscopic model is obtained from a rigorous perturbation theory of the original
Vicsek model. However, to make this macroscopic model effective, we need to know
how to simulate this model. Only then it will be possible to explore the large scale
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behavior of the Vicsek model from another point of view.
The MV model presents several characteristics which make its numerical simu-

lation challenging. First, it is a non-conservative hyperbolic system, and secondly,
it involves a geometric constraint. These are the consequences at the macroscopic
level of two properties of the microscopic model: the total momentum is not con-
served by the particle dynamics and the speed of the particles is constant. We
would like to emphasize that these two properties are not specific to the Vicsek
model. Indeed, many models of self-propelled particles do not preserve the total
momentum. The assumption that particles are moving at a constant speed is also
a usual assumption in the modeling of collective displacements [11, 21, 35]. Up to
our knowledge, the theory of non-conservative hyperbolic systems with geometric
constraint is almost empty. Non-conservative systems have been studied in various
literature [5, 7, 9, 25, 27] but none of them involve geometric constraints. There-
fore, since a theoretical framework for the MV model is not available, how can
we simulate such a model? More importantly, how can we validate the numerical
results?

In this work, we propose several approaches to solve numerically the MV model.
First, we notice in 1D that the MV model can be transformed into a conservative
system. This formulation enables the use of the standard hyperbolic theory to sim-
ulate the system. This yields our first numerical scheme called the conservative
method. Moreover, we use this conservative formulation to find analytically shock
wave solutions. But manipulation of conservation laws can be delicate: the equiv-
alence between the conservative formulation and the MV model is only valid for
smooth functions. There is no guarantee that the shock waves found using the con-
servative formulation are also solutions to the original MV model. For this reason,
it is essential to develop other approaches. We propose a second formulation of the
MV model where the geometric constraint is replaced by a relaxation operator. In
this formulation, the MV model is seen as the relaxation limit of an unconstrained
conservative system. This formulation leads naturally to a numerical scheme based
on a splitting between the conservative part of the equation and the relaxation part.
This scheme is referred to as the splitting method. For comparison purposes, two
simple discretizations of the MV model are also introduced: the upwind scheme and
the semi-conservative scheme.

To test our four numerical schemes, we simulate the MV model with several ini-
tial conditions. To begin, we use an initial condition where the theoretical solution
is given by a rarefaction wave. All four schemes effectively capture the rarefaction
wave. In contrast, when we use an initial condition where the theoretical solution
should be a shock wave, the four schemes are in complete disagreement. To deter-
mine the “correct solution”, we run particle simulations of the microscopic model.
For instance, when the number of particles per domain of interaction is high, micro-
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scopic and macroscopic models are close to each other. The numerical simulations
reveal, unexpectedly, that only the splitting method is in good agreement with the
microscopic simulations. This is even clearer when we start our initial condition
with a contact discontinuity. The solution given by the conservative method is
simply a convection of the initial condition whereas the splitting method and the
particle simulations agree on a different and more complex solution.

These numerical results answer two questions at once. First, the MV model
describes accurately the microscopic model in a dense regime of particles. Secondly,
the correct formulation of the MV model is given by the limit of a conservative
model with a stiff relaxation term. But these theoretical and numerical studies of
the MV model also highlight the specificity of non-conservative hyperbolic models
with geometric constraints. More theoretical work is necessary to understand why
the splitting method matches the microscopic model and why other methods do
not. An extension of the theory developed in [9] to non-conservative relaxed models
would be particularly desirable.

The outline of the paper is as follows: we introduce the microscopic and macro-
scopic Vicsek models in section 2. Next, we analyze the MV model and give two
different formulations of the model in section 3. We develop different numerical
schemes based on these formulations in section 4 and solve numerically different
Riemann problems. In section 5, we compare the simulations of the microscopic
model with those of the macroscopic model. Finally, a conclusion is drawn in sec-
tion 6.

2 Presentation of the Vicsek and Macroscopic

Vicsek models

In this section, we briefly present the Vicsek model at the microscopic and macro-
scopic scale. We refer the reader interested in the derivation of the macroscopic
model to [16].

At the particle level, the Vicsek model describes the motion of particles which
tend to align with their neighbors. Each particle is represented by a position vector
xk and a velocity ωk with a constant speed (|ωk| = 1). To simplify, we suppose that
the particles move in a plane, thus xk ∈ R2 and ωk ∈ S1. The Vicsek model at the
microscopic level is given by the following equations (in dimensionless variables):

dxk

dt
= ωk, (2.1)

dωk = (Id − ωk ⊗ ωk)(ωk dt+
√

2d dBt), (2.2)

where Id is the identity matrix and the symbol ⊗ denotes the tensor product of
vectors. Here, d is the intensity of noise, Bt is the Brownian motion and ωk is the
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direction of the mean velocity around the particle k,

ωk =
Jk

|Jk| , Jk =
∑

j, |xj−xk|≤R

ωj, (2.3)

where R defines the radius of the interaction region. Taken together, equations
(2.2) and (2.3) express the tendency of particles to move in the same direction as
their neighbors. The operator (Id − ωk ⊗ ωk) is the orthogonal projector onto the
plane perpendicular to ωk. It ensures that the speed of particles remains constant.
This model is already a modification of the original Vicsek model [35] which is a
time-discrete algorithm.

