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Abstract

We show how to solve hyperbolic equations numerically on unbounded domains
by means of compactification, thereby avoiding the introduction of an artificial
outer boundary. The essential ingredient is a suitable transformation of the
time coordinate in combination with compactification. Based on this idea, we
present a new layer method, called hyperboloidal layers. Accuracy and efficiency
of this method is demonstrated by numerical tests including the one dimensional
Maxwell equations using finite difference methods, and the three dimensional
scalar wave equation with and without nonlinear source terms using spectral
methods.

Keywords: Transparent (non-reflecting, absorbing) boundary conditions,
perfectly matched layers, hyperboloidal layers, hyperboloidal compactification,
wave equations, Maxwell equations.

1. Introduction

Hyperbolic equations typically admit wave-like solutions that oscillate in-
finitely many times in an unbounded domain. Take a plane wave in one space
dimension with frequency ω and wave number k

u(x, t) = e2πi(kx−ωt) . (1)

Any mapping of such an oscillatory solution from an infinite domain to a finite
domain will result in infinitely many oscillations near the domain boundary,
which cannot be resolved numerically. We refer to this phenomenon as the
compactification problem. It is commonly stated that hyperbolic partial dif-
ferential equations are not compatible with compactification, and therefore can
not be solved on unbounded domains accurately.

One can, however, perform a transformation of the time coordinate such that
there are only a finite number of oscillations in an infinitely extended spatial
domain. Introduce

τ(x, t) = t− k

ω

(
x+

C

1 + x

)
, (2)
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where C is a finite, positive constant. The plane wave (1) becomes

u(x, τ) = e−2πi(kC/(1+x)+ωτ) . (3)

This representation of the plane wave has only k C cycles along a constant
time hypersurface in the unbounded spatial domain x ∈ [0,∞), and is therefore
compatible with compactification.

The simple idea just described has far reaching consequences. In numeri-
cal calculations of hyperbolic equations one typically truncates the unbounded
solution domain by introducing an artificial outer boundary that is not part
of the original problem. Boundary conditions – called transparent, absorbing,
radiative, or non-reflecting – are constructed to simulate transparency of this
artificial outer boundary. There has been significant developments in the treat-
ment of artificial outer boundaries since the 70’s, but there is no consensus on
optimal treatment [1, 2]. Especially the construction of boundary conditions
for nonlinear problems is difficult [3]. A successful technique for numerical cal-
culations on unbounded domains resolves this problem for certain hyperbolic
systems, besides giving direct quantitative access to asymptotic properties of
solutions.

Furthermore, the numerical construction of oscillatory solutions of the type
(3) can be very efficient. Numerical accuracy requirements for hyperbolic equa-
tions are typically given in terms of numbers of grid points per wavelength. In
the example presented above, we have at our disposal the parameter C that de-
termines the number of cycles to be resolved, which can be chosen to be small.
This suggests that high order numerical discretizations requiring a few points
per wavelength can be very efficient in combination with time transformations
of the type (2).

The rest of the paper is devoted to the discussion of time transformation and
compactification for hyperbolic equations. The theoretical part of the paper
(sections 2 and 3) presents the method in detail. We describe the compactifi-
cation problem (section 2.1) and its resolution (section 2.2) for the advection
equation in one dimension. In section 2.3 we discuss the more interesting case
with incoming and outgoing characteristics for the wave equation. We show
that the method works also for systems of equations (section 2.4). Compacti-
fying layers are introduced in section 2.5 in analogy to absorbing layers. The
layer strategy allows us to employ arbitrary coordinates in an inner domain,
where scatterers or sources may be present. In spatial dimensions more than
one, compactification is performed in the outgoing direction in combination with
rescaling to take care of the asymptotic fall off behavior (sections 3.1 and 3.2).
We finish the theoretical part discussing possible generalizations of the method
to non-spherical coordinate systems (section 3.3). Section 4 presents numerical
experiments in one and three spatial dimensions. In one dimension, we solve
the Maxwell equations using finite difference methods (section 4.1). A stringent
test of the method is presented by taking off-centered initial data for the wave
equation in three spatial dimensions with nonlinear source terms (section 4.2).
We conclude with a discussion in section 5.
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Figure 1: Characteristic diagram for the advection equation after spatial compactification.
The characteristic speed approaches zero near spatial infinity at {ρ = 1} causing loss of
numerical resolution: this is the compactification problem.

2. Compactification in one spatial dimension

2.1. Spatial compactification
Consider the initial boundary value problem for the advection equation

∂tu+ ∂xu = 0, u(x, 0) = u0(x), u(0, t) = b(t). (4)

The problem is posed on the unbounded domain x ∈ [0,∞). We transform
the infinite domain in x to a finite domain by introducting the compactifying
coordinate ρ via

ρ(x) =
x

1 + x
, x(ρ) =

ρ

1− ρ
. (5)

The advection equation becomes

∂tu+ (1− ρ)2∂ρu = 0 . (6)

The spatial domain is now given by ρ ∈ [0, 1]. Characteristics of this equation
are solutions to the ordinary differential equation

dρ(t)
dt

= −(1− ρ(t))2.

They are plotted in figure 1. The compactification problem is clearly visible: the
coordinate speed of characteristics approaches zero near a neighborhood of the
point that corresponds to spatial infinity. The intuitive reason for this behavior
is that the advection equation has a finite speed of propagation and therefore
its characteristics cannot reach infinity in a finite time.

A concrete example illustrates the problem for oscillatory solutions. Set
initial data u0(x) = sin(2πx) and boundary data b(t) = − sin(2πt) in (4). We
obtain the solution

u(x, t) = sin(2π(x− t)), (7)

which reads in the compactifying coordinate (5)

u(ρ, t) = sin
(

2π
(

ρ

1− ρ
− t
))

. (8)
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Figure 2: The solution (7) at time t = 0 is plotted on the left panel. The same solution in the
compactifying coordinate given in (8) plotted on the right panel illustrates infinite blueshift
in frequency.

The solution is depicted in figure 2 at t = 0 on the domain x ∈ [0, 10] in
the original coordinate and on the domain ρ ∈ [0, 10/11] in the compactifying
coordinate. The oscillations cannot be resolved in the compactifying coordinate
near infinity due to infinite blueshift in spatial frequency.

