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Abstract

Traditional transmission travel-time tomography hinges on ray tracing techniques.

We propose a PDE-based Eulerian approach to travel-time tomography so that we

can avoid the cumbersome ray-tracing. We start from the eikonal equation, define

a mismatching functional and derive the gradient of the nonlinear functional by an

adjoint state method. The resulting forward and adjoint problems can be efficiently

solved by using the fast sweeping method; a limited memory BFGS method is used

to drive the mismatching functional to zero with quadratic convergence. 2-D, 3-D

numerical results and Marmousi synthetic velocity model demonstrate the robustness

and the accuracy of the method.

1 Introduction

Estimation of wave-speed distribution from acoustic, seismic or electromagnetic first-arrival
travel-time data is the goal of transmission travel-time tomography. In seismics velocity
analysis is often an important step in prospect evaluation in areas where lithology and
structure undergo significant lateral change. In this work we propose a new, robust and
efficient tomography method which is aimed at such applications.

All the traditional methods of travel-time tomography are directly based on Fermat’s
least travel-time principle and bear a close link to the X-ray computerized tomography (CT)
used in medical diagnosis. In medical CT the measured data are assumed to be modeled
by line integrals of wave amplitude attenuation for straight ray-paths passing through the
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body, and the Radon transform provides the foundation for medical CT. However, in seismics
the ray-path curvature has to be taken into account in that lithology and structure usually
have strong inhomogeneity, and the resulting ray-paths can depend strongly on the unknown
wave speeds. To achieve such a purpose, ray-tracing based travel-time tomography methods
require very complicated data structure to trace curved rays through each pixel [4]; see [25]
for 3-D examples. In addition, such ray-tracing based methods inevitably produce irregular
ray coverage of the computational domain, and the resulting system of equations may not
be well-conditioned [1, 2, 3]. In this paper we propose a PDE-based Eulerian approach to
travel-time tomography so that we can avoid the cumbersome ray-tracing.

Recall that a necessary condition for Fermat’s least travel-time principle to hold is charac-
terized by the eikonal equation for travel-time [11], and the viscosity solution for the eikonal
equation with a point-source condition is the least travel-time from the source to an arbitrary
point connected by a shortest ray-path, as observed by [13, 16]. Because of its continuous de-
pendence on the wave-speed distribution and source locations, the viscosity solution can be
computed by various numerical schemes stably. In this work, we model travel-times from a
single source to multiple receivers by using the eikonal equation and propose a fast sweeping
based adjoint state method for transmission travel-time tomography. The new approach not
only overcomes some shortcomings inherited in the traditional ray-tracing based travel-time
tomography but also enjoys quadratic convergence, thus it is very fast and robust.

However, first-arrival based transmission travel-time tomography usually has very lim-
ited resolution. Since the output from travel-time tomography is mainly used for building
a macro velocity model in seismic velocity analysis, it is important to have very fast, effi-
cient tomography tools, even though we may have to use only first-arrivals. On the other
hand, multi-valued travel-times and resulting multipathings are common in complex veloc-
ity structures, it is necessary to take into account all the arrivals systematically. As is well
known, ray-tracing methods can yield all arrivals, and the works presented in [8, 7] have used
multivalued travel-times from ray tracing methods, but those works are on reflection travel-
time tomography which is different from transmission tomography in that rays start at the
surface, reflect off interfaces whose depths are to be determined, and return to the surface.
To use all arrivals in transmission tomography in an Eulerian framework, we proposed to
formulate transmission tomography by using the Liouville equation based PDE framework
in phase space [15, 14].

In this work, we will only concentrate on first-arrival based traveltime tomography. We
start from a mismatching functional between measured and simulated data and drive the
functional to zero by a well designed limited memory BFGS (L-BFGS) optimization method.
Although our approach shares some similarities with that in Sei-Symes [21, 22], that work was
based on the paraxial formulation of the eikonal equation and only illustrated the feasibility of
computing the travel-time gradient by using the adjoint state method. Instead of the paraxial
formulation of the eikonal equation, we derive the gradient of the mismatching functional
directly from the steady eikonal equation by using the adjoint state method; furthermore,
we apply the fast sweeping method [26, 24, 12] to solve the eikonal equation directly (the
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forward problem) and design a new fast sweeping method to solve the adjoint equation of
the linearized eikonal equation (the adjoint problem) so that the required gradient can be
computed highly efficiently; finally a limited memory BFGS optimization method drives the
mismatching functional to zero with quadratic convergence.

