
Epitaxial Growth without Slope Selection: Energetics,

Coarsening, and Dynamic Scaling ∗

Bo Li† Jian-Guo Liu‡

March 3, 2004

Abstract

We study a continuum model for epitaxial growth of thin films in which the slope
of mound structure of film surface increases. This model is the gradient flow associated
with a free energy of the film surface height profile h which is assumed to satisfy the
periodic boundary condition. The free energy consists of the term |∆h|2 that represents
the surface diffusion and − log(1+ |∇h|2) that describes the effect of kinetic asymmetry
in the adatom attachment-detachment. We first prove for large time t that the interface
width—the standard deviation of the height profile—is bounded above by O(t1/2), the
averaged gradient is bounded above by O(t1/4), and the averaged energy is bounded
below by O(− log t). We then consider a small coefficient ε2 of |∆h|2 with ε = 1/L
and L the linear size of the underlying system, and study the energy asymptotics in
the large system limit ε → 0. We show that global minimizers of the free energy exist
for each ε > 0, the L2-norm of the gradient of any global minimizer scales as O(1/ε),
and the global minimum energy scales as O(log ε). The existence of global energy
minimizers and a scaling argument are used to construct a sequence of equilibrium
solutions with different wavelength. Finally, we apply our minimum energy estimates
to derive bounds in terms of the linear system size L for the saturation interface width
and the corresponding saturation time.

2000 MSC: 35K55, 35Q99, 74K35, 82D25.

2003 PACS: 68.35.Ct; 68.43.Jk; 81.15.Aa.

Key words and phrases: epitaxial growth, coarsening, interface width, dynamic
scaling, energy minimization, equilibrium.

∗Abbreviated title: Epitaxial Growth without Slope Selection.
†Department of Mathematics, University of Maryland, College Park, MD 20742-4015, USA. E-mail:

bli@math.umd.edu.
‡Department of Mathematics and Institute for Physical Science and Technology, University of Maryland,

College Park, MD 20742-4015, USA. E-mail: jliu@math.umd.edu.

1



1 Introduction

In a typical layer-by-layer epitaxial growth that begins with a flat substrate, surface mor-
phological instabilities often occur as the film thickness reaches a critical value. These
instabilities manifest themselves as a sort of spinodal decomposition. As a result, the nu-
cleation of islands starts and many nuclei appear on the film surface. Such nuclei evolve
into mounds, and the mound structure coarsens. During the coarsening process, the num-
ber of mounds decreases. Experiments and numerical simulations suggest that the well-
characterized lateral size of mounds, λ(t), increases as λ(t) ∝ tn, where t is the time variable
and n > 0 is a constant called the coarsening exponent. The interface width w(t), which
is the standard deviation of the height profile and measures the roughness of the surface,
also increases as w(t) ∝ tβ, where β > 0 is a constant called the growth exponent. When
the finite size of the underlying system becomes effective, the interface width saturates, and
the saturation value ws = ws(L) satisfies that ws(L) ∝ Lα, where L is the linear size of the
underlying system and α > 0 is a constant called the roughness exponent. The correspond-
ing saturation time ts = ts(L) satisfies the dynamic scaling law ts(L) ∝ Lz, where z is a
constant called the dynamic exponent. In general, z = α/β. See Figure 1.1. These scal-
ing laws are often experimentally measurable, and contain much microscopic information.
See [1, 2, 5, 6, 9, 13,16,18,20–23,28–33] and the references therein.
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Figure 1.1. Scaling laws in epitaxial growth.

To understand these interesting phenomena, we consider in this work the scaled and
averaged free energy for the height profile h of a thin film in epitaxial growth

E(h) =

∫

Ω

[

−1

2
log
(

1 + |∇h|2
)

+
1

2
|∆h|2

]

dx (1.1)

and its gradient flow with a suitable constant mobility

∂th = −∇ ·
( ∇h

1 + |∇h|2
)

− ∆2h, (1.2)
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where Ω = (0, L)d ⊂ R
d is a d-dimensional cube with d ≥ 1 an integer and L > 0 the linear

size of the cube,
∫

Ω

u dx =
1

|Ω|

∫

Ω

u dx

is the averaged integral over Ω of an integrable function u : Ω → R, and |Ω| = Ld is the
volume of Ω. For epitaxial growth, d = 2. The bi-harmonic term in Eq. (1.2) describes
the surface diffusion [8, 17]. The nonlinear, lower order term in Eq. (1.2) was first proposed
phenomenologically in [9] (cf. also [32]) to model the Ehrlich-Schwoebel effect: adatoms
(adsorbed atoms) must overcome a higher energy barrier to stick to a step from an upper
than a lower terrace [4, 26,27].

In general, with the periodical boundary condition, the term |∆h|2 in the energy (1.1) can
be replaced by

∑d
i,j=1 |∂xixj

h|2 which has all the second-order derivatives, and any solution
h of Eq. (1.2) satisfies

d

dt

∫

Ω

h(x, t) dx = 0,

i.e., the mass is conserved. For simplicity, we assume that the constant, spatial mean-value
of h over Ω is zero.

Notice for d = 2 that the nonlinear term in Eq. (1.2) differs only by a sign from the
Perona-Malik equation for imaging process [19,25]. We observe that this nonlinear term can
be decomposed as

∇ ·
( ∇h

1 + |∇h|2
)

=
1 − |∇h|2

(1 + |∇h|2)2
∆h +

2|∇h|3
(1 + |∇h|2)2

κ, (1.3)

where κ = ∇ ·
(

∇h
|∇h|

)

is the mean curvature of level curves h = constant. Using the identity

∆h = ∂2
‖h + |∇h|κ,

where ∂‖ = ∇h
|∇h|

·∇ denotes the derivative tangential to the surface, we can rewrite Eq. (1.3)
as

∇ ·
( ∇h

1 + |∇h|2
)

=
1 − |∇h|2

(1 + |∇h|2)2
∂2
‖h +

|∇h|
(1 + |∇h|2)κ. (1.4)

The first term in this decomposition smoothens regions with small gradients and the second
sharpens and stabilizes edges, the latter effect being strong at places where |∇h| is neither
too small nor too large.