It seems that the price of mapping infinity to a finite coordinate distance is
the requirement of infinite resolution. However, a suitable time transformation
as discussed in the next section provides a clean solution to this problem.

2.2. Hyperboloidal compactification
The idea is to perform a transformation of the time coordinate as in (2). We

introduce

τ = t−
(
x+

C

1 + x

)
, (9)

With the compactification (5) we get the Jacobian

∂τ = ∂t, ∂x = (−1 + C Ω2)∂τ + Ω2 ∂ρ ,

where we defined Ω = 1 − ρ. The advection equation in the new coordinates
(ρ, τ) reads

∂τu+
1
C
∂ρu = 0 .

This equation has the same form, up to an additional free parameter, as the
advection equation in the original coordinates (4), but the meaning of the co-
ordinates is different. Solutions to the above equation in the bounded domain
ρ ∈ [0, 1] correspond to solutions to the original advection equation in the un-
bounded domain x ∈ [0,∞). The free parameter C expresses the freedom in the
time transformation to prescribe the characteristic speeds in the compactifying
coordinates and the number of cycles in an infinite domain. To see this we write
the solution (7) in the new compactifying coordinates

u(ρ, τ) = − sin (2π(C Ω + τ)) . (10)

The solution is depicted in figure 3 at τ = 0 for two values of C. The number
of cycles on the solution domain depends on C. We remark that surfaces of
constant τ do not correspond to surfaces of constant t.
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Figure 3: The solution (10) at time τ = 1 is plotted for two values of C. On the left panel
we have C = 1 and on the right panel C = 5. The number of oscillations, and therefore the
wavelength of the solution, can be influenced by the free parameter C.

The idea to introduce a coordinate transformation of time in combination
with compactification comes from general relativity [4]. The time function (2)
has the property that, asymptotically, it resembles characteristics of the ad-
vection equation. Infinity along characteristic directions is referred to as null
infinity. Time functions whose level sets approach null infinity are called hyper-
boloidal because their asymptotic behavior is similar to the asymptotic behavior
of standard hyperboloids [5]. To see this, consider the rectangular hyperbola on
the (x, t) plane, t2 − x2 = C2, with a free parameter C. Shifting the hyperbola
along the t direction by τ gives (t − τ)2 − x2 = C2. Introducing τ as the new
time coordinate we write

τ(x, t) = t−
√
C2 + x2. (11)

We plot in figure 4 two families of hyperbolae with C = 1 and C = 5. The
asymptotes of these hyperbolae on x > 0 are the characteristics of the advec-
tion equation, τ = t−x, for any value of C. This is the same asymptotic behavior
as that of (9), hence the name hyperboloidal for such time functions. A suit-
able compactification along level sets of such time functions sets the coordinate
location of null infinity to a time independent value (see [6] for a discussion of
conformal and causal properties of hyperboloidal time functions and compacti-
fication on asymptotically flat spacetimes).
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Figure 4: Rectangular hyperbola (11) for C = 1 and C = 5 depicted on the (x, t) plane. The
hyperbolae are flatter near the origin for larger C but their asymptotic behavior in leading
order is independent of C.
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It is useful to summarize the hyperboloidal compactification technique with
general expressions. We introduce coordinates ρ and τ via

τ = t− h(x), x =
ρ

Ω
. (12)

The height function, h, must satisfy dh/dx < 1 so that τ is a time function.
We also require that the gradient of the function Ω ≡ Ω(ρ) is nonvanishing at
its zero set. The zero set of Ω corresponds to infinity with respect to x. The
coordinate transformations have the Jacobian

∂t = ∂τ , ∂x = −H ∂τ +
Ω2

L
∂ρ, where H :=

dh

dx
(ρ), L := Ω− ρdΩ

dρ
.

(13)
The advection equation becomes in this general notation

∂τu+
Ω2

(1−H)L
∂ρu = 0. (14)

The specific choices (5) and (9) satisfy

Ω2

(1−H)L
=

1
C
. (15)

In general, the time transformation must be chosen such that we have asymp-
totically in x, or equivalently as Ω approaches zero

1−H ∼ O(Ω2). (16)

This relation expresses that the asymptotic heightening of time surfaces needs
to be in the order of the compressing of space so that we have a uniform outgo-
ing characteristic speed over an infinitely compressed domain. In light of this
intuition, we refer to H as the heighten function, and to Ω as the compress
function.

2.3. Wave equation
The advection equation discussed in the previous section is a special example

because its characteristics propagate in only one direction. A more representa-
tive example for hyperbolic partial differential equations is the wave equation,
which has both incoming and outgoing characteristics. The wave equation reads
in standard coordinates

∂2
t u− ∂2

xu = 0. (17)

Its characteristics on a bounded domain are plotted on the left panel of figure
5. We are interested in the problem on the unbounded domain x ∈ (−∞,∞).
With (13) we get[

∂2
τ +

Ω2

(1−H2)L

(
2H∂τ∂ρ −

Ω2

L
∂2
ρ + ∂ρ(H)∂τ − ∂ρ

(
Ω2

L

)
∂ρ

)]
u = 0. (18)
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The transformation (9) is not the right choice for this case. Instead, we choose
the height function of standard hyperboloids, h(x) =

√
C2 + x2. We wish to

have the freedom for prescribing an arbitrary coordinate location for null infinity,
which corresponds to the zero set of the compress function. We set

Ω =
S2 − ρ2

2CS
⇒ L =

S2 + ρ2

2CS
and H =

2Sρ
S2 + ρ2

. (19)

The parameter S determines the coordinate location of null infinity on the
numerical grid. The unbounded domain x ∈ (−∞,∞) corresponds in the com-
pactifying coordinate to ρ ∈ (−S, S). The wave equation becomes

∂2
τu+

2ρ
C
∂τ∂ρu− Ω2 ∂2

ρu+
2S Ω
S2 + ρ2

∂τu+
(3S2 + ρ2)ρΩ
SC(S2 + ρ2)

∂ρu = 0. (20)

The equation evaluated at infinity, {ρ = ±S}, takes the form

∂τ

(
∂τ ±

2S
C
∂ρ

)
u = 0,

reflecting that both boundaries are outflow boundaries and do not require bound-
ary conditions.
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Figure 5: On the left panel we plot the characteristics for the standard wave equation (17)
on the bounded domain x ∈ [−10, 10]. On the right panel hyperboloidal compactification has
been applied with infinity located at ρ = S = ±10, and C = 10. The standard wave equation
on a bounded domain requires boundary conditions for the incoming characteristics from both
boundaries. With hyperboloidal compactification there are no incoming characteristics, and
the coordinate speed of outgoing characteristics can be controlled by the free parameter C.

