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a b s t r a c t

We are concerned with the critical threshold phenomena in the restricted Euler (RE) equations. Using
the spectral and trace dynamics we identify the critical thresholds for the 3D and 4D restricted Euler
equations. It is well known that the 3D RE solutions blow up. Projected on the 3-sphere, the set of initial
eigenvalues which give rise to bounded stable solutions is reduced to a single point, which confirms that
the 3D RE blowup is generic. In contrast, we identify a surprisingly rich set of the initial spectrum on the
4-sphere which yields global smooth solutions; thus, 4D regularity is generic.

© 2009 Published by Elsevier B.V.

1. Restricted Euler equations and spectral dynamics

We are concerned with the questions of global regularity vs.
finite-time breakdown of Eulerian flows governed by
∂tu+ u · ∇xu = F , x ∈ Rn, t > 0.
Here u is the velocity field, u := (u1, u2, . . . , un)> : R1+n 7→
Rn, and its global behavior is dictated by the different models of
the forcing F = F(u,∇u, . . .). For forcing involving viscosity and
pressure, we meet the well-known Navier–Stokes (NS) equations,

∂tu+ u · ∇xu = ν1u−∇p, x ∈ Rn, t > 0, (1.1)
augmented with the incompressibility condition, ∇ · u = 0 and
subject to prescribed initial conditions u(x, 0) = u0(x). In many
applications, ν > 0 is sufficiently small so that one can anticipate
the behavior of slightly viscous NS solutions to be described by the
Euler equations with ν = 0 in (1.1), at least for flows occupying
the whole space so that the important effects of boundary layers
can be ignored.
The velocity gradient of the incompressible Euler equations,

M := ∇xu then solves

∂tM + u · ∇xM +M2 = −(∇ ⊗ ∇)p. (1.2)
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Taking the trace of (1.2) while noting that M is trace-free, tr M =
∇ ·u = 0, one finds that tr M2 = −∆pwhich dictates the pressure
as p = −∆−1(tr M2). The second term in (1.2) therefore amounts
to the n× n time-dependent matrix

(∇ ⊗ ∇)∆−1(tr M2) = R[tr M2].

Here R[w] denotes the so-called Riesz matrix — an n × n matrix
whose entries, (R[w])jk := RjRk(w), involve the Riesz transforms
Rj, Rj = −(−∆)−1/2∂j, i.e.,

R[w] :=
{
RjRk(w)

}n
j,k=1 , R̂j(w)(ξ) = −i

ξj

|ξ |
ŵ(ξ)

for 1 ≤ j ≤ n.

This furnishes an equivalent, self-contained formulation of Euler
equations, expressed in terms of the velocity gradient M = ∇xu,
which is governed by,

∂tM + u · ∇xM +M2 = R[tr M2], M = ∇xu, (1.3)

and subject to the trace-free initial data, M(·, 0) = M0. Observe
that the invariance of incompressibility is already taken into
account in (1.3) since tr M2 = tr R[tr M2] implies that (∂t + u ·
∇x)tr M = 0 and hence tr M = tr M0 = 0.
It is the global nature of the Rieszmatrix, R[tr M2], whichmakes

the issue of regularity for Euler and NS equations such an intricate
question to solve, both analytically and numerically, [1]. Various
simplifications to this pressure Hessian, R[trM2] = −∇ ⊗ ∇p
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were sought, e.g., [2–6]. In this paper we focus our attention on the
so-called restricted Euler equations, proposed in [7,3] as a localized
alternative of the full Euler equation (1.3). By the definition of the
Riesz matrix, one has

R[tr M2] = ∇ ⊗ ∇∆−1[tr M2] = ∇ ⊗ ∇
∫

Rn
K(x− y)(tr M2)(y)dy,

where the kernel K(·) is given by

K(x) =


1
2π
ln|x| n = 2,
1

(2− n)ωn|x|n−2
n > 2,

with ωn denoting the surface area of the unit sphere in n dimen-
sions. A direct computation yields

∂j∂kK ∗ tr M2 =
tr M2

n
δjk

+

∫
Rn

|x− y|2δjk − n(xj − yj)(xk − yk)
ωn|x− y|n+2

tr M2(y)dy. (1.4)

Ignoring the singular integrals on the right of (1.4), we are left
with the local part of the Riesz matrix R[tr M2], given by tr M2
In×n/n. We use this local term to approximate the pressure Hessian
in (1.3). The resulting restricted Euler (RE) equations amount to

∂tM + u · ∇xM +M2 =
1
n
tr M2In×n. (1.5)