In Section 2, we first explain the variational method for inverting the velocity model
using measurements on the boundary of a specified computational domain. To minimize the
energy in the variational formulation, we derive the gradient of the nonlinear functional. To
efficiently compute the gradient direction, in Section 3 we apply the fast sweeping method
to the eikonal equation and design a new fast sweeping method for the adjoint equation of
the linearized eikonal equation. Sections 4, 5 and 6 show various numerical examples to
demonstrate the feasibility and the robustness of the new formulation. Section 7 will then
conclude the paper.

2 Governing Equations

We start from the eikonal equation with a point source condition in an isotropic medium
which occupies an open, bounded rectangular domain Ωp ⊂ R3. By isotropy here we mean
the wave velocity has no directional dependence. The equation is as follows,

|∇T | =
1

c
(1)

with the point source condition
T (xs) = 0 , (2)

where T (x) is the travel-time of wave from the source xs to the point x, and c ∈ C1(Ω) is a
positive velocity function.

For a given velocity model c, the viscosity solution of this equation can be computed
efficiently by fast sweeping methods, and such solutions correspond to the least travel-time
or the first-arrival travel-time according to [16].

In this work we are interested in the related inverse problem, the so-called transmission
travel-time tomography problem: given both the first-arrival travel-time measurements on
the boundary ∂Ωp and the location of the point source xs ∈ Ωp, invert for the velocity field
c(x) inside the domain Ωp.

To achieve this we propose to invert for the velocity model by minimizing the following
mismatching functional (energy),

E(c) =
1

2

∫

∂Ωp

|T − T ∗|2 , (3)

where T ∗|∂Ωp
is the measurement and T |∂Ωp

is computed by solving (1) with a point source
condition (2). In other words, this energy measures the L2-difference between the experi-
mental measurement, T ∗, and the solution from the eikonal equation, T , on the boundary
of the computational domain.
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To minimize this energy, we use the method of gradient descent. We first perturb the
velocity field c by εc̃, which causes a corresponding change in T by εT̃ . The change in the
energy is then given by

δE = ε

∫

∂Ωp

T̃ (T − T ∗) + O(ε2) . (4)

From the state equation (1), the perturbations in c and T are related by

TxT̃x + TyT̃y + TzT̃z = −
c̃

c3
. (5)

We need to determine the perturbation in c, c̃, so as to decrease the energy E(c). The
main difficulty is that the perturbation in E, δE, depends on c̃ implicitly through T̃ and the
partial differential equation (5). To efficiently compute c̃ which minimizes E, we apply the
adjoint state method.

Multiplying (5) by ελ, integrating it over Ωp, applying integration by parts, and adding
the resulting expression to (4), we have

δE

ε
=

∫

∂Ωp

T̃ (T − T ∗) +

∫

y

∫

z

λTxT̃ |xmax

xmin
+

∫

x

∫

z

λTyT̃ |ymax

ymin
+

∫

x

∫

y

λTzT̃ |zmax

zmin

−

∫

Ωp

T̃ [(λTx)x + (λTy)y + (λTz)z] +

∫

Ωp

c̃λ

c3
+ O(ε) . (6)

Next, we choose λ satisfying

[(−Tx)λ]x + [(−Ty)λ]y + [(−Tz)λ]z = 0 , (7)

with the boundary condition,
(n · ∇T )λ = T ∗ − T, (8)

on the boundary ∂Ωp, where n is the unit outward normal of the boundary. By introducing
this adjoint state equation, one can eliminate the dependence of T̃ when determining the
gradient of E with respect to c.