The characteristics of the wave equation (20) are plotted on the right panel of
figure 5. No boundary conditions are needed because no characteristics enter the
simulation domain. Furthermore, the outgoing characteristics leave the domain
smoothly through the outflow boundaries.

The initial value problem for the wave equation (17) with data on a t surface
is related to the initial value problem for (18) by time evolution of the equation
as indicated in figure 4. This may be an undesired complication in practical
applications. If one is interested in the evolution of certain compactly supported
data, one may keep the t surfaces in an interior domain which includes the
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data and apply hyperboloidal compactification only in the exterior domain as
discussed in section 2.5.

The above calculation is made for the one dimensional, source free, constant
coefficient wave equation. The method applies directly when variable coefficients
or lower order terms are present. The requirement on the variable coefficients
in the principal part is that they are asymptotically constant. For the lower
order terms we require a fall off behavior of at least Ω2 so that the division by
1−H2 in (18) leads to a regular equation.

2.4. Hyperbolic systems
Consider the linear, homogeneous system of partial differential equations

with variable coefficients
∂tu = A∂xu, (21)

where u = (u1(x, t), u2(x, t), . . . , un(x, t))T , and A is an n× n matrix that may
depend on x. The transformation (12) with Jacobian (13) leads to

(1 +HA)∂τu =
Ω2

L
A∂ρu. (22)

Assuming that the time transformation has been chosen to satisfy (16), we re-
quire that the polynomial remainder of det(1+HA) by 1−H vanishes asymp-
totically. This is a condition on the asymptotic form of the elements of A. For
example, taking n = 2 we write

A =
(
a11 a12

a21 a22

)
.

The asymptotic condition for the applicability of hyperboloidal compactification
reads

1 + a11 + a22 − a12a21 + a11a22 = 0. (23)

A typical example is the wave equation (17) written as a first order symmetric
hyperbolic system. The wave equation takes the form (21) in the auxiliary
variables v = ∂tu and w = ∂xu, with

u =
(

v
w

)
, A =

(
0 1
1 0

)
. (24)

The condition (23) is satisfied. The transformed system reads

∂τu =
Ω2

(1−H2)L

(
−H 1

1 −H

)
∂ρu. (25)

The particular choice (19) leads to the regular system

∂τu =
1

2CS

(
−2Sρ S2 + ρ2

S2 + ρ2 −2Sρ

)
∂ρu.

The outer boundaries of this system at ρ = ±S are pure outflow boundaries.
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As a further example consider the one dimensional Maxwell equations for
the electric and magnetic fields (Ē, H̄)

∂tĒ = −1
ε
∂xH̄, ∂tH̄ = − 1

µ
∂xĒ,

The electric permittivity ε and the magnetic permeability µ may be point-
dependent. The equations have the form (21) with

u =
(
Ē
H̄

)
, and A = − 1

εµ

(
0 µ
ε 0

)
.

We get after applying hyperboloidal compactification

∂τu = − Ω2

(εµ−H2)L

(
H µ
ε H

)
∂ρu. (26)

In vacuum outside a compact domain we have ε = ε0 and µ = µ0 where ε0
and µ0 are the electric and the magnetic constants. We need to choose the
asymptotic behavior of H such that

√
ε0µ0 − H ∼ O(Ω2). Then the Maxwell

equations behave similarly to the wave equation (25) near null infinity.
The example of Maxwell equations suggests that including lower order terms

or variable characteristic speeds in a compact domain are straightforward in
the hyperboloidal method as long as the asymptotic form of the equations are
suitable. The asymptotic characteristic speeds need to be constant and lower
order terms need to have compact support or fall off sufficiently fast. In the
next section we discuss how hyperboloidal compactification can be restricted to
a layer attached to an interior domain.

2.5. Hyperboloidal layers
It may be desirable to employ a specific coordinate system in a compact do-

main without the time transformation or the compactification required by the
hyperboloidal method. One reason is technical. Elaborate numerical techniques
to deal with shocks, scatterers, and media assume predominantly a specific co-
ordinate system. It may be impractical to modify these methods to work with
hyperboloidal compactification throughout the simulation domain. Another rea-
son is initial data. One may be interested in the evolution of certain (compactly
supported) initial data prescribed on a level set of t. In these cases it may be
favourable to restrict the hyperboloidal compactification to a layer.

We discuss briefly the perfectly matched layer (PML) by Bérenger [7] to
set the stage for hyperboloidal layers. In the PML method one attaches an
absorbing medium – a layer – to the domain of interest such that the interface
between the interior domain and the exterior medium is transparent independent
from the frequency and the angle of incidence of the outgoing wave. Inside the
layer the solution decays exponentially in the direction normal to the interface.
As a consequence the solution is close to zero at the outer boundary of the layer
where any stable boundary condition may be applied. The reflections from the
outer boundary can be ignored if the layer is sufficiently wide.
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The success of the PML method lies in the transparency of the interface
between the interior domain and the layer. This property finds explanation in
the interpretation of Chew and Weedon of the PML as the analytic continuation
of the equations into complex coordinates [8]. The challenge is then to find
suitable choices of the equations and the free parameters that lead to exponential
damping of the solution in a stable way, which may be difficult depending on
the system [9, 10, 11].

A simple example, omitting details of the method beyond our needs, demon-
strates the basic idea. We perform an analytic continuation of x into complex
coordinates beyond a certain interface R. Then the coordinate x can be written
in terms of its real and imaginary parts as Re(x)+ iσIm(x)Θ(x−R), where σ is
a positive parameter, and Θ denotes the Heaviside step function. Setting k = 1,
the plane wave (1) at time t = 0 becomes

u(x, 0) = e2πiRe(x)e−2πσIm(x)Θ(x−R) . (27)

The strength of the exponential decay is controlled by a free parameter σ. The
solution is plotted in figure 6 for σ = 0.1.
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Figure 6: The plane wave solution with the spatial coordinate analytically extended into
the complex plane (27) demonstrates how outgoing waves are damped exponentially in the
absorbing layer of the PML method. We set σ = 0.1 and R = 5. The dashed line indicates
the location of the interface.