This is a matrix Ricatti equation for the n × n matrix M , which
should mimic the dynamics of the velocity gradient, ∇u in the
full Euler equations. We observe that as in the full Euler equa-
tions, incompressibility ismaintained in the restrictedmodel, since
trM2 = tr[tr M2In×n/n] implies that (∂t + u · ∇x)tr M = 0 and
hence tr M = tr M0 = 0. The 3D RE (1.5) has attracted great atten-
tion since it was first introduced in [7,3] as a local approximation
to the full 3D Euler equations. It can be used to understand the lo-
cal topology of the Euler dynamics and to capture certain statistical
features of physical turbulent flows, consult [8,9,3].
What about the global regularity of the RE equation (1.5)? the

finite-time breakdown of the 3D restricted model goes back to the
original work of Viellefosse [3]. In [10] we have shown that the 3D
RE solutions break down at a finite time for all initial configurations
M0, except for the special case whenM0 has three real eigenvalues,

λ1(0) ≤ λ2(0) ≤ λ3(0),
{
λj(0) = λj(M0)

}3
j=1 ,

which are aligned along the ray (−r,−r, 2r), r ∈ R+. Thus, the
finite-time breakdown of the 3D RE equations is generic.
In this paper we shall identify and compare between the

restricted Euler equations in 3D and 4D case, respectively. To this
end, we consider a bounded, divergence-free, smooth vector field
u : Rn×[0, T ] → Rn. Let x = x(α, t) denote an orbit associated to
the flow by

dx
dt
= u(x, t), 0 < t < T , x(α, 0) = α ∈ Rn.

Then along this orbit, the velocity gradient tensor of the restricted
Euler equation (1.5) satisfies

d
dt
M +M2 =

tr M2

n
In×n,

d
dt
:= ∂t + u · ∇x.

By the spectral dynamics lemma 3.1 in [10], the corresponding
eigenvalues ofM satisfy

d
dt
λi + λ

2
i =

1
n

n∑
j=1

λ2j , i = 1, . . . , n. (1.6)

This is a closed system forΛ(t) = (λ1(t), λ2(t), . . . , λn(t)), which
serves as a simple approximation for the evolution of the velocity
gradient field.
For arbitrary n ≥ 3, we use the spectral dynamics of M in

order to show the existence of a large set of initial configurations
leading to finite-timebreakdownof (1.6), generalizing theprevious
result of [3]. The finite-time breakdown of the n-dimensional
RE equations (and the precise topology of the breakdown) was
established in [10] after we identified a set of [n/2] + 1 global
spectral invariants, interesting for their own sake. Yet, this does
not exclude the possible existence of other generic sets of initial
data, for which global smooth solutions exist. The distinction
between these two sets of initial conditions is identified by the so-
called critical threshold surfaces in configuration space: finite-time
breakdown occurs for super-critical initial data on ‘‘one side’’ of the
such critical threshold, while the set of subcritical initial data on the
‘‘other side’’ of the threshold yields global smooth solutions.
An interesting question therefore arises, namely, whether there

exists a critical threshold for the 4D restricted Euler equation. This
remarkable critical threshold phenomenawas identified in [11,12]
for a class of essentially 1D Euler–Poisson equations, and in [13]
for a 1D convolution model for nonlinear conservation laws. The
2D critical threshold phenomena has been recently confirmed
for a restricted Euler–Poisson system [14] and a rotating Euler
equation [15,16]. In all these cases, we identified large, generic sets
of subcritical initial data, which evolve to global smooth solutions.
This is in contrast to the generic scenario of finite-time blows up in
the 3D RE equations.2
In this paper we identify the exact critical thresholds for the 4D

restricted Eulerian (RE) equations and we conclude with the sur-
prising result that in the 4D case, the RE equations admit a large,
generic set of subcritical initial data which give rise to global
smooth solutions.
A summary of our results is outlined below. We say that Λ0 ∈

Rn is subcritical if there exists a global solution in time of (1.6),
subject to initial conditions, Λ(0) = Λ0. A first observation rests
on the obvious symmetries of (1.6).

Lemma 1.1. If Λ is subcritical then so is rΛ,∀r > 0. Moreover,
Λσ = {λσ(j),∀σ ∈ πn} is also subcritical.

For the proof we note that if Λ(t) is the global solution corre-
sponding to Λ0, then rΛ(rt), r > 0 is the global solution corre-
sponding to rΛ0. Also, Eqs. (1.6) remain invariant under arbitrary
permutation σ which amounts to reordering, exchanging the λj-
equation with λσ(j)-equation. It follows that the set of subcritical
initial data consists of rays, and therefore, it is enough to consider
the projection of this set on the unit sphere. In fact, we can restrict
attention to an orthant of any convex set containing the origin. In
this context we have

Theorem 1.1. Solutions to (1.6) with n = 3 remain bounded for all
time if and only if the initial data Λ0 := (λ10, λ20, λ30) lie in the
following set

r{(−1,−1, 2)σ }.