Ignoring the higher than linear order terms in the energy perturbation, we have

δE

ε
=

∫

Ωp

c̃λ

c3
. (9)

To minimize the energy using the method of gradient descent, one could choose the
perturbation c̃ = −λ/c3. This implies

δE = −ε

∫

Ωp

c̃2 ≤ 0 (10)

and the equality holds when ||c̃||H0(Ωp) = 0. However, it is not straight-forward how one can
guarantee the following two properties,
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1. c̃k|∂Ωp
= 0;

2. ck+1 = ck + εc̃k smooth.

The first condition assumes that we can measure c on the boundary ∂Ωp, denoted by
c∗|∂Ωp

, which is a reasonable assumption. This means that the variations of the velocity
function on the boundary should be zero.

The second condition is a regularity condition on ck. This regularity seems to be too
restrictive in practice. In general, one only needs ck ∈ C1 to guarantee well-posedness of
the state equation (1). However, assuming that one uses c̃k = −λ/c3 directly, it is not clear
whether this function would give us the desired regularity. Even if this perturbation is in C1,
the numerical solution may have jumps or spikes. These irregularities will force one to pick a
very small step-size, εk, in the minimization process. Therefore, to have faster convergence,
we impose the above regularity in each iteration.

One way to satisfy the above two properties is to use the descent direction

c̃ = −(I − ν∆)−1

(

λ

c3

)

, (11)

where I is the identity operator, ∆ is the Laplacian operator and ν ≥ 0 controls the amount
of regularity that one wants. The homogeneous boundary condition is imposed in inverting
the operator (I − ν∆). With this particular c̃, we have

δE = −ε

∫

Ωp

(c̃2 + ν|∇c̃|2) ≤ 0 . (12)

We notice that this process amounts to seeking updates in some weighted Sobolev space in
the case ν > 0. Then the above equality holds when ‖c̃‖H1

ν
(Ωp) = 0.

In the above calculation, we use the first-arrivals at different receivers associated with a
single point source. If we perform multiple such experiments, namely, we have many such
data sets, then those can be easily incorporated into the formulation. For example, we can
assume that there are N point sources located at xi

s, for i = 1, · · · , N, and N sets of first-
arrival travel-time measurements T ∗

i associated with these N sources are available. Then we
can simply define a new energy

EN(c) =
1

2

N
∑

i=1

∫

∂Ωp

|Ti − T ∗

i |
2 , (13)

where Ti is the solution from the eikonal equation with the corresponding point source con-
dition T (xi

s) = 0. Utilizing the same approach as above, we have the following perturbation
in the energy

δEN

ε
=

∫

Ωp

c̃

c3

N
∑

i=1

λi , (14)
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where λi is the adjoint variable of Ti satisfying

{[−(Ti)x]λi}x + {[−(Ti)y]λi}y + {[−(Ti)z]λi}z = 0 , (15)

with the boundary condition,
(n · ∇Ti)λi = T ∗

i − Ti , (16)

for i = 1, · · · , N.
Consequently, we can choose the following gradient direction to minimize the energy

EN(c),

c̃ = −(I − ν∆)−1

(

1

c3

N
∑

i=1

λi

)

. (17)

We remark that the above updating procedure is similar to the so-called simultaneous
iterative reconstruction technique frequently used in medical imaging; it is also possible to
adopt the algebraic reconstruction type technique as used in [9] to update the velocity.

3 Algorithm and Numerical Implementations

3.1 Tomography algorithm

Here we give an algorithm for this tomography problem.

Tomography Algorithm:

1. Initialize ck for k = 0 by solving

(I − ν∆)c0 = 0 , (18)

with the boundary condition c0|∂Ω = cexact|∂Ω.

2. Obtain T (x, z) by solving (1) with the point source condition (2) using c = ck.

3. Obtain λ(x, z) by solving (7) with the boundary condition (8).

4. Obtain c̃k using (11).

5. Determine εk using, for example, the Armijo-Goldstein rule or simply εk = ε.

6. Update
ck+1 = ck + εkc̃k .

7. Go back to Step 2 until ||c̃k(x, z)||2 ≤ δ or k ≥ kmax, where δ and kmax are given
convergence parameters.
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To start the iteration, we need to initialize c0. Here in the algorithm, we assume that
we can measure the velocity at receivers, giving c0|∂Ω = cexact|∂Ω. This condition can
be replaced by other assumptions. In practice, due to the nonlinearity of the problem,
different initial guesses will generally converge to different energy minimizers. This non-
uniqueness can be overcome by some a priori knowledge of the model. For example, the
above assumption can be relaxed by replacing the Dirichlet conditions on both the left and
right boundaries with the Neumann boundary conditions ∂c0/∂x|x=xmin

= ∂c0/∂x|x=xmax
= 0.