For a hyperboloidal layer we perform a real coordinate transformation, both
of space and time, beyond a certain timelike surface x = R, which we refer to
as the interface. We set

x−R =
ρ−R

Ω
, Ω = 1− (ρ−R)2

(S −R)2
Θ(ρ−R) , (28)

where the coordinate location of infinity satisfies S > R. The width of the
layer is S − R. The coordinates x and ρ coincide up to second order along the
interface.

A simple prescription for the heighten function can be obtained by requiring
that the outgoing characteristic speed is unity across the layer. For example,
the outgoing and incoming characteristic speeds c± for the wave equation on
ρ > 0 are

c± =
Ω2

L(±1−H)
, with L = Ω− (ρ−R)

dΩ
dρ
. (29)
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The requirement of unit outgoing characteristic speed reads c+ = 1, implying

1−H =
Ω2

L
. (30)

For ρ < −R we require c− = −1. The resulting characteristics are depicted in
figure 7. For |ρ| < R we obtain the standard characteristics in (x, t) coordinates.
For |ρ| > R we obtain the hyperboloidal characteristics in (ρ, τ) coordinates
(compare figure 5). No characteristics enter the computational domain.
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Figure 7: Characteristic structure for hyperboloidal layers with boundaries located at ρ =
±S = ±10 and interfaces at ρ = ±R = ±5. Compare the inner domain [−5, 5] to the left
panel of figure 5, and the layers [−10,−5] and [5, 10] to the right panel of figure 5.

The plane wave in the layer has the same form as in the interior under these
choices. It has been depicted on figure 8, where the dashed line indicates the
location of the interface. The important difference to the standard case is that
the incoming characteristic speed vanishes at the outer grid boundary.
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Figure 8: On the left panel we plot the plane wave solution with the compress function given
in (28) and the heighten function given in (30). The characteristic speeds are depicted on
the right panel in which the top and the bottom curves correspond to outgoing and incoming
characteristic speeds. The domain is given by ρ ∈ [0, 10] with a compactifying layer starting
at ρ = R = 5 as indicated by the dashed lines. The incoming characteristic speed at the outer
boundary vanishes, therefore no outer boundary conditions are needed in the layer.

There is a large freedom in the choices of compress and heighten functions,
which can be exploited for specific purposes. As an example, take a linear
compress function

Ω = 1− ρ−R
S −R

Θ(ρ−R), (31)
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and use the heighten function of standard hyperboloids translated by R

H =
x−R√

(x−R)2 + C2
Θ(x−R) . (32)

The resulting representation of the plane wave is plotted on the left panel of
figure 9 for C = 3. In this case we have fewer oscillations in the layer than in
the interior because of the spatial redshift controlled by C. A strong redshift,
and consequently few spatial oscillations, may be preferable in a high order
spatial discretization scheme in which a few grid points per wavelength are
sufficient for good accuracy. On the right panel of figure 9, however, we see that
strong spatial redshift comes at a price: the outgoing coordinate speed increases
strongly in the layer. Evaluation of c+ from (29) at infinity with our current
choices gives c+ = 2(S − R)2/C2. A small value for C with a wide layer leads
to a high outgoing characteristic speed, which requires small time steps in an
explicit time stepping algorithm. The balance between the accuracy in time
and in space can be influenced by the compress and heighten functions, and
the free parameters included in them. The specific choices will depend on the
requirements of the problem. It can be expected that in most cases the outgoing
characteristic speed in the layer will be chosen equal to the speed in the interior
domain as in figure 8.
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Figure 9: On the left we plot the plane wave solution with (31) and (32) for C = 3 in
the otherwise same setting as in figure 8. There are fewer oscillations in the layer due to the
stronger redshift causing a higher outgoing characteristic speed as depicted on the right panel.

The compactifying layer is similar to the PML in that both methods allow us
to solve the equations of interest in standard coordinates in an inner domain. In
both cases the interface between the inner domain and the layer is transparent on
the analytical level, independent of the frequency and angle of incidence of the
outgoing wave. The key difference is that the PML absorbs the outgoing wave
so that it is damped exponentially, whereas the compactifying layer transports
it to infinity. The solution in the hyperboloidal layer is of interest, as opposed to
the solution in the absorbing layer. In fact, the solution at the outer boundary
of the layer is of great interest in radiative systems because it gives the radiation
signal as observed by an idealized observer at infinity.
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3. Multiple dimensions

Hyperboloidal compactification is directly applicable in multiple dimensions
when compactification is performed in the outgoing direction. The main differ-
ence in multiple dimensions is that a rescaling of the unknown fields needs to
be performed such that the fields attain a non-vanishing finite limit at infinity.
The rescaling depends on the fall off behavior of these fields, and therefore on
the equation and the dimension of the problem.

3.1. Rescaling
We begin our discussion with the three dimensional wave equation on flat

space (
−∂2

t +4R3

)
u = 0.

Here, 4R3 is the Laplace operator on the three dimensional Euclidean space.
We write the wave equation in spherical coordinates to single out the outgoing
direction (

−∂2
t + ∂2

r +
1
r
∂r +

1
r2
4S2

)
u = 0,

with 4S2 as the Laplace-Beltrami operator on the two sphere. In section 2.3
we showed that hyperboloidal compactification introduces a divisor that is pro-
portional to the square of the compress function. With the compactification
r = ρ/Ω we see that any term beyond the flat wave operator on the (r, t) plane
that falls off as r−2 or faster is multiplied with at least Ω2, and is therefore
regular under hyperboloidal compactification.