Restricted to one orthant of the unit sphere, we thus find that
the 3D RE equations admit only one subcritical point. In this sense,

2 We should emphasize that generic subcritical data are not limited to a
perturbative statement of global existence for initial data in the local neighborhood
of certain ‘‘preferred configurations’’. Instead, the precise notion of ‘‘generic’’
subcritical sets, quantified below and the references mentioned above, makes it
clear the critical threshold phenomena we seek describes a global scenario in
configuration space.
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the finite-time breakdown of 3D RE is generic. This result was
already obtained in [10] by spectral dynamics analysis. In Section 4
we present an alternative, equivalent argument based on trace
dynamics of tr(Mk), 1 ≤ k ≤ n, which paves the way for identi-
fying our 4D critical threshold surface in Section 5.
In contrast to this generic 3D finite-time breakdown, the 4D RE

equations admit a large class of global smooth solutions. Our 4D
results are summarized below.

Theorem 1.2. Solutions to (1.6) with n = 4 remain bounded for all
time if and only if the initial data Λ0 := (λ10, λ20, λ30, λ40) with∑4
j=1 λj0 = 0, up to a permutation, lie in one of the following sets
{i}Two pairs of arbitrary complex eigenvalues,

Λ0 ∈ {(a+ ib, a− ib,−a+ ic,−a− ic), bc 6= 0}.

{ii}One pair of complex eigenvalue with two equal real eigenvalues

Λ0 ∈ {(a+ ib, a− ib,−a,−a), b 6= 0}.

{iii}Real eigenvalues,

Λ0 ∈ {(a+ b, a− b,−a,−a), b ∈ [−2a, 2a], a ≥ 0}.

We remark that M is a real matrix of even dimension, therefore
its eigenvalues come generically in complex conjugate pairs. If in
addition one imposes the traceless condition, we conclude that in
fact the form {i} of initial condition is generic.
Expressed in terms of traces mk := tr(Mk), these initial

configurations form a ‘‘large’’ subcritical set which can be realized
by its projection on the surfaceΣ ,

Σ := {Λ | 4m4 − 2m22 − 2m2 + 3 = 0, m1 = 0},

mk :=
4∑
j=1

λkj .

Theorem 1.3. Solutions to (1.6) with n = 4 remain bounded for
all time if and only if there exists a r > 0 such that the initial data
Λ0 := (λ10, λ20, λ30, λ40) lie in the following set

rΛ0 ∈ Σ ∩
[{
|m3| ≤

3
2
(1−m2),m2 ≤ 1

}
∪

{
m3 =

3
2
(m2 − 1), m2 > 1

}]
.

The set stated in Theorem 1.3 is non-trivial; in fact, it contains non-
zero neighborhoods.
After this introduction of restricted Euler equations and the as-

sociated spectral dynamics, we identify the 4D subcritical initial
configurations in terms of eigenvalues in Section 2. An alternative
formulation of the spectral dynamics — called trace dynamics is
derived in Section 3. Based on the trace dynamics we identify the
critical thresholds for 3D case in Section 4 and the 4D model in
Section 5. Finally in the Appendix we establish the correspondence
between the subcritical eigenvalues and the subcritical set for ini-
tial traces.

2. 4D spectral dynamics

Let λ = λi solve the restricted Euler equation

d
dt
λi + λ

2
i =

1
4

4∑
j=1

λ2j , i = 1 · · · 4. (2.1)

Two independent global invariants obtained in [10] are

(λ1 − λ2)(λ3 − λ4) = (λ10 − λ20)(λ30 − λ40) (2.2a)

and

(λ1 − λ3)(λ2 − λ4) = (λ10 − λ30)(λ20 − λ40). (2.2b)

We now prove Theorem 1.2 based on these global invariants. In
view of the incompressibility invariant

∑4
j=1 λj = 0, we can

express the remaining three spectral degrees of freedom as Λ =
(a + b, a − b,−a + c,−a − c)>, where a is real, a ∈ R, and b or
c are either real b, c ∈ R or purely imaginary, b, c ∈ iR. The two
global invariants (2.2) now read

bc = b0c0 (2.3a)

and

4a2 − b2 − c2 = 4a20 − b
2
0 − c

2
0 . (2.3b)

The spectral dynamics (2.1) amounts to the 3× 3 closed system,

d
dt
a = −

1
2
b2 +

1
2
c2, (2.4a)

d
dt
b = −2ab, (2.4b)

d
dt
c = 2ac, (2.4c)

subject to initial data (a0, b0, c0). Observe that both b = 0 and
c = 0 are global invariants, thus the only equilibrium points of
(2.4) when b0c0 6= 0 lie along the curves (0, b∗, c∗), b∗ = ±c∗.
From (2.4b) and (2.4c) it is clear that if either b0 or c0 are purely
imaginary then they remain so for all time. Thus,weneed to discuss
three cases in order.
{i} Two pairs of complex eigenvalues, a0 ± ib0 and −a0 ± ic0

with b0c0 6= 0. Setting (a, b, c) 7→ (a, ib, ic) in (2.3b) we obtain
the global invariant

4a2 + b2 + c2 = 4a20 + b
2
0 + c

2
0 .