The Macroscopic Vicsek model (MV) describes the evolution of two macroscopic
quantities: the density of particles ρ and the direction of the flow Ω. The evolution
of ρ and Ω is governed by the system:

∂tρ+ ∇x · (c1ρΩ) = 0, (2.4)

ρ
(
∂tΩ + c2(Ω · ∇x)Ω

)
+ λ (Id − Ω ⊗ Ω)∇xρ = 0, (2.5)

|Ω| = 1, (2.6)

where c1, c2 and λ are constants depending on the noise parameter d. The expres-
sions of c1, c2 and λ are given in appendix A. In contrast to the standard Euler
system, the two convection coefficients c1 and c2 are different. The other specificity
of this model is the constraint |Ω| = 1. The operator (Id − Ω ⊗ Ω) ensures that
this constraint is propagated provided that it is true initially. We note that vortex
configurations are special stationary solutions of this model in two dimensions (see
appendix B). Up to our knowledge, this is the first swarming model that has such
analytical solutions.

3 The Macroscopic Vicsek model

To devise numerical schemes for the MV model, we present several formulations of
this model that will suggest different numerical methods. As we will see, the MV
model is strictly hyperbolic but it is also a non-conservative system, and therefore
classical finite volume schemes are not necessarily well-adapted. For this reason, we
introduce two “conservative” formulations of the MV model that will lead to more
robust numerical schemes.

3.1 Theoretical analysis of the macroscopic model

Event though the MV model is not a classical system of conservation laws, some
general properties can be obtained analytically. In particular, we deduce explicit
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one dimensional solutions of the system (the so-called rarefaction waves). These
solutions will be used later to test the accuracy of the numerical schemes.

To study the system (2.4)-(2.6), it is more convenient to use the rescaling x′ =
x/c1. Thus equations (2.4)-(2.6) read:

∂tρ+ ∇x′ · (ρΩ) = 0, (3.1)
ρ (∂tΩ + c′(Ω · ∇x′)Ω) + λ′ (Id − Ω ⊗ Ω)∇x′ρ = 0, (3.2)
|Ω| = 1, (3.3)

with c′ = c2/c1 and λ′ = λ/c1. For the remainder of the paper, we will drop the
primes for clarity. We refer to appendix A for the computation of c and λ. We only
mention that the coefficients satisfy the inequalities (figure 14):

0 < c < 1 and λ > 0, for all d > 0. (3.4)

In two dimensions, we can parametrize Ω using polar coordinates: Ω = (cos θ, sin θ).
In these coordinates, the system (3.1)-(3.3) becomes:

∂tρ+ ∂x (ρ cos θ) + ∂y (ρ sin θ) = 0, (3.5)

∂tθ + c cos θ∂xθ + c sin θ∂yθ + λ

(
−sin θ

ρ
∂xρ+

cos θ
ρ

∂yρ

)
= 0. (3.6)

In this section, we suppose that ρ and θ are independent of y, meaning that we are
looking at waves which propagate in the x-direction. Under this assumption, the
system (3.5),(3.6) reads:

∂t

(
ρ
θ

)
+ A(ρ, θ) ∂x

(
ρ
θ

)
= 0, (3.7)

with

A(ρ, θ) =

[
cos θ −ρ sin θ

−λ sin θ
ρ

c cos θ

]
. (3.8)

The characteristic velocities of this system are the eigenvalues of the matrix A(ρ, θ)
explicitly given by

γ1,2 =
1
2

[
(c+ 1) cos θ ±

√
(c− 1)2 cos2 θ + 4λ sin2 θ

]
, (3.9)

with γ1 < γ2. It is to be noted that the two eigenvalues γ1 and γ2 depend only on
the angle θ (see figure 1). Since γ1 and γ2 are always real and distinct, the system
(3.7) is strictly hyperbolic. A possible choice of right eigenvectors of A(ρ, θ) is

~r1 =

(
ρ sin θ

cos θ − γ1

)
and ~r2 =

(
c cos θ − γ2

λ sin θ
ρ

)
. (3.10)
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The two fields are genuinely nonlinear, i.e. satisfy ∇γp · ~rp 6= 0 for p = 1 and 2,
except at θ = 0, θ = π and at the extrema values of γp(θ) which solve:

tan2 θ =
1

4λ

[
((c− 1)2 − 4λ)2

(c+ 1)2
− (c− 1)2

]
.
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Figure 1: The two eigenvalues γ1 and γ2 of the matrix A(ρ, θ) (3.8) depending on θ
(d = 1 in this graph). For each curve, there exists a unique extremum (θ1 and θ2)
which corresponds to a linearly degenerate set of the system (e.g. ∇γp · ~rp = 0).

We can exhibit the rarefaction waves of the MV model that is a continuous
self-similar solution (ρ(x/t), θ(x/t)). With this aim in mind, we first compute the
Riemann invariants of the system (3.7), which means that we have to find the
solutions of the equations:

dρ

ρ sin θ
=

dθ

cos θ − γ1
and

dρ

c cos θ − γ2
=

ρdθ

λ sin θ
.

Integrating these equations, we find the Riemann invariants I1 and I2:

I1 = ln ρ−
∫ θ

θ0

sin s
cos s− γ1(s)

ds , I2 = ln ρ−
∫ θ

θ0

c cos s− γ2(s)
λ sin s

ds.