The angular part of the wave equation in spherical coordinates admits a
regular compactification. The first radial derivative term, however, results in a
singular operator at infinity as a straightforward calculation shows. We resolve
this problem by rescaling. It is well known that the three dimensional wave
equation on the (r, t) plane takes the form of the one dimensional wave equation
in the rescaled variable v := ru. We get(

−∂2
t + ∂2

r +
1
r2
4S2

)
v = 0,

which admits a regular hyperboloidal compactification.
This procedure generalizes to dimensions other than three. The essential

feature of the rescaling is that it takes care of the fall off behavior of the scalar
field: in three dimensions ru attains a regular limit at infinity. In n dimensions,
the rescaling depends on n. Solutions to the wave equation decay asymptot-
ically as r−(n−1)/2 due to energy conservation. We expect therefore that the
n dimensional wave equation written for the rescaled variable v := r(n−1)/2u,
admits a regular hyperboloidal compactification.

The n dimensional wave equation in spherical coordinates reads(
−∂2

t + ∂2
r +

n− 1
r

∂r +
1
r2
4Sn−1

)
u = 0,
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where4Sn−1 is the Laplace-Beltrami operator on the n−1 sphere. Transforming
to the rescaled variable v := r(n−1)/2u, we get(

−∂2
t + ∂2

r −
1

4r2
(n− 1)(n− 3) +

1
r2
4Sn−1

)
v = 0.

All terms beyond the one dimensional wave operator fall off as r−2 and are
therefore amenable to a regular hyperboloidal compactification.

The inclusion of sources or of suitable nonlinearities is straightforward under
the condition that the corresponding terms in the equation fall off sufficiently
fast. For example, a power nonlinearity on the right hand side of the wave
equation of the type up leads to the forcing term vpr−(n−1)(p−1)/2. This term
is regular under hyperboloidal compactification if the power of r is −2 or lower,
which implies p ≥ 1+4/(n−1). The critical power for which equality is satisfied
is also the critical conformal power for semilinear wave equations with a power
nonlinearity. This is not a coincidence as explained in the next section.

3.2. Conformal method
Compactification of spacetimes with a suitable time transformation as pro-

posed by Penrose in [4] as well the hyperboloidal initial value problem as pro-
posed by Friedrich [5] employ conformal methods. The conformal language is
prevalent in studies of spacetimes in general relativity [12]. In this section we
discuss the hyperboloidal compactification from the point of view of conformal
techniques. This viewpoint is of theoretical and practical interest because it
reveals the interplay of conformal geometry, partial differential equations, and
numerical methods within the hyperboloidal approach, and also simplifies the
implementation of the method in certain cases. We emphasize, however, that
hyperboloidal compactification is independent of the conformal language.

In general, a hyperboloidal time transformation with a spatial compactifi-
cation leads to a singular metric. Consider the Minkowski metric in spherical
coordinates

η = −dt2 + r2dr2 + r2dσ2, (33)

where dσ2 is the standard metric on the unit sphere. Introducing new coordi-
nates τ and ρ as in (12) gives [6]

η = −dτ2 − 2HL
Ω2

dτdρ+
1−H2

Ω4
L2dρ2 +

ρ2

Ω2
dσ2.

This representation of the Minkowski metric is singular at infinity, but the
singularity can be removed by conformally rescaling the metric to obtain

g = Ω2η = −Ω2 dτ2 − 2HLdτdρ+
1−H2

Ω2
L2dρ2 + ρ2 dσ2. (34)

The conformal metric g is regular at null infinity by (16), and can be extended
beyond null infinity in a process referred to as conformal extension [4, 12, 13].
In this context, the function Ω is called the conformal factor. The zero set of
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the conformal factor corresponds to null infinity where it has a non-vanishing
gradient. These properties of the conformal factor lie behind our choices for the
compress function in the previous sections.

Partial differential equations within the conformal framework have first been
studied for fields with vanishing rest mass, such as scalar, electromagnetic, and
gravitational fields [13]. The key observation is that the complicated asymptotic
analysis of solutions to these partial differential equations can be replaced with
local differential geometry by considering the conformally transformed equations
in a conformally extended (regular) spacetime [14, 15].

We discuss the wave equation on Minkowski spacetime as an example for
conformal methods. Under a conformal rescaling of the Minkowski metric, g =
Ω2 η, the wave equation transforms as [12, 13](

�g −
n− 1

4n
R[g]

)
v = Ω−(n+3)/2 �η u, with v := Ω(1−n)/2u. (35)

Here, �g := gµν∇µ∇ν is the d’Alembert operator with respect to g, R[g] is the
Ricci scalar of g, and n is the spatial dimension of the spacetime. We recognize
the power of Ω that also appears in the definition of the rescaled variable v.
This rescaling is asymptotically equivalent to the rescaling in section 3.1 where
we factored out the fall off behavior of u such that the rescaled variable v has
a non-vanishing limit at null infinity. To see this, consider a concrete choice for
Ω that we made in previous sections, say Ω(ρ) = 1 − ρ as in (5). In terms of
the coordinate r = ρ/Ω, the conformal factor reads Ω(r) = (1 + r)−1, which
behaves asymptotically as r−1. Therefore the definition of v in (35) corresponds
asymptotically to the definition of v in section 3.1.

We can also explain the observation made at the end of section 3.1 concerning
the agreement between the critical conformal power and the critical power for
which hyperboloidal compactification leads to a regular equation. Using �ηu =
up and the definition of v in (35) we get at the right hand side of the conformally
invariant wave equation Ω((n−1)p−(n+3))/2vp. For the regularity of this forcing
term at infinity, where the conformal factor vanishes, we require (n − 1)p ≥
n + 3, which is the same condition as in section 3.1. Equality is obtained
for pc = 1 + 4/(n − 1) for which the semilinear wave equation is conformally
invariant, hence pc is called the critical conformal power.

The conformal approach may be useful for various reasons. It extends di-
rectly to asymptotically flat backgrounds with non-vanishing curvature [6, 16].
It suggests a hyperboloidal layer in which the rescaling is performed with a
conformal factor, or equivalently a compress function, such as (28). It also
helps identifying the transformation behavior of the equations independent of
coordinates. For example, Yang-Mills and Maxwell equations are conformally
invariant, and therefore do not require a rescaling of the variables. Note, how-
ever, that the splitting of the equations or the specific variables in which the
covariant equations are written may not be conformally invariant and may re-
quire a rescaling.
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3.3. Non-spherical coordinate systems
It is straightforward to employ non-spherical coordinate systems in combina-

tion with hyperboloidal compactification if there is a unique outgoing direction.
The outgoing direction is described by a coordinate that has closed coordinate
surfaces. The reason behind this requirement is that cuts of null infinity are
spheres.