In this case, all trajectories remain bounded for all time.
{ii} One pair of complex eigenvalues, a0 ± ib0, b0 6= 0 and

−a0 ± c0. Setting (a, b, c) 7→ (a, ib, c) in (2.3b), then the global
invariant (2.3b) becomes

4a2 + b2 − c2 = 4a20 + b
2
0 − c

2
0 .

We distinguish between two cases. If c0 = 0, then by (2.4c) c(t) ≡
0, and the reduced global invariant, 4a2 + b2 = 4a20 + b

2
0, implies

that both a and b remain bounded for all t > 0. If c0 6= 0, then the
Eq. (2.4a) becomes

d
dt
a =

1
2

(
b2 +

(b0c0)2

b2

)
,

this shows that no finite equilibrium point of the system (2.4a)–
(2.4c) is stable,which excludes thepossibility of a globally bounded
solution when b0c0 6= 0.
{iii} Two real eigenvalues, a0 ± b0 and−a0 ± c0. Again, we dis-

tinguish between two cases. Assume that two initial eigenvalues
coincide, say c0 = 0 (if b0 = 0, we end up with a similar scenario
which amounts to a permutation of the c0 = 0 case). Then c(t) ≡ 0
and the remaining (a, b) satisfy the reduced 2× 2 system

d
dt

(
a
b

)
=

(
−b2/2
−2ab

)
,

with the corresponding global invariant 4a2−b2 = 4a20−b
2
0. Now,

since ddt a = −b
2/2 ≤ 0, it follows that a > 0 is decreasing while

b must approach the stable equilibrium points (a∗ > 0, 0) along
the positive a-axis, as ddt b = −2ab has the opposite sign of b. Thus,
trajectories remain bounded in the invariant sector |b0| ≤ 2a0.
Finally, assume no pair of initial eigenvalues coincide, b0c0 6= 0.

Then, since the global invariants (2.3a) and (2.3b) are not compact,
the only possible bounded solutions are those converging to the

Please cite this article in press as: H. Liu, et al., Global regularity of the 4D restricted Euler equations, Physica D (2009), doi:10.1016/j.physd.2009.07.009
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equilibrium points (0,±c∗, c∗). But when substituted into both
(2.3a) and (2.3b), this implies that
4a20 = (b0 ± c0)

2,

which is satisfied only if at least one pair of initial eigenvalues
coincide, i.e. a0 ± b0 = −a0 ± c0. We conclude that for real
eigenvalues, only those of the form (a0 + b0, a0 − b0,−a0,−a0)
with |b0| ≤ 2a0, a0 ≥ 0 lead to global bounded solution.

3. Trace dynamics

This section is devoted to an alternative formulation of the
spectral dynamics in terms of real quantities mk :=

∑n
j=1 λ

k
j , k =

1, . . . , n, where λ = λi solves the restricted Euler equation

d
dt
λi + λ

2
i =

1
n

n∑
j=1

λ2j , i = 1 · · · n. (3.1)

This is motivated by the trace dynamics originally studied in [3]
for n = 3. The use of trace dynamics enables us to obtain an
explicit description of the critical threshold surface for initial
configurations.
Here we seek an extension for the general n-dimensional set-

ting, which is summarized in the following

Lemma 3.1 ([10]). Consider the n-dimensional restricted Euler
system (3.1) subject to the incompressibility condition m1 :=∑n
j=1 λj = 0. Then the traces mk for k = 2, . . . , n satisfy a closed

dynamical system, see (3.2)–(3.6) below, which governs the local
topology of the restricted flow.
Proof. Based on the spectral dynamics the evolution equation for
each eigenvalue λi can be written as

d
dt
λi + λ

2
i =

1
n
m2, i = 1 · · · n.

By multiplying kλk−1i and summation over iwe obtain

d
dt
mk + kmk+1 =

k
n
m2mk−1, k = 2 · · · n.

Note thatm1 = 0 we have

d
dt
m2 + 2m3 = 0, (3.2)

d
dt
m3 + 3m4 =

3
n
m22, (3.3)

· · ·

d
dt
mn + nmn+1 = mn−1m2. (3.4)

To close the system, it remains to express mn+1 in terms of
(m1, . . . ,mn). To this end we utilize the characteristic polynomial

λnj + q1λ
n−1
j + · · · qn−1λj + qn = 0, (3.5)

expressed in terms of the characteristic coefficients

q1 = −m1 = 0, q2 = −
1
2
m2, q3 = −m3/3,

q4 = −m4/4+m22/8, · · · .