The convergence could be sped up by replacing the gradient descent method with BFGS-
type iterations. To solve the elliptic equation in Step 4, we use the FFT. In Step 2 and Step
3, both the equations (1) and (7) can be solved by the Fast Sweeping Method [26, 24, 12],
which we detail next.

3.2 Fast Sweeping Method for Equation (1)

The fast sweeping method was originated in Boue and Dupis [5], its first PDE formulation
was in implicit and non-parametric shape reconstruction from unorganized points using a
variational level set method [27]; Zhao [26] proved the O(N) convergence of the method
for the eikonal equation based on the Godunov Hamiltonian on Cartesian meshes; later
on, the fast sweeping method was extended to treat Hamilton-Jacobi equations with convex
Hamiltonians based on the Godunov Hamiltonian [24] and handle Hamilton-Jacobi equations
with non-convex Hamiltonians based on the Lax-Friedrichs Hamiltonian [12]; see [24, 12] and
references therein for the fast sweeping method on Cartesian meshes and [20] for the method
on triangulated meshes. Certainly, one may also use other methods such as the fast marching
method [23].

To be self-contained, we give a short summary of the fast sweeping method for eikonal
equations. To avoid cluttered notations we present the algorithm for the 2-D case only; see
[26] for more details.

First we discretize the rectangular domain Ω ⊂ R2 into a uniform mesh with mesh points
xi,j and mesh sizes ∆x = ∆z = h, and we denote the numerical solution at xi,j by Ti,j.
Applying the Godunov numerical Hamiltonian to the eikonal equation, for i = 2, · · · , I − 1,
j = 2, · · · , J − 1, we have

[(Ti,j − Txmin)+]2 + [(Ti,j − Tzmin)+]2 =
h2

c2
i,j

, (19)

where
Txmin = min(Ti−1,j , Ti+1,j), Tzmin = min(Ti,j−1, Ti,j+1),

and (x)+ denotes the positive part of x. At the boundary of the computational domain one
sided difference is used.

Fast Sweeping Algorithm:
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1. Initialize the point source condition T (xs) = 0 by assigning the exact value if xs is a mesh
point, or assigning to grid points near xs exact values which are computed by using the
constant velocity at the point source. These values are fixed in later iterations. Assign
larger positive values at all other grid points, and these values will be updated later.

2. Update the solution by Gauss-Seidel iterations with alternating sweeping. At each grid point
xi,j whose value was not fixed during the initialization, compute the candidate solution,
denoted by T̄ of (19) from the current values of its neighbors Ti±1,j , Ti,j±1 and then update
Ti,j to be the smaller one between T̄ and its current value; i.e., T new

i,j = min(T old
i,j , T̄ ). We

sweep the whole domain with four alternate ordering repeatedly: i = 1 : I, j = 1 : J ;
i = 1 : I, j = J : 1; i = I : 1, j = 1 : J ; i = I : 1, j = J : 1. Here i and j are the running
indices along x and y directions.

3. Test the convergence: given convergence criterion ε > 0, check whether ‖T n+1 −T n‖L1 ≤
ε.

We remark that the sweeping strategy can be used for more general Hamilton-Jacobi
equations as long as an efficient local solver is available at each grid point, so that an iterative
procedure is well defined at each local grid point. On the other hand, we may apply the
sweeping strategy to solve equation (7), which reduces to a symmetrical Gauss-Seidel-type
iteration method .

3.3 Fast Sweeping Method for Equation (7)

Next we design a fast sweeping method for equation (7). Once again to simplify the notation,
we give a 2-D formulation only; the extension to a 3-D formulation is straightforward.