From the Riemann invariants I1 and I2, we deduce the integral curves of the system
denoted by R1 and R2. These curves are collinear to the vector fields ~r1 and ~r2

respectively and they are constant along the Riemann invariants. We deduce that
the integral curves starting from (ρℓ, θℓ) are given by

ρ1(θ) = ρℓ exp

(∫ θ

θℓ

sin s
cos s− γ1(s)

ds

)
, (3.11)

ρ2(θ) = ρℓ exp

(∫ θ

θℓ

c cos s− γ2(s)
λ sin s

ds

)
. (3.12)
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From the integral curves R1 and R2, we deduce the rarefaction waves of our system
(3.7) (see [28, 29, 34]).

3.2 A conservative form of the MV model in one dimension

The MV model is not conservative thus making its analysis both theoretically and
numerically difficult. However, in the present case, a conservative formulation of
the MV model can be found in one dimension. It is indeed an easy matter to see
that the system (3.7) can be rewritten as:

|sin θ|
[
∂t

(
ρ

f1(θ)

)
+ ∂x

(
ρ cos θ

cf2(θ) − λ ln(ρ)

)]
= 0, (3.13)

with

f1(θ) = ln

∣∣∣∣∣tan
θ

2

∣∣∣∣∣ = ln

∣∣∣∣∣
sin θ

cos θ + 1

∣∣∣∣∣ , (3.14)

f2(θ) = ln |sin θ| . (3.15)

Thus, in domains where θ satisfies sin θ 6= 0, the system (3.7) is equivalent to the
conservative system:

∂t

(
ρ

f1(θ)

)
+ ∂x

(
ρ cos θ

cf2(θ) − λ ln(ρ)

)
= 0. (3.16)

This formulation will be used in the next section to define a numerical scheme in
the “conservative variables” (ρ, f1(θ)).

Remark. The conservative formulation of the MV model (3.16) can be also used
to define analytically the shock waves of the MV model using the so-called Rankine-
Hugoniot conditions. Two states (ρℓ, θℓ) and (ρr, θr) are connected by a shock wave
traveling at a constant speed s if they satisfy:

s

(
ρr − ρℓ

f1(θr) − f1(θℓ)

)
=

(
ρr cos θr − ρℓ cos θℓ

cf2(θr) − cf2(θℓ) − λ ln ρr + λ ln ρℓ

)
. (3.17)

and usual entropic conditions enables to select the entropic shock waves [28]. How-
ever, the conservative formulation (3.16) has been obtained from the MV model
(3.5),(3.6) by dividing by sin θ. This manipulation can change the discontinuous
solutions of the system. In other words, the shock waves of the conservative sys-
tem (3.16) may be not the same as the one of the original non-conservative MV
model [29].
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3.3 The MV model as the relaxation limit of a conservative
system

As discussed in the remark above, the MV model and its conservative formulation
may have different solutions. For this reason, it is preferable to develop alternative
methods to study the MV model.

In this second approach, we approximate the geometric constraint (|Ω| = 1) by
a relaxation term. To be precise, we introduce the relaxation model:

∂tρ
η + ∇x · (ρηΩη) = 0, (3.18)

∂t (ρηΩη) + c∇x · (ρηΩη ⊗ Ωη) + λ∇xρ
η =

ρη

η
(1 − |Ωη|2)Ωη, (3.19)

where now Ωη belongs to R2. The relaxation operator is the right-hand side of the
equation (3.19). This operator forces |Ωη| to relax to 1. In particular, in the limit
η tends to 0, we have formally that |Ω0| = 1. Yet we have even more thanks to the
following proposition.

Proposition 3.1 The relaxation model (3.18),(3.19) converges to the MV model
(3.1)-(3.3) as η goes to zero.

Proof (formal). We suppose that ρη and Ωη converge as η goes to zero:

ρη η→0−→ ρ0 , Ωη η→0−→ Ω0.

We define Rη = ρη(1 − |Ωη|2)Ωη. By assumption, the left-hand side of equation
(3.19) is bounded independently of η, therefore multiplying equation (3.19) by η

and taking the limit η → 0 yields Rη η→0−→ 0. This implies that |Ω0|2 = 1 (except
where ρ0Ω0 = 0 which one assumes to be a negligible set). In particular, we have:

∂tΩ0 · Ω0 = 0 , (Ω0 · ∇x)Ω0 · Ω0 = 0. (3.20)

By definition of Rη, we have Rη × Ωη = 0, thus equation (3.19) leads to:

(∂t (ρηΩη) + c∇x · (ρηΩη ⊗ Ωη) + λ∇xρ
η) × Ωη = 0.

Consequently, when η → 0, we find:

∂t

(
ρ0Ω0

)
+ c∇x ·

(
ρ0Ω0 ⊗ Ω0

)
+ λ∇xρ

0 = αΩ0, (3.21)

for a real number α to be determined. Taking the scalar product of (3.21) with Ω0

and using (3.20) yields:

α = ∂tρ
0 + c∇x · (ρ0Ω0) + λ∇xρ

0 · Ω0.
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Using the conservation of mass (∂tρ
0 = −∇x · (ρ0Ω0)), we finally have:

α = (c− 1)∇x · (ρ0Ω0) + λ∇xρ
0 · Ω0.

Therefore, the relaxation term satisfies:

1
η
Rη =

[
(c− 1)∇x · (ρ0Ω0) + λ∇xρ

0 · Ω0
]
Ω0 +O(η).