Note that the q’s can be expressed in terms of (m1, . . . ,mn). Using
(3.5) onemay reducemn+1 in (3.4) to lower-order products. In fact,∑n
j=1(λj × (3.5)j) gives

mn+1 + q2mn−1 + · · · + qn−1m2 = 0. (3.6)

Substitution into (3.4) yields the closed systemwe sought for. �

We demonstrate the above procedure by considering the two
examples of 3D and 4D critical thresholds.

4. 3D critical thresholds: finite-time blowup

This section is devoted to the study of the 3D critical thresholds,
see [3,8]. In the 3D case one has

q1 = 0, q2 = −
1
2
m2, q3 =

n∏
j=1

λj = −
1
3
m3,

hence

λ3i −
1
2
m2λi −

1
3
m3 = 0, i = 1, 2, 3.

Multiplying by λi and taking the summation over iwe find

m4 =
1
2
m22.

Thus a closed system is obtained,

d
dt
m2 + 2m3 = 0, (4.1)

d
dt
m3 +

1
2
m22 = 0. (4.2)

From (4.1) and (4.2) it follows that
d
dt
[6m23 −m

3
2] = 6m3

d
dt
m3 − 3m22

d
dt
m2 = 0,

which yields a global invariant

6m23 −m
3
2 = Const.

We consider the phase plane (m2,m3), except for the separatrix
6m23 = m32, all other solutions would not approach the origin.
The phase plane is divided into two parts by this separatrix. The
nonlinearity ensures that trajectories which do not pass the origin
must lead to infinity at finite time. In fact for initial data from the
region {(m2,m3),m2 >

3√6 m2/33 }, the corresponding trajectories
will remain in this region since the system (4.1) and (4.2) is
autonomous. Therefore (4.2) leads to

d
dt
m3 < −

1
2
3√36 m4/33 . (4.3)

Since ddtm3 = −
1
2m

2
2, m3(t) is always decreasing in time. Even for

positivem3(0), there exists a finite-time T ∗ such thatm3(T∗) < 0.
The integration of (4.3) over [T ∗, t) gives

m3(t) <
[
3
2
3√36(t − T ∗)+m3(T ∗)−1/3

]−3
.

This shows thatm3(t)→−∞when t approaches a time before

T ∗ +
2

3 3
√
36
(−m3(T ∗))−1/3.

Finite-time breakdown can be similarly justified for initial data
lying in the region {(m2,m3),m2 <

3√6 m2/33 }. These facts enable
us to conclude the following

Theorem 4.1. Consider the system (4.1) and (4.2) with initial data
(m2(0), m3(0)). The global bounded solution exists if and only if the
initial data lie on the curve{
(m2,m3) | m3 =

1
√
6
m3/22

}
.

We now turn to interpret this condition in terms of the
eigenvalues. SetΛ = (λ1, λ2, λ3), the above critical stable set can
be written as

Ω =

{
Λ |

3∑
k=1

λ3k =
1
√
6

(
3∑
k=1

λ2k

)3/2
,

3∑
k=1

λk = 0
}
.

Please cite this article in press as: H. Liu, et al., Global regularity of the 4D restricted Euler equations, Physica D (2009), doi:10.1016/j.physd.2009.07.009
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The homogeneity of the above constraint in terms of eigenvalues
implies that ifΛ ∈ Ω , then rΛ ∈ Ω ∀r > 0.
Without loss of generality we consider the restriction ofΩ onto

a ball
∑3
k=1 λ

2
k = r

2, denoted by Ω(r). There are two cases to be
considered:
The initial eigenvalues contain complex components, sayΛ0 =

(a − bi, a + bi, c) for real a, b, c ∈ R. The restricted setΩ(
√
6) is

determined by

c + 2a = 0, 2a2 − 2b2 + c2 = 6,

2a(a2 − 3b2)+ c3 = r3/
√
6 = 6.

Eliminating c we have

6a2 − 2b2 = 6, −6a(a2 + b2) = 6
⇒ 4a3 − 3a+ 1 = (a+ 1)(2a− 1)2 = 0,

which has real roots a ∈ {−1, 0.5, 0.5}, from which no real b 6= 0
can be found.
The only possible scenario is the real eigenvalue Λ0 =

(a, b, c) ∈ R3. Restriction again onΩ(
√
6)we have

a+ b+ c = 0, a2 + b2 + c2 = 6, a3 + b3 + c3 = r3/
√
6 = 6.