With the decomposition (1.4), we can rewrite our underlying growth equation (1.2) as

ht =
|∇h|2 − 1

(1 + |∇h|2)2
∂2
‖h − |∇h|

1 + |∇h|2κ − ∆2h. (1.5)

Notice the change of sign. Thus, the nonlinear term in the equation describes the anisotropic
diffusion in epitaxial growth: the curvature term represents the diffusion in the transverse
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direction and the ∂2
‖h term represents the diffusion in the direction of surface gradient. To

see clearly the effects of these two terms, let us consider the perturbation of a flat surface
h(x) = x · m + δh̃(x) with m = (m1,m2) ∈ R

2 a given vector, δ a parameter small in
magnitude, and h̃ the perturbation. Direct calculations show that

∂2
‖h = δ∂2

‖mh̃ + O(δ2) and κ =
δ

|m|∂
2
⊥mh̃ + O(δ2),

where ∂‖m = m · ∇/|m| and ∂⊥m = m⊥ · ∇/|m| with m⊥ = (−m2,m1) denote the deriva-
tives parallel and perpendicular to the tilt vector m, respectively. Therefore, the linearized
equation of (1.2) about the flat surface h0(x) = m · x is [14, 24]

∂th̃ =
|m|2 − 1

(1 + |m|2)2∂2
‖mh̃ − 1

1 + |m|2∂2
⊥mh̃ − ∆2h̃,

Clearly, a singular surface (m = 0) is unstable. The change of the sign in the coefficient
of ∂2

‖mh̃ at |m| = 1 indicates the transition to step-flow growth. Since the coefficient of

∂2
⊥mh̃ is always negative, the step-flow growth is linearly unstable with respect to transverse

fluctuations [3, 14].
Heuristic scaling analysis with an assumption on the existence of scaling laws and large-

scale numerical simulations of this model suggest that the interface width w(t) and the
lateral size of mounds λ(t) grow as O(t1/2) and O(t1/4), respectively [6, 9, 12, 29]. Thus, the
characteristic slope of mounds scales as O(t1/4) and becomes unboundedly. Moreover, this no-
slope-selection model predicts that the saturation interface width ws(L) ∝ L2. Consequently,
the predicted growth, roughness, and dynamic exponents are

β =
1

2
, α = 2, z = 4. (1.6)

In contrast to this model without slope selection, the model with slope selection is governed
by the (scaled) free energy

Ẽ(h) =

∫
[

1

4

(

|∇h|2 − 1
)2

+
1

2
|∆h|2

]

dx, (1.7)

where the first term selects the (scaled) mound slope 1. This model predicts the exponent
β = 1/3 [11,13,16,18,23]. Recently, Kohn and Yan [11] rigorously proved an averaged version
of a one-sided bound for this one-third law.

For both of the models, we showed in [15] a nonlinear morphological instability in the
rough-smooth-rough pattern that is experimentally observed [7] and the well-posedness of
the corresponding initial-boundary-value problems.

Setting ε = 1/L, we can re-scale the energy to get

E(ĥ) = Eε(h) with h(x) = ĥ(x̂)/L and x̂ = Lx, (1.8)
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where

Eε(h) =

∫

Ω1

[

−1

2
log
(

1 + |∇h|2
)

+
ε2

2
|∆h|2

]

dx, (1.9)

and Ω1 = (0, 1)d is the unit cube in R
d. The related gradient flow is

∂th = −∇ ·
( ∇h

1 + |∇h|2
)

− ε2∆2h. (1.10)

Our goal of this work is to understand the energetics, coarsening, and dynamic scaling of
the interfacial dynamics in epitaxial growth without the slope selection, and justify rigorously
the scaling laws predicted by the underlying model.

Our main results are as follows:

(1) For any solution h of Eq. (1.2), we show for large time t that

(
∫

Ω

|h(x, t)|2dx

)1/2

≤ O(t1/2),

(
∫

t0

t
∫

Ω

|∇h(x, τ)|2dxdτ

)1/2

≤ O(t1/4),

∫

t0

t

E(h(τ)) dτ ≥ O(− log t).

See Section 2. All the bounds are independent of the dimension d and the system size
L. They are only one-sided. A two-sided bound is often not universally true. For
instance, an upper bound for the energy like E(h(t)) ≤ O(− log t) will not be true for
a steady-state solution h.

Note that our basic bounds lead to the O(−t1/2 log t) lower bound for E(h(t))wh(t).
This is different from a constant lower bound for the same quantity in the slope-
selection model, cf. [11];

(2) For any ε > 0, we show that global minimizers of the free energy Eε defined in (1.9)
exist. For small ε > 0, we also show that

‖∇mhε‖L2(Ω1) = O

(

1

ε

)

(m = 0, 1, 2)

for any energy minimizer of Eε and that

min
h

Eε(h) ∼ log ε.

By a scaling argument, we can construct for each integer j ≥ 1 an equilibrium solution
hj of (1.2) with wavelength proportional to L/j, cf. Section 4.
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To better understand the variationl properties of the model, we present in Section 3
some heuristic calculations in a one-dimensional setting of the rescaled energy (1.9) for
a trial profile and of the local shape of an equilibrium solution of the rescaled equation
(1.10);

(3) For any solution h of Eq. (1.2), any ξ ∈ R with 1/L < ξ < 1, and tξ > 0 such that
E(h(tξ)) = − log(ξL), we show for large t that

(

∫

tξ

t
∫

Ω

|h(x, τ)|2dxdτ

)1/2

≥ O(ξ2L2),

t ≥ O
(

(ξL)
4(σ−1)

σ

)

,

where σ = t/tξ. See Section 5.

Our approach is different from that in Kohn-Otto [10] and Kohn-Yan [11]: we do not need
an isoperimetric inequality, since the O(t1/2) upper bound on the interface width can be easily
obtained for the underlying model. Our analysis on the variational problem of minimizing
the free energy helps understand why the slope of mounds can grow unboundedly. It also
helps determine a time scale for bounding the saturation value of the interface width and
the corresponding saturation time.