An example that is useful especially in electromagnetism is given by prolate
spheroidal coordinates. The relation between Cartesian coordinates {x, y, z}
and prolate spheroidal coordinates {µ, ν, φ} reads

x = sinhµ sin ν cosϕ, y = sinhµ sin ν sinϕ, z = coshµ cos ν.

We have r2 = sinh2 µ + cos2 ν. Here, µ is the outgoing direction that has
closed coordinate surfaces. Compactification needs to be performed along µ.
Using the conformal method, we argue that if conformal compactification of
Minkowski spacetime in these coordinates leads to an explicitly regular metric,
the equations that we solve on that background will be regular. The Minkowski
metric reads

η = −dt2+dx2+dy2+dz2 = −dt2+(sinh2 µ+sin2 ν) (dµ2+dν2)+sinh2 µ sin2 ν dϕ2.

We introduce a new time coordinate by setting

τ = t−
√

1 + sinh2 µ.

The metric becomes

η = −dτ2− 2 sinhµdµdτ + sin2 ν dµ2 + (sinh2 µ+ sin2 ν)dν2 + sinh2 µ sin2 νdϕ2.

Compactification along the µ direction is performed via

sinhµ =
2ρ

1− ρ2
=
ρ

Ω
, dµ =

dρ

Ω
.

The conformal metric g = Ω2η becomes

g = −Ω2dτ2 − 2ρ dρ dτ + sin2 ν dρ2 + (ρ2 + Ω2 sin2 ν)dν2 + ρ2 sin2 ν dϕ2.

The qualitative behavior of this metric near infinity is similar to the conformal
Minkowski metric given in (34); the only difference is the coordinate represen-
tation. Therefore we conclude that hyperboloidal compactification of suitable
hyperbolic equations in prolate spheroidal coordinates leads to regular equations
as for spherical or oblate spheroidal coordinates.

It is not clear currently whether the method can be applied using Cartesian
or cylindrical coordinates. The open question is how to ensure regularity of the
equations at corners and edges with respect to limits to infinity. We leave this
question for future research.
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4. Numerical experiments

An essential advantage in numerical applications of hyperboloidal compact-
ification is the flexibility in the choice of coordinates. An arbitrary coordinate
system can be employed in an interior domain, whereas compactification is re-
stricted to a layer outside that domain. This idea is based on the matching
method presented in [6]. Numerical applications of the matching method have
been difficult in the past due to a blueshift in frequency in the matching region
and a large number of free parameters for the transition functions [17, 18, 19].

Hyperboloidal layers discussed in this paper give sufficiently smooth time
surfaces without transition functions. However, the layer, although transparent
on the analytical level, causes numerical reflections. We compare the numerical
accuracy of solutions with and without the layer in one dimension. In three
dimensions we focus on the application of hyperboloidal layers. Calculations
using hyperboloid foliations, that is, constant mean curvature surfaces without
the layer, have been presented in [19].

4.1. One spatial dimension
4.1.1. The analytical setup

Consider the Maxwell equations (26). Assume that the electric permittivity
and the magnetic permeability are constant and have unit value. Then the
Maxwell system for the unknown vector u = (Ē, H̄)T reads

∂τu = − Ω2

(1−H2)L

(
H 1
1 H

)
∂ρu. (36)

The characteristic speeds are c± = −Ω2/((±1 + H)L). This system is similar
to the wave equation written in first order symmetric hyperbolic form (25), so
our results apply both to Maxwell and wave equations in one dimension.

We experiment with two sets of choices for the compress and heighten func-
tions. First we employ the hyperboloid foliation everywhere in the simulation
domain. We set as in (19)

Ω =
S2 − ρ2

2CS
and H =

2Sρ
S2 + ρ2

.

The parameter C controls the coordinate speed of characteristics. They become
c± = ±(S ± ρ)2/(2CS). The minus sign corresponds to the incoming speed
at the right boundary. It vanishes at ρ = S as expected. The incoming speed
at the left boundary corresponds to the plus sign and it vanishes for ρ = −S.
The qualitative behavior of the characteristics is the same as depicted on the
right panel of figure 5. The time step in an explicit time integration scheme
is restricted by the maximum characteristic speed. In our case the maximum
speed reads 2S/C. To avoid very small time steps we choose C = S in our
numerical experiments.
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The second set of compress and heighten functions are chosen for hyper-
boloidal layers. We set the compress function as in (28)

Ω = 1− (ρ−R)2

(S −R)2
Θ(ρ−R).

We determine the heighten function from the requirement of unit outgoing char-
acteristic speeds through the layers. We set

H = 1− Ω2

L
for ρ > R , and H = −1− Ω2

L
for ρ < −R .

The characteristic structure for the resulting equations are depicted in figure 7.

4.1.2. The numerical setup
The hyperboloidal method is essentially independent of numerical imple-

mentation. We discretize (36) employing common methods. We use an explicit
fourth order Runge Kutta time integrator and finite differencing in space with
4th, 6th, and 8th order accurate centered operators. At the boundaries we apply
one sided stencils of the same order as the inner operator.

We compare the numerical implementation with and without artificial dis-
sipation. We use Kreiss-Oliger type artificial dissipation to suppress numerical
high-frequency waves [20]. For a 2p−2 accurate scheme we choose a dissipation
operator Ddiss of order 2p as

Ddiss = ε(−1)p
h2p−1

2p
Dp

+D
p
−,

where h is the grid size, D± are the forward and backward finite differencing
operators and ε is the dissipation parameter.

Both for the hyperboloid foliation and the layer we set S = 10. The simu-
lation domain is then given by ρ ∈ [−10, 10]. It corresponds to the unbounded
domain x ∈ (−∞,∞). The interface for the layer is at R = ±5. The layer
is constructed such that within the domain |ρ| < 5, hyperboloidal coordinates
(ρ, τ) coincide with standard coordinates (x, t).

We solve the initial value problem for (36) with a Gaussian wave packet cen-
tered around the origin for the electric field and vanishing data for the magnetic
field. We set at the initial time surface

Ē(ρ, 0) = e−ρ
2
, H̄(ρ, 0) = 0 .