The adjoint state equation (7) can be written in the following form

(aλ)x + (bλ)z = 0 , (20)

where a and b are given functions of (x, z).
Considering a computational cell centered at (xi, zj) and discretizing the equation in

conservation form, we have

1

∆x

(

ai+1/2,jλi+1/2,j − ai−1/2,jλi−1/2,j

)

+
1

∆z

(

bi,j+1/2λi,j+1/2 − bi,j−1/2λi,j−1/2

)

= 0 . (21)

The values of λ on the interfaces, λi±1/2,j and λi,j±1/2, are determined according to the prop-
agation of characteristics. In the case when ai+1/2,j > 0, the characteristic for determining λ
goes from the left hand side of the interface to the right hand side, and this suggests that we
use the value λi,j to define λi+1/2,j ; otherwise, we have λi+1/2,j = λi+1,j. The terms λi,j±1/2

can be defined in a similar way.
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Introducing the following notations

a±

i+1/2,j =
ai+1/2,j ± |ai+1/2,j|

2
, a±

i−1/2,j =
ai−1/2,j ± |ai−1/2,j|

2
,

b±i,j+1/2 =
bi,j+1/2 ± |bi,j+1/2|

2
and b±i,j−1/2 =

bi,j−1/2 ± |bi,j−1/2|

2
,

we have

1

∆x

(

(a+
i+1/2,jλi,j + a−

i+1/2,jλi+1,j) − (a+
i−1/2,jλi−1,j + a−

i−1/2,jλi,j)
)

+

1

∆z

(

(b+
i,j+1/2λi,j − b−i,j+1/2λi,j+1) − (b+

i,j+1/2λi,j−1 − b−i,j+1/2λi,j)
)

= 0 , (22)

which can be rewritten as
(

a+
i+1/2,j − a−

i−1/2,j

∆x
+

b+
i,j+1/2 − b−i,j−1/2

∆z

)

λi,j =
a+

i−1/2,jλi−1,j − a−

i+1/2,jλi+1,j

∆x

+
b+
i,j−1/2λi,j−1 − b−i,j+1/2λi,j+1

∆z
. (23)

This gives an expression to build up a fast sweeping-type iterative method.
To apply this iterative scheme to equation (7), we need to specify the function values of

a and b not at the cell centers (xi, zj), but on the cell interfaces (xi±1/2, zj) and (xi, zj±1/2).
This can be done easily using central differences. For example, we have ai+1/2,j = −(Ti+1,j −
Ti,j)/∆x and ai−1/2,j = −(Ti,j−Ti−1,j)/∆x. In addition, we have to incorporate the boundary
condition (8) into the above linear system for λ as well. Then we can show that the coefficient
matrix of the resulting linear system for λ is irreducibly diagonally dominant, therefore the
alternating symmetrical Gauss-Seidel iteration converges.

Fast Sweeping Algorithm for equations (7) and (8):

1. On the boundary, compute (n · ∇T ) from the solution of the eikonal solver using one side
difference. Next, compute the boundary condition for λ according to (8). These values will
be fixed in the following computations.

2. Update λi,j at the interior points according to (22). As in the Fast Sweeping method for
(1), we sweep the whole domain with four alternate orderings.

3. For some given convergence criterion ε > 0, repeat 2 until ||λn+1 − λn||L1 ≤ ε.

We point out that the above fast sweeping method is different from the fast marching
method used in [10], in that our method is iterative and theirs is constructive based on
upwinding properties.
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3.4 L-BFGS method

In the Tomography Algorithm, we update the approximation to the velocity by the typical
gradient descent method, where

ck+1 = ck − εkc̃k . (24)

Although it is simple to implement, the method is not efficient because it takes a large
number of iterations to converge to the steady state solution.