There are several important issues that we have not been able to address and resolve in
this work but we wish to further study:

(1) An upper bound for the characteristic lateral size of mounds λ(t). For the slop-selection
model, this size λ(t) is of the same order as that of the height—the interface width.
Thus, there is no need to do extra work to bound λ(t). In general, a precise mathe-
matical concept that describes the lateral size λ(t) is needed;

(2) The optimality of bounds. For the slope-selection model, Ortiz, Repetto, and Shi [18]
constructed a solution for the reduced dynamics that achieves the optimal bound. Can
one have a similar construction for the underlying model without slope selection? The
difficulty seems to lie in the fact that the energy (1.1) is not bounded below as the
system becomes larger and larger;

(3) The limiting dynamics as ε → 0. This is a non-trivial problem that is related to the
singular perturbation, or regularization, of a conservation law, cf. Eq. (1.10). From the
view point of energy minimization, one may try to calculate the related Γ-limit and
gradient flow of such a limit to obtain the reduced dynamic law, just like what is done
in [18] for the slope-selection model. But again the difficult is the unboundedness of
the energy;
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(4) The mathematical analysis and interpretation of the phase ordering method. This
method is used to predict the underlying scaling laws (1.6) assuming a priori scal-
ing laws with certain exponents [6]. Mathematically, we understand little about such
a method. It will be interesting to explore such a method with the rigorous analysis
presented in Kohn and Otto [10], Kohn and Yan [11], and in this work.

2 Bounds on the interface width, gradient, and energy

Let C∞
per(Ω) be the set of all restrictions onto Ω of all real-valued, Ω-periodic, C∞-functions

on R
d. For any integer m ≥ 0, let Hm

per(Ω) be the closure of C∞
per(Ω) in the usual Sobolev

space Wm,2(Ω). Let

H(Ω) =

{

h ∈ H2
per(Ω) :

∫

Ω

h dx = 0

}

.

It is clear that H(Ω) is a closed subspace of H2
per(Ω). Throughout the paper, we denote by

‖ · ‖ the L2-norm for an underlying domain. We also write a function u : Ω × [0, T ] → R

which is in a function space X for each t as a mapping u = u(t) : [0, T ] → X.
Let T > 0 and h : [0, T ] → L2(Ω). The interface width for h is defined for any t ∈ [0, T ]

by

wh(t) =

√

∫

Ω

|h(x, t) − h̄(t)|2dx with h̄(t) =

∫

Ω

h(x, t) dx. (2.1)

In particular,

wh(t) =

√

∫

Ω

|h(x, t)|2dx ∀h ∈ H(Ω).

Theorem 2.1 (bounds on the interface width, gradient, and energy) Let h(·) : [0,∞) →
H(Ω) be a weak solution of Eq. (1.2) on (0, T ) for any T > 0 [15]. Let t0 ≥ 0.

(1) An upper bound on the interface width. We have

wh(t) ≤
√

2(t − t0) + [wh(t0)]2 ∀ t ≥ t0. (2.2)

(2) Upper bounds on the gradients. We have

∫

t0

t
∫

Ω

|∆h(x, τ)|2dxdτ ≤ 1 +
[wh(t0)]

2

2(t − t0)
∀ t > t0 (2.3)

and

∫

t0

t
∫

Ω

|∇h(x, τ)|2dxdτ ≤
(

1 +
[wh(t0)]

2

2(t − t0)

)1/2
(

t + t0 + [wh(t0)]
2
)1/2 ∀ t > t0.

(2.4)
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(3) A lower bound on the energy. We have

∫

t0

t

E(h(τ))dt ≥ −1

2
log
(

1 +
√

3t
)

∀ t > t0 + [wh(t0)]
2. (2.5)

Proof. (1) By the definition of a weak solution [15], we have

d

dt
[wh(t)]

2 = 2

∫

Ω

hht dx = 2

∫

Ω

( |∇h|2
1 + |∇h|2 − |∆h|2

)

dx ≤ 2 ∀ t > 0. (2.6)

Thus, integrating from t0 to t > t0 and then taking the square root, we obtain (2.2).
(2) It follows from (2.6) that

1

2

d

dt
[wh(t)]

2 +

∫

Ω

(∆h)2dx =

∫

Ω

|∇h|2
1 + |∇h|2 dx ≤ 1.

Thus, we have for any t > t0 that
∫

t0

t
∫

Ω

|∆h(x, τ)|2dxdτ ≤ 1 +
1

t − t0

(

1

2
[wh(t0)]

2 − 1

2
[wh(t)]

2

)

leading to (2.3).
Now, it follows from an integration by parts, the Cauchy-Schwarz inequality, (2.2), and

(2.3) that for any t > t0
∫

t0

t
∫

Ω

|∇h(x, τ)|2dxdτ =

∫

t0

t
∫

Ω

[−h(x, τ)]∆h(x, τ) dxdτ

≤
(
∫

t0

t
∫

Ω

|h(x, τ)|2dxdτ

)1/2(∫

t0

t
∫

Ω

|∆h(x, τ)|2dxdτ

)1/2

≤
(
∫

t0

t
(

2(τ − t0) + [wh(t0)]
2
)

dτ

)1/2(

1 +
[wh(t0)]

2

2(t − t0)

)1/2

≤
(

t + t0 + [wh(t0)]
2
)1/2

(

1 +
[wh(t0)]

2

2(t − t0)

)1/2

.

This proves (2.4).
(3) If t > t0 + [wh(t0)]

2, then

[wh(t0)]
2

2(t − t0)
≤ 1

2
and t + t0 + [wh(t0)]

2 ≤ 2t. (2.7)

Since − log is a convex function, we obtain by Jensen’s inequality, (2.4), and (2.7) that

∫

t0

t

E(h(τ)) dτ ≥ −1

2
log

(

1 +

∫

t0

t
∫

Ω

|∇h(x, τ)|2dxdτ

)
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≥ −1

2
log

(

1 +

(

1 +
[wh(t0)]

2

2(t − t0)

)1/2
(

t + t0 + [wh(t0)]
2
)1/2

)

= −1

2
log
(

1 +
√

3t
)

,

proving (2.5). Q.E.D.