Eliminating a, b we have c3 − 3c − 2 = 0 with real roots c ∈
{2,−1,−1}. The symmetric property implies that a, b also lie in
the set {2,−1,−1}. In short one has

Ω(
√
6) = {Λ|(−1,−1, 2), (−1, 2,−1), (2,−1,−1)}.

This when combined with the above scaling property leads to the
result stated in Theorem 1.1.

5. 4D critical thresholds: global regularity

In the 4D case one has

q1 = 0, q2 = −
1
2
m2, q3 = −

1
3
m3, q4 = −

m4
4
+
m22
8
.

Hence

λ4i −
1
2
m2λ2i −

1
3
m3λi −

m4
4
+
m22
8
= 0, i = 1 · · · 4.

Multiplying by λi and taking the summation we obtain

m5 =
1
2
m2m3 +

1
3
m3m2 =

5
6
m2m3.

Therefore the resulting closed system becomes

d
dt
m2 = −2m3, (5.1)

d
dt
m3 =

3
4
m22 − 3m4, (5.2)

d
dt
m4 = −

7
3
m3m2. (5.3)

From (5.1) and (5.3) it follows that

d
dt

(
m4 −

7
12
m22

)
= 0,

which gives a global invariant

m4 −
7
12
m22 = m40 −

7
12
m220. (5.4)

Substitution of this into (5.2) leads to

d
dt
m3 = −m22 − 3

(
m4 −

7
12
m22

)
.

In order to ensure global bounded solution (excluding globally
decreasingm3) it is necessary to consider trajectories for which

m4(t)−
7
12
m22(t) = −

l2

3
, l > 0. (5.5)

We thus have a closed system for (m2,m3)

d
dt
m2 = −2m3,

d
dt
m3 = −m22 + l

2 (5.6)

with a moving parameter l determined by (5.5) with t = 0. This
system has two critical points (−l, 0) and (l, 0); it is easy to verify
that as equilibrium points of system (5.6), (−l, 0) is a spiral and
(l, 0) is a saddle for the corresponding linearized system.
This structure suggests that part of separatrix’ of this system

may serve as the critical threshold. Note that

d
dt

(
3m23 −m

3
2 + 3l

2m2
)
= 6m3

d
dt
m3 − 3m22

d
dt
m2

+ 3l2
d
dt
m2 = 0.

Thus the 2nd global invariant when passing (m2,m3) = (l, 0)
becomes

3m23 −m
3
2 + 3l

2m2 = 2l3,

yielding two separatrixes

3m23 = m
3
2 − 3l

2m2 + 2l3 = (m2 + 2l)(m2 − l)2. (5.7)

We note in passing that the two invariants (5.4) and (5.7) are in fact
the same spectral invariants we had before in (2.3), which are now
reformulated in terms of the traces m2 and m3. Thus, for example,
the straightforward identity

12m4 − 7m22 ≡ −4(4a
2
− b2 − c2)2 − 48(bc)2,

reveals the relation between the trace-based invariant (5.4) and the
spectral invariant (2.3b).
In the phase plane (m2,m3), this consists of a closed curve for

−2l ≤ m2 ≤ l and two open branches for m2 > l. The phase
plane analysis suggests that the global bounded solution exists if
and only if the initial data satisfy (5.5) and

(m2(0),m3(0)) ∈ Γl,

where

Γl :=

{
(m2,m3) | |m3| ≤

l−m2
√
3

√
m2 + 2l, −2l ≤ m2 ≤ l

}
∪

{
m3 =

m2 − l
√
3

√
m2 + 2l, m2 > l

}
and the moving parameter l is determined by (5.5). Also we can
show that if initial data do not belong to Γl then the solution
becomes unbounded in finite time.
Fig. 1 depicts trajectories for system (5.6) in (m2,m3) plane,

which contain the boundary of the non-trivial set Γ ≡ Γl with
(5.5).
From above analysis it follows that the solutions remain bou-

nded for all time if and only if the initial dataΛ0 lies in the follow-
ing set

Λ0 ∈ ∪l>0
{
Sl | (m2,m3) ∈ Γl

}
, (5.8)

where,

Sl :=
{
Λ = (λ1, λ2, λ3, λ4) | m4 −

7
12
m22 = −

l2

3

}
,

and Γl := Γ1l ∪ Γ2l ∪ Γ3l where
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Fig. 1. The domain Γ` of subcritical configurations inm2−m3 plane which lead to
global 4D solutions.

Γ1l :=

{
(m2,m3) | |m3| <

l−m2
√
3

√
m2 + 2l,−2l ≤ m2 < l

}
,

Γ2l :=

{
(m2,m3) | |m3| =

l−m2
√
3

√
m2 + 2l,−2l ≤ m2 < l

}
,

Γ3l :=

{
(m2,m3) | m3 =

m2 − l
√
3

√
m2 + 2l,m2 ≥ l

}
.