Inserting this expression in (3.18),(3.19) yields the MV model (3.1)-(3.3) at the first
order in η. �

The proposition 3.1 shows that the MV model (3.1)-(3.3) can be seen as the re-
laxation limit of a conservative hyperbolic model with a relaxation term (3.18),(3.19).
This link will be used later on to build a numerical scheme. The idea is to solve
numerically the system (3.18),(3.19) in the limit η → 0.

Remark. As for the MV model, we analyze the hyperbolicity of the relaxation
model (3.18),(3.19). The characteristic velocities are given by:

γ1 = cu−
√

∆ , γ2 = cu , γ3 = cu+
√

∆,

where u denotes the x-coordinate of Ωη and ∆ = λ − (c − c2)u2. We deduce that
the relaxation model is hyperbolic if and only if

|Ωη| <
√

λ

c− c2
. (3.22)

As we can see in figure 2, the quantity
√

λ
c−c2 is greater than 1 for any value of

the noise parameter d. Consequently, the relaxation model is hyperbolic for every
|Ωη| ≤ 1. Since at the limit η → 0, |Ωη| converges to 1, the relaxation model is
hyperbolic for any d in this limit.

4 One-dimensional numerical simulations of the

MV model

We propose four different numerical schemes to solve the MV model based on the
different formulations of the MV model presented in the previous section. Since
the system is non-conservative, the schemes are not expected to capture the same
discontinuous solutions.
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Hyperbolic012
345
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√
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Figure 2: The quantity
√
λ/(c− c2) depending on d. The relaxation model

(3.18),(3.19) is hyperbolic when the speed |Ωη| is below this curve.

4.1 Numerical schemes

We use the following notations: we fix a uniform stencil {xi}i (with |xi+1−xi| = ∆x)
and a time step ∆t. For any quantity u, we denote by un

i its value at position xi

and time n∆t.

4.1.1 The splitting method

Our first scheme is based on the relaxation model (3.18),(3.19). We propose a
numerical scheme to solve this system for any η. The idea is to split the relaxation
model in two parts. At each time step, we first solve the conservative part:

∂tρ+ ∇x · (ρΩ) = 0,
∂t (ρΩ) + c∇x · (ρΩ ⊗ Ω) + λ∇xρ = 0,

(4.1)

and then the relaxation part:

∂tρ = 0,

∂t (ρΩ) =
ρ

η
(1 − |Ω|2)Ω. (4.2)

The conservative part (4.1) is a classical system of conservation laws. We use a Roe
method to solve this system with a Roe matrix computed following [29, p. 156].

The relaxation part (4.2) reduces to: ∂tΩ = 1
η
(1 − |Ω|2)Ω. Since this equation

only changes the vector field Ω in norm (i.e. ∂tΩ · Ω⊥ = 0), we can once again
reduce this equation to:

1
2
∂t|Ω|2 =

1
η

(1 − |Ω|2)|Ω|2. (4.3)
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Equation (4.3) is solved explicitly: |Ω|2 = (1 + C0 e−2/η t)−1 with C0 =
(

1
|Ω0|2

− 1
)
.

Numerically, we just take the limit η → 0 of this expression. Therefore, the relax-
ation part (4.2) yields a mere normalization:

Ωn+1 =
Ωn

|Ωn| . (4.4)

4.1.2 The conservative scheme

For our second numerical scheme, we use the conservative form of the MV model
(3.16):

∂tV + ∂xF (V ) = 0,

with V = (ρ, f1(θ))T and F (V ) = (ρ cos θ, cf2(θ)−λ ln(ρ))T . We use a Roe method
to discretize this equation:

V n+1
i − V n

i

∆t
+
F̂i+1/2 − F̂i−1/2

∆x
= 0, (4.5)

where the intermediate flux F̂i+1/2 is given by:

F̂i+1/2 =
F (Vi) + F (Vi+1)

2
−
∣∣∣A(Vi+1/2)

∣∣∣
Vi+1 − Vi

2
. (4.6)

Here, A is the Jacobian of the flux F calculated at the mean value Vi+1/2 = Vi+Vi+1

2

and |A| is the absolute value1 of the matrix A. Using that df1 = (1/ sin θ)dθ and
df2 = (cos θ/ sin θ)dθ, the Jacobian is explicitly given by:

A(V ) = DF (V ) =

[
cos θ −ρ sin2 θ
−λ

ρ
c cos θ

]
.

As mentioned earlier, the conservative form is only valid in domains where θ
does not cross a singularity θ = 0 or θ = π (i.e. sin θ = 0). Thus, the conservative
form cannot be directly used if sin θ(x) changes sign (i.e. there exists x1 and x2 such
that sin θ(x1) > 0 and sin θ(x2) < 0). Nevertheless, since the system (3.16) only
contains even functions of θ, the conservative formulation (4.5) can be considered
as an equation for the absolute value |θ|. To determine the sign of θ, we use an
auxiliary scheme such as the upwind scheme defined later on (see section 4.1.3).
More precisely, at each time step, θn+1

cons and θn+1
up are computed from (ρn, θn) using

respectively the conservative scheme (4.5) and the upwind scheme (4.7) and the
new updated value is then given by: θn+1 = sign(θn+1

up )|θn+1
cons|.

1If A = R−1DR is a diagonalization of A with D = diag(γ1, γ2), then |A| = R−1|D|R with
|D| = diag(|γ1|, |γ2|).
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4.1.3 Non-conservative schemes

We present two other numerical schemes based on the non-conservative formulation
of the MV model (3.7).