3 Heuristic calculations of energetics and equilibria

In this section, we assume the space dimension is d = 1 and consider the energy (1.9) and
the related gradient flow (1.10).

3.1 Energy of a trial profile

Let j ≥ 1 an integer. Divide the interval [0, 1] into 2j small intervals of the same length 1/2j.
Let k > 0 and δ > 0 be real numbers with 2δ < 1/2j. Define a trial function h ∈ C1[0, 1] by

h(x) =











































kx if 0 ≤ x < 1
4j

− δ,

− k
2δ

(

x − 1
4j

)2

+ k
(

1
4j

− δ
2

)

if 1
4j

− δ ≤ x < 1
4j

+ δ,

−k
(

x − 1
2j

)

if 1
4j

+ δ ≤ x < 3
4j

− δ,

k
2δ

(

x − 3
4j

)2

− k
(

1
4j

− δ
2

)

if 3
4j

− δ ≤ x < 3
4j

+ δ,

k
(

x − 1
j

)

if 3
4j

+ δ ≤ x ≤ 1
j
,

and

h

(

x +
1

j

)

= h(x) ∀x ∈
(

(i − 1)

j
,
i

j

]

, i = 2, . . . , j.

This function is quadratic in each “transition region” (ci−δ, ci+δ) with ci = 1
2
[(i − 1)/2j + i/2j]

(i = 1, . . . , 2j) and linear with the slope k or −k elsewhere. See Figure 3.1.

δ

h

-kk

δ1/4j+1/4j- 1/j 1
xO

Figure 3.1. A trial height profile.
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Straight forward calculations lead to

Eε(h) =

∫ 1

0

[

−1

2
log(1 + h′2) +

ε2

2
h′′2

]

dx

=

(

∫

non-transition regions
+

∫

transition regions

)

[

−1

2
log(1 + h′2) +

ε2

2
h′′2

]

dx

= −1

2
log(1 + k2) + 2jδf(k) +

2jε2k2

δ
,

where

f(k) = log(1 + k2) −
∫ 1

0

log(1 + k2s2) ds

=

∫ 1

0

log

(

1 + k2

1 + k2s2

)

ds =
1

k

∫ k

0

log

(

1 + k2

1 + s2

)

ds.

It is not difficult to see that f increases on (0,∞) from 0 to 2 and f(k) ∼ 2k2/3 as k → 0+.
Fix k. The energy Eε(h) is minimized at δ = εk/

√

f(k). At this value of δ, the energy
becomes

Eε(h) = −1

2
log(1 + k2) + 4jεk

√

f(k).

With varying k, this is minimized at k = g(k)/(jε), where

g(k) =
k2
√

f(k)

2(1 + k2)[2f(k) + kf ′(k)]
> 0.

We have g(k) > 0, since f(k) > 0 and f ′(k) > 0. Moreover, g(k) →
√

2/8 as k → ∞, since

kf ′(k) =
2k2

1 + k2

∫ 1

0

1 − s2

1 + k2s2
ds → 0 as k → ∞.

Thus, if 0 < jε � 1, the optimal value of slope k has the asymptotics

k = O

(

1

jε

)

for k � 1. (3.1)

With this k, the size of each transition region is

δ =
g(k)

j
√

f(k)
= O

(

1

j

)

for k � 1, (3.2)

and the minimum energy is

Eε(h) ∼ log(jε) as ε → 0+. (3.3)

Our calculations indicate that the size of each transition region is of the same order as
that of the base of a mound, and in particular, it is independent of ε. Moreover, in the large
system limit ε → 0, the mound slope of a global minimizer is proportional to the linear size
of the underlying system. Finally, the minimum energy scales as log ε for small ε > 0. All
these properties are quite different from those of the slope selection model.

10



3.2 The local shape of an equilibrium

We now consider the one-dimensional steady-state equation

(

h′

1 + h′2

)′

+ ε2h(4) = 0 on (0, 1) (3.4)

with the periodic boundary condition, cf. (1.10). We assume an equilibrium solution h is a
profile that consists of hills and valleys, similar to that shown in Figure 3.1. To understand
the local shape of such an equilibrium solution, we assume without loss of generality that h
is an even and convex function on [−a, a] for some real number a > 0. We also assume that
h′(±a) = ±k for some constant k > 0 and h′′(±a) = 0. See Figure 3.2.

O-a a x

h

Figure 3.2. The local shape of an equilibrium solution.

Set g = h′ and integrate both sides of Eq. (3.4) to get

g

1 + g2
+ ε2g′′ = c1

for some constant c1. Clearly, c1 = 0, since g(0) = g′′(0) = 0. Thus,

g

1 + g2
+ ε2g′′ = 0.

Multiplying both sides of this equation by 2g′ and integrate to get

log(1 + g2) + ε2g′2 = c2,

where c2 is a constant. Since g(a) = k and g′(a) = 0, we obtain that c2 = log(1 + k2).
Consequently,

log

(

1 + g2

1 + k2

)

+ ε2g′2 = 0. (3.5)

Now solving Eq. (3.5) with g′ = dg/dx and only considering x ∈ [0, a], we get

x = x(g) = ε

∫ g

0

dg
√

log
(

1+k2

1+g2

)

.
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Let 0 < σ < 1. With the change of variables g = kz, we obtain that

x(σk) = ε

∫ σk

0

dg
√

log 1+k2

1+g2

= ε

∫ σ

0

kdz
√

log 1+k2

1+k2z2

.

Here, σ represents the ratio of the profile slope at the position x and the far-field slope k.
Clearly,

x(σk) → 0 as σ → 0+. (3.6)

Moreover, since (1 + k2)/(1 + k2z2) ≤ 1/z2 for z ∈ (0, 1), we get by changing the variable
y = 1/z that

x(σk) ≥ kε

∫ σ

0

dz
√

log 1
z2

= kε

∫ ∞

1/σ

dy

y2
√

2 log y
→ kε

∫ ∞

1

dy

y2
√

2 log y
as σ → 1. (3.7)

The last integral on [1,∞) is finite and independent of ε and k. It follows from (3.6) and
(3.7) that the size of the transition region is O(kε). This agrees with (3.1) and (3.2).