We emphasize that the constructed solutions using the hyperboloid foliation and
the hyperboloidal layer correspond to different initial value problems due to the
different time surfaces. The solution constructed using the hyperboloidal layer
corresponds, however, to the solution that one would obtain using the standard
coordinates (x, t).
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4.1.3. The results
Figure 10 shows convergence factors for the electric field from a three level

convergence test with 100, 200, and 400 grid cells. The convergence factor
is measured for the electric field in the L2 norm and is calculated by Q :=
log2

‖Ēlow−Ēmed‖
‖Ēmed−Ēhigh‖ . The measured factors are in accordance with the imple-

mented finite difference operators.

2 4 6 8 10
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8

Q

Figure 10: Convergence factors in time in the L2 norm for the Maxwell equations in one space
dimension. Solid curves represent the hyperboloid foliation, dashed curves the layer method.
The curves indicate from bottom to top 4th, 6th, and 8th order convergence in accordance
with the order of implemented finite differencing operators.

By Huygen’s principle for Maxwell equations in flat spacetime energy is
completely radiated to infinity leaving the zero solution behind. A good measure
of the quality of the boundary treatment in such a simulation is the value of the
unknown after the initial wave packet leaves the simulation domain. This value
is related to the numerical reflection coefficient of the boundary. In our case,
the analytical reflection coefficients at the interfaces and at the boundaries are
zero.

20 40 60 80 100
Τ

10-14

10-11

10-8

10-5

0.01

°E´

20 40 60 80 100
Τ

10-10

10-7

10-4

0.1

°E´

Figure 11: The L2 norm of the electric field in time for 4th (red), 6th (green), and 8th (blue)
order finite differencing with respect to the hyperboloid foliation (left) and the hyperboloidal
layer (right). The curve indicating smaller errors to each order corresponds to the solution
with artificial dissipation. The plot shows that the effect of dissipation to the quality of the
solution is comparable to using a higher order numerical discretization. Errors with the layer
method are larger than errors with the hyperboloid foliation due to numerical reflections at
the interface.

Numerically, however, it can be expected that the interfaces and the finite
differencing at the outer boundaries cause reflections. To measure these reflec-
tions we plot the L2 norm of the solution as a function of time in figure 11.
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The plot on the left depicts the field for the hyperboloid foliation, the one on
the right for the layer. The errors are larger for the layer as expected. Red,
green, and blue curves represent solutions calculated with 4th, 6th, and 8th
accurate finite difference operators respectively. To each order we calculate the
solution with and without dissipation. Artificial viscosity reduces numerical er-
rors strongly. Its effect to the quality of the solution is similar to using a higher
discretization method. Figure 11 shows that the error at late times with 4th
order stencils with dissipation has the same order of magnitude as the one with
8th order stencils without dissipation.
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Figure 12: Comparison of numerical errors as indicated by late time values of the L2 norm of
the electric field between a numerical solution with low (red) and high accuracy (blue) for the
hyperboloid (left) and the layer (right) method. Accuracy with hyperboloidal compactification
is not restricted by the boundary treatment.

The main result from figures 10 and 11 is that the numerical error can be
reduced by using higher resolution, higher order discretization, and artificial vis-
cosity. The boundary treatment does not introduce errors into the solution that
are put in by hand. To emphasize this point, we plot in figure 12 two solutions
using the hyperboloid foliation and the layer method. For each method, one
solution is obtained with 4th order finite differencing, without dissipation, and
100 grid cells (red curve); the other solution is obtained with 8th order finite
differencing, with dissipation, and 200 grid cells (blue curve). The combined
effect of these improvements demonstrates that accuracy with hyperboloidal
compactification is not restricted by the boundary treatment but by the numer-
ical accuracy in the simulation domain.

4.2. Three spatial dimensions
In this section we present a numerical implementation of hyperboloidal layers

for the scalar wave equation in three spatial dimensions. We apply the conformal
method to the scalar wave equation as in section 3.2. Tests with constant mean
curvature foliations can be found in [19].

4.2.1. The analytical setup
Consider the wave equation with a focussing power nonlinearity, �ηu = −up.

To construct solutions to this equation, we solve the conformal scalar wave
equation

�gv =
1
6
R[g] v − Ωp−3 vp, (37)
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where g is the conformal metric, R[g] is the Ricci scalar to the metric g, and v =
Ω−1u. The conformal metric g is obtained from the Minkowski metric η given
in (33) by the time transformation τ = t − h(r), the spatial compactification
r = ρ/Ω, and the conformal rescaling g = Ω2η. We choose the conformal
factor Ω such that it is unity in a compact domain bounded by radius R, the
coordinate location of the interface, and such that it approaches zero towards
the outer boundary located at S, the coordinate location of infinity. We set

Ω = 1−
(
ρ−R
S −R

)4

Θ(ρ−R), L = 1 +
(ρ−R)3(3ρ+R)

(S −R)4
Θ(ρ−R) .

This choice leads to a continuous Ricci scalar at the interface. The heighten
function is chosen such that the outgoing characteristic speed through the layer
is unity (30). The conformal metric becomes

g = −Ω2dτ2 − 2(L− Ω2) dτdρ+ (2L− Ω2) dρ2 + ρ2dσ2.

For ρ < R we recover the Minkowski metric (33). The characteristic speeds of
spherical wave fronts are

c± =
L± L− Ω2

2 L− Ω2
.

The outgoing speed is of spherical wave fronts unity everywhere, and the in-
coming speed vanishes at infinity, but is unity inside the domain ρ < R. The
characteristic structure is similar to the right half of figure 7. The Ricci scalar
reads

R[g] =
6Ω(ΩL′ − 2LΩ′)

ρ2L3
.

The apostrophe denotes the derivative by the argument.

4.2.2. The numerical setup
We apply similar numerical techniques as those that have been used to test

constant mean curvature foliations presented in [19]. A current requirement
for the application of the hyperboloidal method is a spherical grid boundary.
We use a code that can handle spherical boundaries called the Spectral Ein-
stein Code (SpEC) [21]. Spatial derivatives are discretized by a pseudospectral
method: Chebyshev polynomials in the radial direction, spherical harmonics in
the angular directions. Time integration is performed with a Runge-Kutta algo-
rithm. The scalar wave equation is written in first order symmetric hyperbolic
form. Characteristic information is exchanged between the subdomains. The
numerical grid consists of an inner cube around the origin and spherical shells
extending to a spherical outer boundary that corresponds to infinity as depicted
in figure 13 (see [19] for details).