(i) Upwind scheme
The method consists to update the value of Un

i = (ρn
i , θ

n
i ) with the formula:

Un+1
i − Un

i

∆t
+ A+

(
Un

i − Un
i−1

∆t

)
+ A−

(
Un

i+1 − Un
i

∆t

)
= 0, (4.7)

with A+ = A+|A|
2

the positive part of A and A− = A−|A|
2

its negative part.
(ii) Semi-conservative scheme

The upwind scheme has one major problem, it does not conserve the total mass
(
∫

x ρ(x) dx). In order to keep this quantity constant in time, we use the equation of
conservation of mass (3.1) in a conservative form:

∂tρ+ ∂xH(ρ, θ) = 0,

with H(ρ, θ) = ρ cos θ. Therefore, a conservative numerical scheme associated with
this equation would be:

ρn+1
i − ρn

i

∆t
+
Ĥi+1/2 − Ĥi−1/2

∆x
= 0, (4.8)

where Ĥi+1/2 is the numerical estimation of the flux H at the interface between
xi and xi+1. To estimate numerically this flux, we use the following formula with
Un

i = (ρn
i , θ

n
i ):

Ĥi+1/2 = H(Un
i+1/2) − |A|ρ

(
Un

i+1 − Un
i

2

)
, (4.9)

where the intermediate value is given by Ui+1/2 = Ui+Ui+1

2
and |A|ρ is the first line

of the absolute value of A defined above.
For the estimation of the angle θ, we use the upwind scheme. This numerical

scheme uses one conservative equation (for the mass ρ) and a non-conservative
equation (for the angle θ). It is thus referred to as the semi-conservative scheme.

4.2 Numerical simulations

To compare the various numerical schemes, we solve the MV model in 1D (3.7)
for various Riemann problems. Thanks to section 3, we can choose a Riemann
problem such that the solution consists of a rarefaction wave (figure 3) or a single
shock wave (figure 4) using the conservative formulation (3.16). Moreover, we can
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compute explicitly the solution of the Riemann problem at any time. Nonetheless,
in the case of a shock wave, we have to keep in mind that the theoretical solution has
been computed from the conservative formulation (3.16) and not from the original
MV model (3.7).

We use the following parameters in our simulations: d = 1, the computational
domain is the interval [0, 10] and the discontinuity for the Riemann problem is at the
middle of the domain (x = 5). The simulations run for two time units with a time
step ∆t = 2 · 10−2 and a space step ∆x = 5 · 10−2. For these values, the Courant
number (CFL) is 0.778. We use homogeneous Neumann conditions as boundary
conditions.

The first test consists in checking that the numerical schemes coincide on con-
tinuous solutions. To obtain a rarefaction wave, we consider the Riemann problem
with initial left and right states:

(ρℓ, θℓ) = (2, 1.7) , (ρr, θr) = (1.12, 0.60). (4.10)

In figure 3, the numerical solutions of the different schemes are depicted. They all
match with each other and agree with the theoretical solution.

The situation is different when we deal with non-smooth solutions such as shock
waves, the schemes may provide different solutions. We use as initial condition
another Riemann problem:

(ρℓ, θℓ) = (1, 0.314) , (ρr, θr) = (2, 1.54), (4.11)

which satisfies the Rankine-Hugoniot condition (3.17). Thus, the theoretical solu-
tion, given by the conservative formulation (3.16), is a shock wave connecting the
two states. The Rankine-Hugoniot condition (3.17) also gives the theoretical speed
of this shock (s = −.8805). As we observe in figure 4, the conservative method
is in perfect agreement with this theoretical solution, the other schemes give very
different solutions. This is not a surprising result since both the theoretical solution
and the conservative scheme are based on the same formulation (3.16). Nonethe-
less, as it has been mentioned before, the theoretical solution of the conservative
formulation is not necessarily the correct solutions to the original particle system.
In the next section, the particle simulations will show indeed that the right solution
for the Riemann problem (4.11) is not given by the conservative method but rather
by the splitting method.

5 The microscopic versus macroscopic Vicsek

models in 2D

In this section, we would like to validate numerically the MV model by comparing
its solutions with the microscopic Vicsek model. First, we make sure that the
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particle’s distribution function of the microscopic Vicsek model converges locally to
an equilibrium as it is predicted by the MV model [16]. Then, we expect that the
simulations of the microscopic Vicsek model will be in good agreement with one of
the numerical simulations to the MV model. The different numerical schemes of
the MV system capture different solutions. However, there is no physical argument
that favors one over the others. This section aims at knowing if one of the schemes
reproduces the large scale behavior of the particle dynamics. If this is the case, the
corresponding scheme will be a way to define the right notion of solution of the MV
system.

5.1 Local equilibrium

Like many macroscopic models, the derivation of the MV model is based on the
convergence of the particle’s distribution function to local equilibrium at large scales
in space and time. For the microscopic Vicsek model, these local equilibrium are
given by a Von Mises distribution MΩ [16]:

MΩ(ω) = C exp

(
ω · Ω
d

)
(5.1)

where C is set by the normalization condition2. Here, d is the noise parameter and
Ω is the direction of the mean velocity of the particles. The goal of this section is
to show numerically that the particle distribution of the microscopic Vicsek model
is close in certain regimes to this Von Mises distribution.