Multiplying both sides of Eq. (3.4) by h and integrating by parts, we get

∫ 1

0

ε2h′′2dx =

∫ 1

0

h′2

1 + h′2
dx ≤ 1.

This, together with (3.5) which is generally satisfied by g = h′ everywhere in [0, 1], leads to

Eε(h) =

∫ 1

0

[

−1

2
log(1 + g2) +

ε2

2
g′2

]

dx

=

∫ 1

0

[

−1

2
log(1 + k2) + ε2g′2

]

dx

∼ − log k as k → ∞.

This agrees with our previous calculations of the energetics, cf. (3.1) and (3.3).

4 Energy minimization

In this section, we study the variational problem of minimizing the scaled energy (1.9) defined
on Ω1 = (0, 1)d. Our main result is the following theorem which is a rigorous version of basic
properties we obtained from our heuristic calculations:

Theorem 4.1 (energy minimization) (1) For any ε > 0, there exists hε ∈ H(Ω1) such

that

Eε(hε) = min
h∈H(Ω1)

Eε(h).
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(2) Denote eε = minh∈H(Ω1) Eε(h). There exists a constant C1 > 0 such that

eε ≤ log ε + C1 ∀ ε > 0. (4.1)

Moreover,

eε ∼ log ε as ε → 0. (4.2)

(3) There exist two constants C2 > 0 and C3 > 0 such that for any ε ∈ (0, e−C1/
√

2) and

any global minimizer hε ∈ H(Ω1) of Eε : H(Ω1) → R,

C2

ε
≤ ‖∇mhε‖ ≤ C3

ε
, m = 0, 1, 2, (4.3)

where ∇0h = h, ∇1h = ∇h, ∇2h = ∆h, and ‖ · ‖ is the L2(Ω1)-norm.

A direct consequence of the existence of global minimizers is the following result of the
existence of a sequence of equilibrium solutions hj (j = 1, . . .) of the original equation (1.2)
over Ω = (0, L)d with each hj ΩL/j-periodic, where ΩL/j = (0, L/j)d:

Corollary 4.1 For any integer j ≥ 1, there exists hj ∈ H(Ω) that satisfies the following

properties:

(1) The function hj is ΩL/j-periodic. Moreover, if h ∈ H(Ω) is ΩL/j-periodic, then

E(hj) ≤ E(h). (4.4)

In particular, for any integer I ≥ 0, we have

E(h2I ) ≥ . . . ≥ E(h2i) ≥ E(h2i−1) . . . ≥ E(h1) = min
h∈H(Ω)

E(h). (4.5)

(2) The function hj is an equilibrium solution of Eq. (1.2), i.e.,

∇ ·
( ∇hj

1 + |∇hj|2
)

+ ∆2hj = 0 in Ω. (4.6)

Proof. Fix j. Let h̃j ∈ H(Ω) be a global energy minimizer of Ej : H(Ω) → R, where

Ej(h̃) =

∫

Ω

[

−1

2
log
(

1 + |∇h̃|2
)

+
j2

2
|∆h̃|2

]

dx ∀ h̃ ∈ H(Ω).

Now, define hj(x) = (1/j)h̃j(jx) for any x ∈ R
d. One easily verifies that hj is ΩL/j-periodic,

and that (4.4) holds true, since for any h ∈ H(Ω) that is ΩL/j-periodic,

E(h) =
1

jd
Ej(h̃) ≥ 1

jd
Ej(h̃j) = E(hj),
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where h(x) = (1/j)h̃(jx) for any x ∈ R
d. This proves (4.4) which in turn implies (4.5)

directly. Part (1) is proved.
Since h̃j ∈ H(Ω) is a global energy minimizer of Ej : H(Ω) → R, it is a critical point, i.e.,

a weak solution of

∇ ·
( ∇hj

1 + |∇hj|2
)

+ j2∆2hj = 0 in Ω, (4.7)

i.e.,

j2∆(∆hj) = −∇ ·
( ∇hj

1 + |∇hj|2
)

in Ω.

A simple argument using the regularity theory of elliptic equations and the fact that hj is
periodic, we see that hj is smooth and satisfies Eq. (4.7) pointwise. Consequently, Eq. (4.6)
follows from the scaling hj(x) = (1/j)h̃j(jx). Q.E.D.

To prove Theorem 4.1, we need several lemmas. For the first lemma, see Figure 4.1.

Lemma 4.1 (1) If µ ≥ 1, then

log(1 + s) < µs ∀ s > 0. (4.8)

(2) If µ ∈ (0, 1), then there exists a unique sµ ∈ (0,∞) such that

log(1 + sµ) = µsµ, (4.9)

and that
log(1 + s) > µs if s ∈ (0, sµ),

log(1 + s) < µs if s ∈ (sµ,∞).
(4.10)

(3) As a function of µ, sµ defined above increases from 0 to ∞ as µ decreases from 1 to 0.
Moreover,

lim
µ→0+

log(1 + sµ)

log 1
µ

= 1. (4.11)

Proof. (1) This follows from the fact that

1 + s < es ≤ eµs ∀ s > 0.

(2) Fix µ ∈ (0, 1). Let f(s) = log(1 + s) − µs (s > −1) and s0 = 1/µ − 1 > 0. Then,
f ′(s0) = 0. We have that f(s) > 0 on (0, s0), since f ′(s) > 0 on (0, s0) and f(0) = 0.
Similarly, f ′(s) < 0 on (s0,∞), and f(s0) = µ − log µ − 1. This is a decreasing function of
µ ∈ (0, 1), since the derivative with respect to µ ∈ (0, 1) is negative. Moreover, its value at
µ = 1 is 0. Thus, f(s0) > 0. Also, f(s) → −∞ as s → ∞. Thus, there exists a unique
sµ ∈ (s0,∞) that satisfies (4.9) and (4.10).
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s

µ

µ

y = log(1+s)

y = 

s s

y

O
Figure 4.1. The meaning of sµ in Lemma 4.1

.