We now turn to Theorem 1.3. Let r > 0 be a moving parameter,
we restrict attention to the parameterized surface m2 + 2l = 3r2.
Clearly the constraint m2 ≥ −2l is ensured for any real r . For any
r > 0, the set S restricted on this surface is represented as

4m4 − 2m22 − 2m2r
2
+ 3r4 = 0.

This is a parabolic cylinder in the space (m2,m3,m4). Applying
the scaling property stated in Lemma 1.1, we may set r = 1, and
denote the set S with constraintm2 + 2l = 3 andm1 = 0 as

Σ := {Λ | 4m4 − 2m22 − 2m2 + 3 = 0, m1 = 0},

mk :=
4∑
j=1

λkj .

The first half of the set Γl|Σ is supported where−2l ≤ m2 ≤ l,
together withm2 + 2l = 3, i.e., l =

3−m2
2 , leading tom2 ≤ 1.

In this case, the restriction

|m3| ≤ l−m2 =
3−m2
2
−m2 =

3
2
(1−m2),

yields

Ω1 =
{
(m2,m3) | |m3| ≤

3
2
(1−m2), m2 ≤ 1

}
.

For reals Λ, m2 ≥ 0; the fact of no lower bound for m2 suggests
that any complex eigenvalue with zero divergence may well lie in
{Σ, (m2,m3) ∈ Ω1}.
The secondΓl|Σ -constraint, supported onm3 = m2−l requiring

m2 > l =
3−m2
2 , i.e.,m2 > 1 leading to

Ω2 =

{
(m2,m3) | m3 =

3
2
(m2 − 1), m2 > 1

}
.

The above set {Σ | (m2,m3) ∈ [Ω1 ∪ Ω2]} is ‘fat’. Note the 3D
case is similar to the special case l = 0 which restricts to a large
subcritical set.

6. Concluding remarks

This work studies the restricted Euler (RE) equations for the
velocity gradient matrix in four spatial dimensions. Our study
led to the surprising conclusion that for a generic set of initial
conditions, the 4D RE solutions remain bounded in time. This is
in sharp contrast to the results in three spatial dimensions, where
the solutions are bounded in time only when the initial conditions
belong to a co-dimension 2 set. It is in this sense that the energy
transfer in the 4D RE equations is found to be better than the 3D
case. We mention in this context the two recent works of [17,18]
on 4D incompressible Navier–Stokes equations, which also suggest
a more efficient energy transfer in 4D than in 3D case.
Our investigation of the stable manifold in the 4D case is based

on two different sets of variables: (i) eigenvalues of the velocity
gradient matrix; (ii) traces of the velocity gradient matrix. The
spectral formulation was introduced by us in [10] as a versatile
tool for studying critical thresholds in Eulerian dynamics. It is
simple and easy to analyze. The trace formulation was introduced
by Vieillefosse [3] in his study of the 3D restricted Euler. It yields
explicit expressions for critical thresholds in terms of the traces,
mj’s.
How does the restricted Euler dynamics relate to real flows? it

is clear that the finite-time breakdown of the 3D RE model does
not necessarily bear on the full, non-restricted Euler equations. The
question whether one can infer global regularity of solutions for
the full, non-restricted 4D Euler equations is left open. We hope
that our global existence result of the 4D RE equations will help
to shed light on this question. In doing so, the 4D setup could
clarify differences in the global regularity behavior of the full Euler
equations, depending on the dimension of the underlying space.
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Appendix

Finally we turn to interpretation of eigenvalues presented in
Theorem 1.2 in terms of the subcritical sets in Theorem 1.3, or the
equivalent set (5.8).
{i} Two pairs of complex eigenvalues. The eigenvalues must be
λ1 = a + bi, λ2 = a − bi, λ3 = −a + ci, λ4 = −a − ci, where
a, b, c ∈ R and b 6= 0, c 6= 0. A direct calculation gives

m2 = 4a2 − 2b2 − 2c2,
m3 = 6a(c2 − b2),
m4 = 4a4 + 2b4 + 2c4 − 12a2(b2 + c2),

m22 − l
2
= 3

(
m4 −

1
4
m22

)
= 3(b2 − c2)2 − 24a2(b2 + c2),

l2 = (4a2 + b2 + c2)2 + 12b2c2.

It follows that−2l ≤ m2 ≤ l and l > 4a2 + b2 + c2. Then

l−m2
√
3

√
m2 + 2l >

3(b2 + c2)
√
3

√

12a2 = 6|a|(b2 + c2) > |m3|.