With this aim, we have to solve numerically the dynamical system (2.1),(2.2)
at large scales in space and time. We introduce the macroscopic variables t′ and x′

defined as:
t′ = εt , x′ = εx.

Here, ε is the ratio between the microscopic and macroscopic variables. We solve
numerically the dynamical system:

dxε
k

dt
= ωε

k, (5.2)

dωε
k =

1
ε

(Id − ωε
k ⊗ ωε

k)(ωε
k dt+

√
2d dBt), (5.3)

with ωε
k the average velocity around the particle k,

ωε
k =

Jε
k

|Jε
k | , Jε

k =
∑

j, |xε
j
−xε

k
|≤εR

ωε
j . (5.4)

2explicitly given by C−1 = 2π I0(d−1) where I0 is the modified Bessel function of order 0
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Theoretically, the smaller ε is, the closer to the MV model the dynamical system
(5.2)-(5.4) would be.

We propose in appendix C a numerical scheme to solve the system (5.2)-(5.4).
The scheme is implicit but has the same cost as an explicit scheme. The setting
for our particle simulations is as follows: we consider a square box of size L with
periodic boundary conditions. As initial condition for the position xk, we choose
a uniform random distribution in space. The velocity ωk is initially distributed
according to a uniform distribution on the unit circle.

We first compare the distribution of the velocity direction θk with its theoretical
distribution MΩ(θ) given by (5.1). In figure 5, we observe that the two distributions
are in good agreement for a certain set of parameters.

To make a systematic comparison between the empirical and theoretical dis-
tribution for different parameters, we only consider the mean value of the two
distributions in the following. We denote by ϕN the mean velocity of the particles
and by ϕ the mean velocity of the distribution MΩ:

ϕN =
1
N

∣∣∣∣∣
N∑

k=1

ωk

∣∣∣∣∣ , ϕ =
∣∣∣∣
∫

ω
ωMΩ(ω) dω

∣∣∣∣ . (5.5)

We compute the values of ϕN and ϕ for different values of the noise parameter d. As
we can see in figure 6, the two distributions are in close agreement with each other.
We also observe a smooth transition from order (ϕ ≈ 1) to disorder (ϕ << 1) as it
has been measured in the original Vicsek model [35].

The situation is different when we consider a larger system. The distribution of
velocity θk may not converge to one global equilibrium MΩ but rather to many local
equilibrium MΩ(x). We can no longer ignore the spatial position of the particles xk.
Consequently, the mean velocity of the particles in all the domain ϕN differs from
the expected theoretical value ϕ. We illustrate this phenomena in figure 7: we fix
the density of particles and we increase the size of the box. As we observe, the
mean velocity ϕN (5.5) has a smaller value when the size of the box L increases.
This phenomena has been previously observed in [8]. Now if we reduce ε in the
particle simulations, we simulate the dynamical system (2.1)-(2.3) at a larger scale,
the size of the box becomes L/ε. Therefore, the agreement between ϕN and ϕ
will surprisingly decrease as ε becomes smaller, although the density of particles is
maintained constant.

The mean velocity ϕN also differs from the expected theoretical value ϕ (5.5)
when the density of particles is low. In figure 8, we fix the size of the box (L = 10)
and we increase the density of particles (the density is given by the number of
particles in the circle of interaction). At low density, the mean velocity ϕN is much
smaller than the theoretical prediction ϕ. But as the density of particles increases,
the mean velocity ϕN grows and finally converges to ϕ (see also [35]). For this
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time units. Right figure: the corresponding particle simulation. Parameters of the
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∆t = .02 time unit, the simulations run for 180 time units.
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reason, a dense regime of particles has to be used in the following in order to
compare numerically the microscopic model with the MV model.

5.2 Microscopic versus Macroscopic dynamics

We now compare the evolution of the two macroscopic quantities ρ and Ω for the
microscopic and macroscopic Vicsek model. We have seen that the different schemes
applied to the macroscopic model give different solutions (see figure 4). We expect
that the particle simulations will indicate what is the physically relevant solution
of the macroscopic model.

We first briefly explain how we proceed to run the particle simulations of a
Riemann problem (see also appendix C). We choose a left state (ρℓ, θℓ) and a right
state (ρr, θr), and we distribute a proportion ρℓ

ρℓ+ρr
of particles uniformly in the

interval [0, 5] and the remaining particles uniformly in the interval [5, 10]. Then,
we generate the velocities ωk of the particles according to the distribution MΩ (5.1)
with Ωℓ = (cos θℓ, sin θℓ) on the left side and Ωr = (cos θr, sin θr) on the right side.
We use the numerical scheme given in appendix C to generate particle trajectories.
To make the computation simpler, we choose periodic boundary conditions, thus the
number of particles is conserved. As a consequence, there are initially two Riemann
problems corresponding to discontinuities at x = 5 and at x = 0 or 10 (which is
the same by periodicity). We use a particle-in-cell method [19, 24] to estimate the
two macroscopic quantities: the density ρ and the direction of the flux Ω (which
gives θ). In order to reduce the noise due to the finite number of particles, we take
a mean over several simulations to estimate the density ρ and θ.