(3) Notice that µ = s−1 log(1 + s) defines a continuously differentiable function for s ∈
(0,∞) with µ′(s) < 0, and µ(s) → 1 as s → 0+ and µ(s) → 0 as s → ∞. Thus, by the
inverse function theorem, s = s(µ) defines a function of µ ∈ (0, 1). Obviously, s(µ) = sµ as
defined in (4.9). Moreover, since s′(µ) = 1/µ′(s) < 0, sµ increases from 0 to ∞ as µ decreases
from 1 to 0. Finally, taking logarithmic function of both sides of (4.9) and dividing them
further by log sµ, we get

log log(1 + sµ)

log sµ

=
log µ

log sµ

+ 1 =
log µ

log(1 + sµ)
· log(1 + sµ)

log sµ

+ 1. (4.12)

Since sµ → ∞ as µ → 0+,

log log(1 + sµ)

log sµ

=
log log(1 + sµ)

log(1 + sµ)
· log(1 + sµ)

log sµ

→ 0 as µ → 0+. (4.13)

Now, (4.11) follows from (4.12) and (4.12). Q.E.D.

We recall that ‖∆h‖ is exactly the semi-norm |h|H2(Ω1) for any h ∈ H2
per(Ω1), i.e.,

‖∆h‖2 =
d
∑

i,j=1

‖∂xixj
h‖2 ∀h ∈ H2

per(Ω1). (4.14)

This follows from a few times of integration by parts. We also recall the following Poincaré
inequalities for the unit cell Ω1 = (0, 1)d:

‖h‖ ≤ C4‖∇h‖ ∀h ∈ H(Ω1), (4.15)

‖∇h‖ ≤ C5‖∆h‖ ∀h ∈ H(Ω1), (4.16)

where C4 > 0 and C5 > 0 are constants. The first inequality follows from the fact that any
h ∈ H(Ω1) has zero mean. The second inequality follows from the fact that the mean of any
first-order partial derivative of h ∈ H(Ω1) over Ω1 vanishes.
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Lemma 4.2 (lower bound) Let ε > 0 and µ = ε2/(2C2
5 ) > 0. Let s(ε) = 0 if µ ≥ 1 and

s(ε) = sµ ∈ (0,∞), as defined in Lemma 4.1, if 0 < µ < 1. We have

Eε(h) ≥ −1

2
log(1 + s(ε)) +

ε2

4

∫

Ω1

(∆h)2dx ∀h ∈ H(Ω1).

Proof. Fix h ∈ H(Ω1). We have by Lemma 4.1 and the Poincaré inequality (4.16) that

Eε(h) = −1

2

∫

{x∈Ω1:|∇h|2≤s(ε)}

log(1 + |∇h|2) dx

− 1

2

∫

{x∈Ω1:|∇h|2>s(ε)}

log(1 + |∇h|2) dx +
ε2

2

∫

Ω1

(∆h)2dx

≥ −1

2
log(1 + s(ε)) − ε2

4C2
5

∫

Ω1

|∇h|2dx +
ε2

2

∫

Ω1

(∆h)2dx

≥ −1

2
log(1 + s(ε)) +

ε2

4

∫

Ω1

(∆h)2dx,

as desired. Q.E.D.

Lemma 4.3 (upper bound) For each ε > 0, there exists h̃ε ∈ H(Ω1) such that

Eε(h̃ε) ≤ log ε + C6 ∀ε > 0,

where C6 > 0 is a constant independent of ε.

Proof. To better illustrate the idea, we prove the result for the case d = 2. The general
case can be treated similarly.

Define as before a 1-periodic, C1-function φε : R → R by

φε(s) =























ks if 0 ≤ s < 1
8
,

−4k
(

s − 1
4

)2
+ 3k

16
if 1

8
≤ s < 3

8
,

−k
(

s − 1
2

)

if 3
8
≤ s < 5

8
,

4k
(

s − 3
4

)2 − 3k
16

if 5
8
≤ s < 7

8
,

k(s − 1) if 7
8
≤ s ≤ 1,

where k = 1/
√

ε. Note that we choose the slope k to be proportional to 1/
√

ε not 1/ε,
cf. (3.1). This is because the constructed profile will be a product of two such one-dimensional
trial functions. Note also that we choose the size of a “transition region” to be δ = 1/8. It
is easy to verify that

∫ 1

0

φ(s) ds = 0,

|φε(s)| ≥
k

8
∀ s ∈

[

1

8
,
3

8

]

∪
[

5

8
,
7

8

]

, (4.17)
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and

|φε(s)| ≤
3k

16
, |φ′

ε(s)| ≤ k, |φ′′
ε(s)| ≤ 8k, a.e. s ∈ R. (4.18)

Define
h̃ε(x) = φε(x1)φε(x2) ∀x = (x1, x2) ∈ R

2.

Clearly, h̃ε ∈ H(Ω1).
We now calculate and estimate the energy

Eε(h̃ε) =

∫

Ω1

[

−1

2
log(1 + |∇h̃ε|2) +

ε2

2
(∆h̃ε)

2

]

dx.

The second term in the energy Eε(h̃ε) is easy to bound by (4.18) and the fact that k = 1/
√

ε:

ε2

2

∫

Ω1

(∆h̃ε)
2 dx =

ε2

2

∫

Ω1

[φ′′
ε(x1)φε(x2) + φε(x1)φ

′′
ε(x2)]

2
dx

≤ ε2

∫

Ω1

[

|φ′′
ε(x1)|2|φε(x2)|2 + |φε(x1)|2|φ′′

ε(x2)|2
]

dx

≤ 9

2
. (4.19)

For the first term in the energy Eε(h̃ε), we have by the symmetry and (4.17) that
∫