To speed up the convergence, we can apply the quasi-Newton method defined by

ck+1 = ck + εksk , (25)

where sk = −A−1
k E ′(ck) and Ak is a positive definite operator satisfying the secant condition

Ak+1(c
k+1 − ck) = E ′(ck+1) − E ′(ck) . (26)

In this iteration, the operator Ak+1 is updated by modifying the previous operator Ak.
One possible way to modify this operator is defined by Broydon-Fletcher-Goldfarb-

Shanno (BFGS) procedure,

Akv = Ak−1v + α < p, v > p + β < q, v > q , (27)

where

p = y/||y|| , q = Ak−1s/||Ak−1s|| ,

α = ||y||2/ < y, s > , β = −||Ak−1s||
2/ < s, Ak−1s > (28)

with s = ck − ck−1, y = E ′(ck) − E ′(ck−1) and A0 = I.
However, in practice, the condition number of Ak can be increased significantly through-

out the iteration, which makes the computation inaccurate. To alleviate this, one can modify
the iteration using the limited memory BFGS (L-BFGS) given by

Akv = v +

k
∑

j=k−L+1

(αj < pj, v > pj + βj < qj, v > qj) . (29)

In this paper, we adapt the L-BFGS-B code from [6]. This code requires user to provide only
subroutines to compute both the energy to be minimized and the gradient of this energy.
The step size εk is automatically determined.

4 Two-Dimensional Numerical Examples

In the following examples, we use 129 × 129 grid points in the x-z space. Using the above
formulation, we need measurements, denoted by φ∗ and T ∗, on the boundary ∂Ωp. If the
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point source is located inside Ω, the characteristics of the eikonal equation always flow out
from the domain. Therefore, in synthetic experiment the boundary measurements can be
obtained by solving the equation (1) directly using the Fast Sweeping Method together with
the exact velocity c.

For each velocity model below, we have implemented the following two cases - one source
and ten sources. For the one source case, we use the boundary measurements from the
only point source located at (x, z) = (0, 0.1). In the cases with ten point sources, we use
nine more sets of boundary measurements, and these correspond to source locations at
(x, z) = (±0.25, 0.1), (±0.5, 0.1), (0, 1.9), (±0.25, 1.9) and (±0.5, 1.9), respectively. However,
to save some space we only present the results corresponding to the case of ten sources.

To start the algorithm, we initialize the velocity c0 by solving the above elliptic equation
(18) with ν = 1.

4.1 Example 1. Constant Model.

The exact velocity model is given by c ≡ 1.
We use the BFGS method to invert for the velocity. The results are shown in Figure 1. As

we can see, the recovered velocity is almost exact, the relative error is almost negligible, and
we observe the typical quadratic convergence of the algorithm due to the L-BFGS method.

4.2 Example 2. Waveguide Model.

The exact velocity model is given by

c(x, z) = 3 − 2.5 exp

(

−
x2

2

)

. (30)

We apply the BFGS method to invert for the velocity. Figure 2 shows the relative error
at convergence and the convergence history. In Figure 3, we show slices of the cross-sections
of the solution along z = 1 and x = 0. As we can see, we are able to recover the velocity as
well.

4.3 Example 3. Gaussian Model.

The exact velocity model is given by

c(x, z) = 3 −
1

2
exp

(

−
x2 + (z − 0.5)2

0.52

)

− exp

(

−
x2 + (z − 1.25)2

0.52

)

. (31)

Next we apply the BFGS method to invert for the velocity. In Figure 4, we show the
convergent velocity and the convergence history of the algorithm; once again, we observe
quadratic convergence. In Figure 5, we show slices of cross-sections of the final converged
velocity; as we can see, they fit well with the exact velocity.
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Figure 1: (Example 1. Ten Sources) BFGS. (a): the initial guess; (b): final approximated c;
(c): the relative error in the solution; (d): the convergence history of energy.

To further test the algorithm, we repeat the experiment but perturb the synthetic data
T ∗ with some noise. Using the same velocity model, we first compute the travel-time on
the boundary of the domain. These measurements are added 5% Gaussian noise with zero
mean. Figures 6 and 7 show that we have robust convergence as well. As shown in Figure
6(b), we are not able to drive the energy to zero. This is expected because the boundary
measurements are highly oscillatory, and in general we cannot find a smooth velocity c which
produces exactly the same travel-times as those noisy data.

5 Three-Dimensional Numerical Examples

In the following examples, we use 65 × 65 × 65 grid points in the three-dimensional space.
Using the above formulation, we need measurements, denoted by T ∗, on the boundary ∂Ωp.