As an illustration, we solve the following Riemann problem:

(ρℓ, θℓ) = (1, 1.5) , (ρr, θr) = (2, 1.83) , d = 0.2, (5.6)

using particle simulations for the microscopic Vicsek model and the splitting method
for the MV model. In figure 9, we represent the density ρ for the two solutions in
a 2D representation. Since the initial condition is such that the density ρ and the
direction θ are independent of the y-direction, we only represent ρ and θ along
the x-axis in the following figures. More precisely, for the particle simulations, we
take a mean over the y-axis to compute the density distributions, this reduces the
noise in the representation. In practice, we simply ignore the y-coordinate of the
particles and apply a particle-in-cell method to estimate the density in x. In figure
10, we represent the two solutions (the particle and the macroscopic one) with only
a dependence in the x-direction. Three quantities are represented: the density ρ,
the flux direction θ and the local temperature T . To estimate T (x), we compute
the variance of the velocity distribution around the point x. One can clearly see
the propagation of a shock in the middle of the domain and a rarefaction at the
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boundary. The CPU time3 for one numerical solution at the particle level is about
140 seconds. For the macroscopic model, the CPU time is about 0.1 second which
represents a cost reduction of three orders of magnitude. Since we have to take a
mean over many particle simulations, the cost reduction is even larger.

Remark. The macroscopic model supposes that local temperature T is constant
everywhere. However, as we can see in figure 10, the temperature (red curve) is
larger in regions where the density is lower. A generalization of the MV model has
been proposed in [20] to include this effect.

Similarly, we compute the solutions of the Riemann problem (5.6) with the three
other numerical schemes and we compare their solution with the particle simulations
(figure 11). All the schemes are in good agreement with the microscopic model, we
clearly see the propagation of a shock on the left and a rarefaction wave on the right.
However, if we look carefully at the shock, we observe that the splitting method is
in better agreement with the particle simulations. The propagation of the shock is
slightly too slow with the three other schemes.

Now we come back to our previous Riemann problem (4.11) where the four
numerical schemes give very different solutions (figure 4). We use a larger domain
in x (L = 20 space units) in order to avoid the effect of the periodic boundary
condition. As we observe in figure 12, the upwind scheme and the semi-conservative
method are clearly not in accordance with the particle simulations. Moreover,
the splitting method is in better agreement with the particle simulations than the
conservative method. The propagation of the discontinuity in the conservative
method is too slow compared with the particle simulations.

Our last simulation clearly points out that the splitting method has the best
agreement with the particle dynamics. The initial condition consists of a contact
discontinuity:

(ρℓ, θℓ) = (1, 1) , (ρr, θr) = (1,−1) , d = 0.2, (5.7)

i.e. we reflect the angle with respect to the x-axis across the middle point x = 5.
A natural (weak) solution for this problem is the contact discontinuity propagating
at the speed c cos(1):

ρ(t, x) = 1 , θ(t, x) = θ0(x− c cos(1)t), (5.8)

with θ0(x) = −1 when x < 5 and θ0(x) = 1 when x > 5. This is the solution
provided by the conservative scheme (figure 13). But surprisingly, the splitting
method and the particle simulations agree on a different solution. Indeed, the
solutions given by the particles and the splitting method are in fairly good agreement

3The computations have been made with an Intel Core Duo T2300 with 1GB of RAM
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with each other. This seems to indicate that the “physical solution” to the contact
problem (5.7) is not given by the conservative formulation (5.8) but by a much more
complex profile. The constraint of unit speed drastically changes the profile of the
solution compared with what would be found for a standard system of conservative
laws.
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Figure 9: The particle density in space ρ computed with particle simulations (left)
and the MV model (right). We initialize with the Riemann problem (5.6). Nu-
merical parameters for the particle simulations: N = 2 · 106 particles, ∆t = .01,
ε = 1/10, R = .5, L = 10, we take a mean over 10 computations. Numerical
parameters for the macroscopic model: ∆t = .01, ∆x = .025 (CFL=0.416), we use
the splitting method. The simulations run for 2 time units.
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method (solid line) and with particle simulations (dots). We represent the density
ρ (blue), the flux direction θ (green) and the local temperature T (red). The
parameters are the same as in figure 9, we only change the representation of the
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Numerical parameters for the MV model: ∆t = .01, ∆x = .025 (CFL=0.778).
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6 Conclusion

In this work, we have studied numerically both the microscopic Vicsek model and
its macroscopic version [16]. Due to the geometric constraint on the velocity, the
standard theory of hyperbolic systems is not applicable for the macroscopic model.
Therefore, we have proposed several numerical schemes to solve this system. By
comparing the simulations of the microscopic and macroscopic model, it appears
that the scheme based on a relaxation formulation of the macroscopic model, used in
conjunction with a splitting method, is in good agreement with particle simulations.
The other schemes do not show a similarly good agreement. In particular, with an
initial condition given by a contact discontinuity, the microscopic model and the
splitting method provide a similar solution which turns out to be much more complex
than what could be expected.

These results confirm the relevance of the macroscopic Vicsek model. Since the
macroscopic model costs much less CPU time, it is an effective tool to simulate the
Vicsek dynamics in a dense regime of particles.