Ω1

−1

2
log(1 + |∇h̃ε|2) dx

= −8

∫

(0,1/4)×(0,1/4)

log(1 + |∇h̃ε|2) dx

= −8

∫

(0,1/4)×(0,1/4)

log
[

1 + |φ′
ε(x1)|2|φε(x2)|2 + |φε(x1)|2|φ′

ε(x2)|2
]

dx

= −8

∫

(0,1/8)×(0,1/8)

log
[

1 + k4(x2
1 + x2

2)
]

dx

− 8

∫

(1/8,1/4)×(0,1/8)

log
[

1 + |φ′
ε(x1)|2|φε(x2)|2 + k2|φε(x1)|2

]

dx

− 8

∫

(0,1/8)×(1/8,1/4)

log
[

1 + k2|φε(x2)|2 + |φε(x1)|2|φ′
ε(x2)|2

]

dx

− 8

∫

(1/8,1/4)×(1/8,1/4)

log
[

1 + |φ′
ε(x1)|2|φε(x2)|2 + |φε(x1)|2|φ′

ε(x2)|2
]

dx

≤ −8

∫

(0,1/8)×(0,1/8)

log
[

k4
(

x2
1 + x2

2

)]

dx

− 8

∫

(1/8,1/4)×(0,1/8)

log
[

k2|φε(x1)|2
]

dx

17



− 8

∫

(0,1/8)×(1/8,1/4)

log
[

k2|φε(x2)|2
]

dx

− 8

∫

(1/8,1/4)×(1/8,1/4)

log
[

|φ′
ε(x1)|2|φε(x2)|2 + |φε(x1)|2|φ′

ε(x2)|2
]

dx

≤ −1

8
log k4 − 8

∫

(0,1/8)×(0,1/8)

log
(

x2
1 + x2

2

)

dx

− 1

8
log

(

k4

64

)

− 1

8
log

(

k4

64

)

− 8

∫

(1/8,1/4)×(1/8,1/4)

log

{

[

8k

(

x1 −
1

4

)]2(
k

8

)2

+

(

k

8

)2 [

8k

(

x2 −
1

4

)]2
}

dx

= log ε + C7,

where

C7 =
3

2
log 2 − 8

∫

(0,1/8)×(0,1/8)

log
(

x2
1 + x2

2

)

dx

− 8

∫

(1/8,1/4)×(1/8,1/4)

log

[

(

x1 −
1

4

)2

+

(

x2 −
1

4

)2
]

dx

is a finite number. This, together with (4.19), leads to the desired estimate with C6 =
C7 + 9/2. Q.E.D.

Lemma 4.4 (equi-distribution of energy) If hε ∈ H2
per(Ω1) is a critical point of Eε :

H2
per(Ω1) → R, then

∫

Ω

ε2(∆hε)
2dx =

∫

Ω

|∇hε|2
1 + |∇hε|2

dx.

Proof. If hε ∈ H2
per(Ω1) is a critical point of Eε : H2

per(Ω1) → R, then

δEε(hε)(g) =

∫

Ω

(

− ∇hε · ∇g

1 + |∇hε|2
+ ε2∆hε∆g

)

dx = 0, ∀ g ∈ H2
per(Ω1).

Choosing g = hε, we obtain the desired identity. Q.E.D.

Proof of Theorem 4.1.
(1) Fix ε > 0. By Lemma 4.2, we have eε = infh∈H(Ω1) Eε(h) > −∞. Let {hj}∞j=1 be an

infimizing sequence of Eε: H(Ω1) → R. It follows from Lemma 4.2, the Poincaré inequalities
(4.15) and (4.16), and the identity (4.14) that {hj}∞j=1 is bounded in H2

per(Ω1). Thus, up to
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a subsequence, hj ⇀ hε in H2(Ω1) for some hε ∈ H2
per(Ω1). In particular, ∆hj ⇀ ∆hε in

L2(Ω1) and, up to a further subsequence if necessary, hj → hε in H1(Ω1) as j → ∞. Thus,
hε ∈ H(Ω1). Moreover, by (4.8) with µ = 1 and the Cauchy-Schwarz inequality,

∣

∣

∣

∣

∫

Ω1

[

log(1 + |∇hj|2) − log(1 + |∇hε|2)
]

dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω1

log

(

1 +
|∇hj|2 − |∇hε|2

1 + |∇hε|2
)

dx

∣

∣

∣

∣

≤
∫

Ω1

log

(

1 +

∣

∣

∣

∣

|∇hj|2 − |∇hε|2
1 + |∇hε|2

∣

∣

∣

∣

)

dx

≤
∫

Ω1

∣

∣

∣

∣

|∇hj|2 − |∇hε|2
1 + |∇hε|2

∣

∣

∣

∣

dx

≤ (‖∇hj‖ + ‖∇hε‖)‖∇hj −∇hε‖
→ 0 as j → ∞.

Further, since for each j ≥ 1, (∆hj)
2 + (∆hε)

2 ≥ 2∆hj∆hε in Ω1, we have

lim inf
j→∞

∫

Ω1

(∆hj)
2 dx ≥ lim inf

j→∞

[

2

∫

Ω1

∆hj∆hε dx −
∫

Ω1

(∆hε)
2 dx

]

=

∫

Ω1

(∆hε)
2 dx.

Therefore,

eε = lim inf
j→∞

Eε(hj) ≥
∫

Ω1

[

−1

2
log(1 + |∇hε|2) +

ε2

2
(∆hε)

2

]

dx = Eε(hε) ≥ eε.

This implies that hε is a global minimizer of Eε in H(Ω1).
(2) The estimate (4.1) follows from Lemma 4.3 with C1 = C6. It follows from Lemma 4.2,

the definition of s(ε) (cf. Lemma 4.2), and (4.11) in Lemma 4.1 that

lim inf
ε→0+

eε

log ε
= lim inf

ε→0+

Eε(hε)

log ε
≥ lim inf

ε→0+

−1
2
log(1 + s(ε))

log ε
= 1. (4.20)

By Lemma 4.3,

lim sup
ε→0+

eε

log ε
≤ lim sup

ε→0+

log ε + C6

log ε
= 1. (4.21)

Now, the desired asymptotics (4.2) follows from (4.20) and (4.21).
(3) Let hε ∈ H(Ω1) be a global minimizer of Eε : H(Ω1) → R. Clearly, hε is also a

global minimizer of Eε : H2
per(Ω1) → R. Thus, hε is a critical point of Eε : H2

per(Ω1) → R.
Consequently, we have by Lemma 4.4 that

ε2

∫

Ω1

(∆hε)
2dx =

∫

Ω2

|∇hε|2
1 + |∇hε|2

≤ 1. (4.22)
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Noting that the negative logarithmic function is convex, we have by Jensen’s inequality that

eε = Eε(hε) ≥ −1

2
log

(

1 +

∫

Ω1

|∇hε|2dx

)

.