For each velocity model shown below, we have implemented the following case, 49 sources



Adjoint state method for traveltime tomography 13

−1
−0.5

0
0.5

1

0

0.5

1

1.5

2
0

0.005

0.01

0.015

0.02

0.025

xz

|c
∞

−c
ex

ac
t|/|

c ex
ac

t|

0 2 4 6 8 10 12 14 16
10−4

10−3

10−2

Iteration, k

E(
ck )

(a) (b)

Figure 2: (Example 2. Ten Sources) (a): the relative error in the solution and (b): the
convergence history of energy.

on the levels z = 0.1 and z = 1.9, and we have 98 sets of measurements in total.
To start the algorithm, we initialize the velocity c0 by solving the elliptic equation (18)

with ν = 1.

5.1 Example 1. Constant Model.

The exact velocity model is given by c ≡ 1.
We use the BFGS method to invert for the velocity. The results are shown in Figure 8;

we observe the quadratic convergence once again.

5.2 Example 2. Gaussian Model.

The exact velocity model is given by

c(x, y, z) = 3 −
1

2
exp

(

−
x2 + y2 + (z − 0.5)2

0.52

)

− exp

(

−
x2 + y2 + (z − 1.25)2

0.52

)

. (32)

We use the gradient descent method to invert for the velocity. The results are shown in
Figure 9.

6 Synthetic Marmousi model

The Marmousi model from the 1996 INRIA Workshop on Multi-arrival Travel-times is a
synthetic model which will challenge the adjoint state method used here.
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Figure 3: (Example 2. Ten Sources) Cross-sections of the solutions. (a): z = 1 and (b):
x = 0.

The original Marmousi model is sampled on a 24m by 24m grid, consisting of 384 samples
in the x-direction and 122 samples in the z-direction; therefore the model dimension is
9.192km long in the x-direction and 2.904km deep in the z-direction.

In the computational results presented here, we use 20 sources and their (x, z)-coordinates
are (200, 2800), (1000:1000:9000, 2800), (200, 100) and (1000:1000:9000, 100), respectively,
where we have used by now the standard Matlab colon notation.

The true Marmousi velocity model is illustrated in Figure 10(a). As we can see, this
velocity model has high contrast with variations of different scales. On the one hand, since the
fast sweeping method used here is unconditionally stable, the forward eikonal solver will not
have difficulty in computing traveltime to first order accuracy. On the other hand, viscosity-
solution based first-arrival traveltimes will not be able to give us too much information about
variations of small scales occurring in the velocity model; to retain the information related to
small scales, we have to use multiple arrivals, which in turn calls for multiple-arrival based
traveltime tomography. In this regard, for computing multiple arrivals of the Marmousi
model in the Eulerian framework, see [17, 18] for more.

To start the algorithm, we initialize the velocity c0 by solving the Laplace equation
−∆c0 = 0 with c0|∂Ω = cexact|∂Ω. The solution is plotted in Figure 10(b).

We use the BFGS method to invert for the velocity. Figure 11 presents the inversion
results for different cases in terms of the sampling size ∆x and the parameter ν.

Comparing Figure 11(a) with the true model Figure 10(a), we have succeeded in imaging
the macro scale variations of the velocity model and we were not able to image finer scale
variations of the velocity model which does exist in the true velocity model. However,
transmission tomography usually has very limited resolution, and we believe that this result
is near optimal using the current approach.

To confirm this, we refine the velocity model by doubling the number of grid points in
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Figure 4: (Example 3. Ten Sources) BFGS. (a): the final approximated c and (b): the
convergence history of energy.

each direction while keeping the regularization parameter ν fixed; the corresponding solution
is shown in Figure 11(d). We also check the following residual in the solution defined by

R =
ΣN

i=1

∫

∂Ω
|Ti − T ∗

i |/T
∗

i ds

N
∫

∂Ω
ds

(33)

where N is the number of sources defined above. This quantity essentially is the average
relative error in the first-arrival time per source per receiver. If the above residual is not
changing too much, we will accept the inversion result since there is not much model misfit
left to drive improvement. Indeed, as shown in Figure 12, even if we refine the velocity
model, the residuals are almost the same after 15 BFGS steps. In fact, the solutions from
the coarse and fine resolution are similar, as shown in Figures 11(a) and 11(d) .