Our simulation domain in the radial direction is given by ρ ∈ [0, 20]. The
domain structure includes a cube around the origin with the domain xi ∈ [−2, 2]
and 4 spherical shells extending to future null infinity (figure 13). The interface
to the layer is located at R = 10. There is no specific reason for setting the
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Figure 13: The numerical grid for calculations in Minkowski spacetime. We have a cube
around the origin with the domain [−2, 2] in each Cartesian direction and 4 spherical shells
extending from ρ = 2 to future null infinity at ρ = 20. The colors depict off-centered Gaussian
initial data for the time derivative of the scalar field.

interface at R = 10. Future research should determine how the width of the
hyperboloidal layer effects numerical accuracy of the calculations. The colors in
figure 13 depict the off-centered data prescribed for the time derivative of the
scalar field. The data for the scalar field vanishes.

4.2.3. The results
Spatial truncation errors converge exponentially in a pseudospectral code.

We show such spectral convergence in figure 14 for an evolution with vanishing
source and off-centered initial data as measured by the L2-norm of the constraint
field

Ci = vi − ∂iv, (38)

in time. Each curve corresponds to an evolution with N collocation points in
each direction (radial and angular directions in the shells, Cartesian directions
in the cube around the origin). The constraint error grows slowly in time but
the evolution is stable. Convergence is not disturbed by the presence of the
boundary located at ρ = 20.

A stringent test for boundary methods is the inclusion of nonlinear terms
in the equations. The boundary treatment for semilinear wave equations is
a difficult problem, especially in three spatial dimensions [3]. Therefore, we
present results from the wave equation with a cubic power nonlinearity as a
source term. We set p = 3 in (37). There is backscatter due to self interaction
of the field violating Huygen’s principle. Transparency boundary conditions
must not eliminate all reflections from the outer boundary but only spurious
ones. This makes the treatment of the boundary difficult within the artificial
outer boundary problem.

The backscatter by the nonlinear term leads to a late time polynomial decay
of the solution. The field at late times decays as t−2 at a finite distance from
the origin. The rescaled field at infinity decays as t−1. It is difficult to obtain
the correct decay rate at a finite distance with an artificial outer boundary.
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Figure 14: Spectral convergence for the evolution of off-centered initial data in Minkowski
spacetime by the L2 norm of the constraint fields Ci (38).

The decay rate at infinity is not even accessible with standard methods. Figure
15 shows that both rates can be calculated accurately with the hyperboloidal
method. The local decay rate is defined as d ln |v(ρ, τ)|/d ln τ . The invariance of
the time direction under hyperboloidal transformations implies that the decay
rates calculated with the hyperboloidal method are equivalent to the decay rates
calculated with the untransformed equations.
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Figure 15: Local decay rates for the cubic wave equation measured by observers lo-
cated from top to bottom at ρ = {20, 19.97, 19.9, 19.8, 19.4, 17.86}, or equivalently at r =
{∞, 1970, 500, 226, 87, 29}. The bottom curve that corresponds to the fastest decay bends up
after τ = 500 due to accumulation of numerical errors.

Any numerical method fails after a certain time due to accumulation of nu-
merical errors. In figure 15 the bottom curve that corresponds to the fastest
decay bends up after about τ = 500. This behavior is expected, and is due to
accumulated numerical errors. We can delay its appearance by increasing the
numerical resolution of the simulation. This suggests that the long time accu-
racy of the solution is not limited by the location of the boundary or the order
of boundary conditions, but solely by the accuracy of the interior calculation.
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5. Discussion

Hyperboloidal compactification provides a clean solution to the artificial
outer boundary problem in certain cases by allowing us to solve suitable hyper-
bolic equations numerically on unbounded domains. It originates in studies of
asymptotic structure of spacetimes in general relativity [4, 5]. It is remarkable
that such a practical method can be derived from the interface between differen-
tial geometry, conformal structure, partial differential equations, and numerical
analysis.

With the hyperboloidal layer method, in which compactification is restricted
to a layer, we can apply arbitrary coordinates in an interior domain, and we
have quantitative access to the asymptotic solution. The numerical boundary
of the simulation domain corresponds to infinity, and therefore no outer bound-
ary conditions are needed. The hyperboloidal time transformation leads to a
non-vanishing coordinate speed for outgoing characteristics up to and including
infinity with respect to compactifying coordinates.

Some further advantages of the hyperboloidal method are as follows. The
wavelength of outgoing radiation can be influenced by free parameters, which
can be used to improve efficiency of numerical calculations. The transforma-
tions can be applied in a straightforward manner to various covariant hyperbolic
equations, such as wave, Maxwell, or Yang-Mills equations. Inclusion of source
terms and nonlinearities poses no difficulties as long as certain asymptotic fall-
off conditions are satisfied. Calculation of boundary data that depends on the
particular system of equations is not necessary. The boundary treatment intro-
duces no errors, therefore no error controlling is needed. There is no overhead
in software implementation of boundary routines. The geometric nature of the
method makes it largely independent of numerical schemes.

The disadvantages of the method should be studied in future research. An
important current limitation is the requirement of spherical or spheroidal grids
near the outer boundaries. It is not clear whether hyperboloidal compactifica-
tion can be performed using Cartesian or cylindrical coordinates, which require
a stable numerical treatment of corners and edges. Another interesting question
is whether the method can be extended to non-covariant problems, or problems
including infinitely extended matter fields, such as anisotropic elastic waves,
optical waveguides, or Euler equations.

The decision whether to apply hyperboloidal compactification or not can
only be made after detailed comparative studies. In this context, it would be
interesting to compare the hyperboloidal method with other approaches to the
outer boundary problem, such as absorbing boundary conditions or perfectly
matched layers.

The idea of boosting the time direction for certain purposes may find appli-
cations other than compactification. It seems that transformations of the char-
acteristic cone for hyperbolic equations has been left largely unexplored outside
numerical relativity. The presented solution of the outer boundary problem
may be just one application of such transformations. Others might be useful,
for example in numerical studies of high frequency waves.

24



Acknowledgments
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