Thus we know {Sl | (m2,m3) ∈ Γl} = {Sl | (m2,m3) ∈ Γ1l}.
{ii} One pair of complex eigenvalues and two real eigenvalues.
The four eigenvalues must be λ1 = a + bi, λ2 = a − bi, λ3 =
−a+ c, λ4 = −a− c , where a, b, c ∈ R and b 6= 0. Changing c in
Case II to−ci we immediately obtain
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m2 = 4a2 − 2b2 + 2c2,
m3 = −6a(b2 + c2),
m4 = 4a4 + 2b4 + 2c4 − 12a2(b2 − c2),

m22 − l
2
= 3

(
m4 −

1
4
m22

)
= 3(b2 + c2)2 − 24a2(b2 − c2),

l2 = (4a2 + b2 − c2)2 − 12b2c2.

Suppose−2l ≤ m2 ≤ l for l > 0, we distinguish two cases:
(1) If 4a2 + b2 − c2 ≥ 0, then l ≤ 4a2 + b2 − c2, and

l−m2
√
3

√
m2 + 2l ≤

3(b2 − c2)
√
3

√

12a2 = 6|a(b2 − c2)| ≤ |m3|.

It becomes an equality if and only if c = 0.
(2) If 4a2 + b2 − c2 < 0, then l < c2 − 4a2 − b2, and

l− m2 = b2 − c2 − 8a2 < 0. It is a contradiction withm2 < l. For
m2 > l, the constraint m3 =

m2−l√
3

√
m2 + 2l leads to the relation

(A.1), i.e.,

p =
(
3m23 −m

3
2 − 9m2

(
m4 −

7
12
m22

))2
+ 108

(
m4 −

7
12
m22

)3
= 0.

Calculation shows that p = 432b2c2(b2 + (2a− c)2)2(b2 + (2a+
c)2)2. So p = 0 if and only if c = 0. Thus we know that {Sl |
(m2,m3) ∈ Γl} = {Sl | (m2,m3) ∈ Γ2l}, and two real eigenvalues
must be equal.
{iii} all the eigenvalues are real. Suppose the four real eigenvalues
are a, b, c and−(a+ b+ c), a, b, c ∈ R, thenm2 ≥ 0. From the set
S in (5.8) it follows

1
3
(m22 − l

2) = m4 −
1
4
m22 ≥ 0,

here we have used the inequality (α+β+γ + δ)2 ≤ 4(α2+β2+
γ 2 + δ2). These together lead tom2 ≥ l. Thus if all the eigenvalues
are real, then {Sl | (m2,m3) ∈ Γl} = {Sl | (m2,m3) ∈ Γ3l}.
Because of the homogeneousness, we can assume the four real

eigenvalues are 1+ s,−1+w,−1 and 1− s−w (ifΛ0 6= 0). Let
us do the following calculation.
Fromm3 =

m2−l√
3

√
m2 + 2l it follows that

3m23 = (m2 − l)2(m2 + 2l) = m32 − 3m2l
2
+ 2l3,

⇒ [3m23 −m
3
2 + 3m2l

2
]
2
= 4(l2)3.

Using l2 = −3(m4 − 7
12m

2
2)we have

p :=
(
3m23 −m

3
2 − 9m2

(
m4 −

7
12
m22

))2
+ 108

(
m4 −

7
12
m22

)3
= 0. (A.1)

Calculation shows that

p = −27(s+ 2)2w2(s− w + 2)2(2s+ w)2

× (s+ 2w − 2)2(s+ w − 2)2.

So p = 0 if and only if s = −2 or w = 0 or s − w + 2 = 0
or 2s + w = 0 or s + 2w − 2 = 0 or s + w − 2 = 0.
They are all the same if we consider the homogeneousness and
permutation. Now we know that the four eigenvalues must be in
the form r(1 + s,−1,−1, 1 − s).We claim that the range for s is
[−2, 2].
(i) For−2 ≤ s ≤ 2, it is easy to check thatΛ ∈ {Sl | (m2,m3) ∈

Γ3l}.
(ii) For s > 2 or s < −2, we calculate l,m2,m3 to obtain

l = s2 − 4, m2 = 4+ 2s2, m3 = 6s2.

So

m2 − l
√
3

√
m2 + 2l =

s2 + 8
√
3

√
4s2 − 4 =

2(s2 + 8)
√
3

√
s2 − 1.

Hence[
m2 − l
√
3

√
m2 + 2l

]2
−m23 =

3
4
(s2 − 4)3 > 0.

We now can conclude that if all the eigenvalues are real, then
{Sl | (m2,m3) ∈ Γl} = {Sl | (m2,m3) ∈ Γ3l}, and Λ0 must be
in the form r(1+ s, 1− s− 1,−1, ) (plus arbitrary permutation),
where−2 < s < 2 and r > 0.
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