Using a relative small ν = 102, the BFGS iteration has difficulty in converging to a
smooth solution. This is clearly seen in Figure 11(b). The BFGS iteration stops at the
fourth iteration with E(m4) ' 1700, where m = log c; see Figure 12. This difficulty comes
from the sharp spikes in the solution near the source locations, where the traveltime field is
not differentiable [19]. These sudden changes will degrade accuracy in the computed gradient
and make it hard for BFGS to search for a descent direction.

Increasing the magnitude of ν (from 104 to 106), on the other hand, we have a little bit
better convergent result. As seen in the energy plot, the energy which uses the larger ν (the
dashed line) reaches a lower state than that using ν = 104 (the solid line). Theoretically we
penalize the gradient of c̃ so that it is small in a weighted Sobolev space as illustrated in
equation (12).

Concerning the speed, the computational time for the cases with ν = 104 using ∆x = 24
and 12 are 53 minutes and 387 minutes, respectively. We also list in Table 1 the number
of iterations required to solve both the eikonal equation and the adjoint equation for each
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Figure 5: (Example 3. Ten Sources) BFGS. Cross-sections of the solutions. (a): z = 1 and
(b): x = 0.

∆x Eikonal equation Adjoint equation
24 20 (6.68 × 10−10) 17 (1.62 × 10−9)
12 28 (9.60 × 10−11) 25 (3.38×−8)

Table 1: Iteration count for the fast sweeping methods. The numbers in the brackets are
the errors in the corresponding iteration, ||T n+1 − T n|| or ||λn+1 − λn||.

given velocity field. These numbers are obtained for the case ν = 104 with only one point
source located at (5000,−2800) in the first BFGS iteration. The first row shows the number
of iterations with ∆x = 24, while the second row corresponds to the case with ∆x = 12.

7 Conclusion

We have proposed a PDE-based Eulerian approach to traveltime tomography so that we
can avoid the cumbersome ray-tracing in inversion. We started from the eikonal equation,
defined a mismatching functional and derived the gradient of the nonlinear functional by an
adjoint state method. The resulting forward and adjoint problems can be efficiently solved
by using the fast sweeping method. In addition, we have used a limited memory BFGS
method to drive the functional to zero with quadratic convergence. Numerical results for
2-D, 3-D, and Marmousi synthetic velocity models demonstrated the robustness and the
accuracy of the method.

The methodology proposed here is quite general and can be extended to many other
situations without any major difficulty. For example, instead of point sources we can easily
modify the formulation to accommodate plane waves as the source condition, which can be
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Figure 6: (Example 3 with added noise. Ten Sources) BFGS. (a): the final approximated c;
(b): the convergence history of energy.

achieved by using the boundary condition resulting from the plane wave condition in equation
(2). If the domain to be imaged is irregular or non-rectangular, then we can use the fast
sweeping method designed in [20] to solve the eikonal equation efficiently; although we cannot
directly apply the standard FFT technique when regularizing the gradient direction (11),
we may still use other fast solvers like multi-grid methods to solve the Possion equation.
To further improve the resolution of inverted velocity models, one can also incorporate the
amplitude information into the formulation; this generalization is the so-called diffraction
tomography, which consists of an ongoing project.
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Figure 10: (Marmousi model) (a): the true velocity distribution and (b): the initial profile
c0.
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Figure 11: (Marmousi model) Converged solutions. (a): ν = 104 and ∆x = 24; (b): ν = 102

and ∆x = 24; (c): ν = 106 and ∆x = 24; (d): ν = 104 and ∆x = 12.
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Figure 12: (Marmousi model) The change in (I): the energy and (II): the residual. Legend:
(a): ν = 104 and ∆x = 24; (b): ν = 102 and ∆x = 24; (c): ν = 106 and ∆x = 24; (d):
ν = 104 and ∆x = 12.