This, together with the upper bound (4.1), leads to

log ε + C1 ≥ −1

2
log

(

1 +

∫

Ω1

|∇hε|2dx

)

.

Hence,
∫

Ω1

|∇hε|2dx ≥ e−2C1

2ε2
if ε ∈

(

0,
1√
2
e−C1

)

. (4.23)

From (4.23), we have by an integration by parts, the Cauchy-Schwarz inequality, and
(4.22) that

e−2C1

2ε2
≤
∫

Ω1

|∇hε|2dx =

∫

Ω1

(−hε)∆hεdx

≤
(
∫

Ω1

|hε|2dx

)1/2(∫

Ω1

|∆hε|2dx

)1/2

≤ 1

ε

(
∫

Ω1

|hε|2dx

)1/2

,

leading to
∫

Ω1

|hε|2dx ≥ e−4C1

4ε2
. (4.24)

Now all the estimates in (4.3) follow from (4.22), (4.24), the Poincaré inequalities (4.15)
and (4.16), and the equivalence of norms (4.14). Q.E.D.

5 Bounds on the saturation interface width and satu-

ration time

We now consider the free energy (1.1) that is defined with Ω = (0, L)d. By Theorem 4.1 and
the change of variables in (1.8), we have that

EL := min
h∈H(Ω)

E(h) ∼ − log L asL → ∞,

and for L ≥
√

2eC1 that

C2L
4−2m ≤

∫

Ω

|∇mhL|2dx ≤ C3L
4−2m, m = 0, 1, 2, (5.1)

where hL ∈ H(Ω) is any minimizer of E : H(Ω) → R, and C2 and C3 are the same constants
as in (4.3).
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It is reasonable to think that the profile will be near a global minimizer after the saturation
of the interface width. Recall from Theorem 2.1 that the interface width is bounded above
by O(t1/2). This, together with (5.1) with m = 0, then sets the saturation time ts = O(L4),

and hence the saturation interface width ws(L) = O(t
1/2
s ) = O(L2). There are exactly the

predicted scaling laws, cf. (1.6). The following result is a rigorous justification of some forms
of these scaling laws.

Theorem 5.1 Let h(·) : [0,∞) → H(Ω) be a weak solution of Eq. (1.2) on (0, T ) for any

T > 0. Let L >
√

2 and ξ ∈ (
√

2/L, 1). Let tξ > 0 be such that

E(h(tξ)) = − log(ξL). (5.2)

(1) If t ≥ 2tξ + (1/2)[wh(0)]
2, then

(

∫

tξ

t

[wh(τ)]2dτ

)1/2

≥ ξ2

√
8
L2. (5.3)

(2) Let t = σtξ for some σ > 1 such that t ≥ max(1/3, [wh(0)]
2). We have

t ≥ 1

12
e−

4
σ

E(h(0))(ξL)
4(σ−1)

σ . (5.4)

Proof. (1) It is easy to verify from the energy (1.1) and Eq. (1.2) that

d

dt
E(h(t)) = −

∫

Ω

h2
t dx ≤ 0 ∀ t > 0. (5.5)

Thus, the energy decays. Consequently, we have by (5.2) that

E(h(t)) ≤ E(h(tξ)) = − log(ξL) ∀ t ≥ tξ. (5.6)

This and Jensen’s inequality imply that

− log(ξL) =

∫

tξ

t

E(h(tξ)) dτ

≥
∫

tξ

t

E(h(τ)) dτ

≥
∫

tξ

t
∫

Ω

[

−1

2
log
(

1 + |∇h(x, τ)|2
)

]

dxdτ

≥ −1

2
log

[

1 +

∫

tξ

t
∫

Ω

|∇h(x, τ)|2dxdτ

]

.
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Therefore, applying an integration by parts and the Cauchy-Schwarz inequality, we obtain
by (2.3) that

(ξL)2 ≤ 1 +

∫

tξ

t
∫

Ω

|∇h(x, τ)|2dxdτ

= 1 +

∫

tξ

t
∫

Ω

[−h(x, τ)]∆h(x, τ) dxdτ

≤ 1 +

(

∫

tξ

t
∫

Ω

|h(x, τ)|2dxdτ

)1/2(
∫

tξ

t
∫

Ω

|∆h(x, τ)|2dxdτ

)1/2

≤ 1 +

(

∫

tξ

t

[wh(τ)]2dτ

)1/2
(

1 +
[wh(tξ)]

2

2(t − tξ)

)1/2

. (5.7)

Now, if t ≥ 2tξ + (1/2)[wh(0)]
2, then by (2.2)

1 +
[wh(tξ)]

2

2(t − tξ)
≤ 1 +

2tξ + [wh(0)]
2

2(tξ + 1
2
[wh(0)]2

= 2. (5.8)

Combining (5.7), (5.8), and the assumption that ξL ≥
√

2, we obtain (5.3).
(2) Setting t0 = 0 in (2.5), by (5.6) and (5.2), we have for any t > [wh(0)]

2 that

−1

2
log
(

1 +
√

3t
)

≤
∫

0

t

E(h(τ)) dτ

=
1

t

∫ tξ

0

E(h(τ)) dτ +
1

t

∫ t

tξ

E(h(τ)) dτ

≤ tξ
t
E(h(0)) − t − tξ

t
log(ξL).

Consequently, if t = σtξ with σ > 1, then

−1

2
log
(

1 +
√

3t
)

≤ 1

σ
E(h(0)) − σ − 1

σ
log(ξL).

Thus, for t ≥ 1/3,

2
√

3t ≥ 1 +
√

3t ≥ e−
2
σ

E(h(0))(ξL)
2(σ−1)

σ .

This leads to (5.4). Q.E.D.
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