Many questions are still open concerning the macroscopic Vicsek model. We
have seen that the splitting method gives results which are in accordance with par-
ticle simulations. But it remains to be understood why this particular scheme cap-
tures the particle dynamics better than the other schemes. Since the macroscopic
model has original characteristics, this question is challenging. Another point con-
cerns the particle simulations. We have seen that the density of particles has a
strong effect on the “local temperature” (i.e. the variance of the velocity distribu-
tion). When the density is low, the temperature is larger. The macroscopic model
does not capture this effect, the variance of the velocity distribution is always the
same. Works are in progress to understand this effect of the density.
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A The coefficients c1, c2 and λ

The macroscopic coefficients of the MV model c1, c2 and λ involve two functions:
the Von Mises distribution MΩ (5.1) and the generalized collisional invariant ψ [16].
In two dimensions, ψ(θ) is a periodic function which satisfies the elliptic equation:

∂θ

(
e

cos θ
d ∂θψ

)
= sin θe

cos θ
d . (A.1)

Using the notation M(θ) = Ce
cos θ

d , the coefficients c1, c2 and λ are given by:

c1 = 〈cos θ〉|M =
∫ π

−π
cos θM(θ) dθ (A.2)

c2 =
〈cos θ sin θ ψ〉M

〈sin θ ψ〉M
=
∫ π

−π cos θ sin θψ(θ)M(θ) dθ
∫ π

−π sin θψ(θ)M(θ) dθ
(A.3)

λ = d, (A.4)

where d is the noise parameter. Thus, only c1 and λ are defined explicitly. For
c2, we need first to solve the equation (A.1) to obtain ψ. Equation (A.1) can be
explicitly integrated using that ψ is a periodic function.

Lemma A.1 The periodic solution ψ of Eq. (A.1) is given by:

ψ(θ) = d θ −
∫ θ

0 e− cos s
d ds

∫ π
0 e− cos s

d ds
+ C, (A.5)

where C is a constant.

The proof of this lemma is straightforward and omitted. Since we have an explicit
expression for both M and ψ, we only have to make a numerical integration to
estimate c1 and c2. We can also deduce the asymptotic of the coefficients c1 and c2

as the parameter d becomes large:

Lemma A.2 The coefficients c1 and c2 defined respectively by the equations (A.2)
and (A.3) satisfy the following asymptotic:

c1
d→∞∼ 1

2d
+O

(
d−2

)
, c2

d→∞∼ 3
16d

+O
(
d−2

)
. (A.6)

In particular, we have:

c2

c1

d→∞∼ 3
8

+O(d−2),
λ

c1

d→∞∼ 2d2 +O (1) . (A.7)

We omit the proof of this lemma since it only requires to compute the Taylor
expansion of the exponential several times. In figure 14, we plot the ratio c′ = c2/c1

and λ′ = λ/c2 for different values of d along with their asymptotic (A.7).
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B Special solution of the MV model

In this appendix, a vortex configuration is exhibited as a stationary solution of the
MV model (2.4)-(2.6) in two dimensions. A stationary solution of the MV model
satisfies:

∇x · (ρΩ) = 0,
c(Ω · ∇x)Ω + λ (Id − Ω ⊗ Ω)∇xρ

ρ
= 0. (B.1)

To formulate the vortex configuration, we introduce polar coordinates, ρ(r, θ),
Ω(r, θ) = fr(r, θ)~er + fθ(r, θ)~eθ, where ~er = (cos θ, sin θ)T and ~eθ = (− sin θ, cos θ)T .

Proposition B.1 The following initial condition is a stationary state of the MV
model (B.1):

ρ(r) = C rc/λ , Ω = ~eθ, (B.2)

where C is a constant.

Proof. With the expression of ρ and Ω given by (B.2), the divergence of the mass
is zero and the gradient of ρ is orthogonal to Ω. Therefore the system (B.1) reduces
to:

c(Ω · ∇x)Ω + λ
∇xρ

ρ
= 0,

or in polar coordinates:

c
1
r
∂θ ~eθ + λ

ρ′(r)
ρ(r)

~er = 0.

Since ∂θ~eθ = −~er, we can easily check that the solution of this equation is given by
ρ(r) = C rc/λ. �
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An explicit Euler method for the differential system (5.2)-(5.4) would impose a CFL
condition 1

ε
∆t < 1. Hence, we would like to find an implicit scheme to solve the

system (2.1)-(2.3). With this aim, we use the following discretized formulation of
the microscopic Vicsek model (see [16]):

ωn+1 − ωn

∆t
= (Id − ωn+1/2 ⊗ ωn+1/2)(ωn − ωn) (C.1)

where ωn+1/2 = ωn+ωn+1

|ωn+ωn+1|
and ωn is the average velocity (2.3). When ∆t = 1,

we recover exactly the original Vicsek model [35]. Equation (C.1) can be solved
explicitly. Indeed, since ωn+1 − ωn is the orthogonal projection of (ωn − ωn)∆t
on the orthogonal plane of ωn+1/2, the vectors ωn+1 and ωn belong to the circle C
centered at B = ωn + (ωn−ωn)∆t

2
with radius

∣∣∣ (ω
n−ωn)∆t

2

∣∣∣ (see figure 15). But ωn+1

and ωn also belong to the unit circle (|ωn+1| = |ωn| = 1), therefore ωn and ωn+1

are the two intersections of C with the unit circle. Denoting by θ the angle of the
vector ω, this implies:

θn+1 = θn + 2 ̂(ωn, B).

To take into account the effect of the noise, we simply add a random variable:

θn+1 = θn + 2 ̂(ωn, B) +
√

2d∆t ǫn (C.2)

where ǫn is a random variable independent of θn with standard normal distribution.

C

B

0

(ω̄n − ωn)∆t

ωn

ωn+1

ωn+1/2

Figure 15: Illustration of the geometric method to solve explicitly equation (C.1).
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