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KDV DYNAMICS IN THE PLASMA-SHEATH TRANSITION

HAILIANG LIU AND MARSHALL SLEMROD

Abstract. A mathematical model is formulated to catch the dynamics hidden in the
plasma-sheath transition layer and the inner sheath layer for planar motion of a plasma.
It is shown that the rescaled potential in the plasma-sheath transition layer and inner
layer is governed by a perturbed KdV equation, through which some of the complex
interactions and couplings among physical mechanisms acting in the plasma-sheath for-
mation process are elucidated. This model is analyzed and compared with the model
used by Fokas in his study of nonlinear dispersive initial boundary value problems [1].
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1. Introduction

Many problems in science involve structures on several distinct length scales. Usually
the relevant length scales are not known a priori, but emerge from an attempt of the
system to reach its equilibrium state. In plasma physics, for example, the typical length
scale can be predicated by dimensional analysis, but the sheath transition and inner layer
are determined by a complex interplay of the internal dynamics. The plasma-sheath
transition is a fundamental problem in plasma physics and a good discussion is found in
the book by Lieberman and Lichtenberg [5]. Mathematically it provides a challenge to
the applied analyst in that there are multiple scales which must be resolved to obtain an
adequate description of the physical process.

Matched asymptotic expansions provide a powerful method to predict limiting behavior.
Using this method several authors [2, 4, 8, 9, 10, 11, 12, 13, 14] beginning with Franklin
and Ockendon [2] have described the plasma-sheath transition by analysis of the balance
laws on three relevant space scales for (A) the bulk quasi-neutral plasma, (B) the plasma-
sheath transition layer, and (C) the sheath layer. Region (B) is governed by the Painlevé
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equation, governing the electrical potential in the transition layer joining quasi-neutral
plasma to space charge sheath in a weakly ionized plasma.

The intent of the present work is to provide a derivation of a new model, describing
both the plasma-sheath transition layer and the sheath inner layer.

For an ionized plasma consisting of electrons and ions, one dimensional motion is de-
scribed by a normalized Euler-Poisson system of the form

∂tn+ ∂x(nu) = ze−φ,(1.1)

∂tu+ u∂xu = ∂xφ− f(u) − ze−φun−1,(1.2)

ε2∂2
xφ = n− e−φ,(1.3)

where u represents ion velocity, n the ion density, and φ is the electric potential (both suit-
ably scaled), x is a dimensionless space variable, −L < x < xw, where xw = −ε4/5b(tε−2/5)
is the location of a possibly moving wall. Here the prescription of the moving boundary
has taken the two fundamental length scales (the sheath scale and the intermediate scale)
into consideration, and the regular fixed boundary is just a special case of b = 0. The
electron density is given by Boltzmann’s relation and has been set equal to e−φ. At x = xw

we prescribe boundary conditions φ = φw(t, ε) and u = uw(t, ε). In fact the main goal of
this paper is to derive a KdV model for the plasma sheath transition and compare with
the recent result of Fokas [1] for a similar yet subtly different problem. A formal deriva-
tion of the current model in Section 2 provides us the necessary background information,
and the discussion in Section 3 is devoted to a quantum formulation of the current Euler-
Poisson system, which further elucidates the dispersive nature of the underlying force in
the system. It would be of interest to derive the same boundary layer separation directly
using the quantum formulation in Section 3.

2. Simplification of the Basic equations

For completeness, we provide the relevant balance laws for hydrodynamic models for
plasma [5].

Let mi denote the ion mass, ni the ion density, ui the ion velocity, me the electron mass,
ne the electron density, ue the electron velocity, Φ the electric potential, and Z denotes
the rate of ionization. The balance laws of mass and momentum for ions are

∂τni + ∂X(niui) = Zne,

∂τ (niui) + ∂X(niu
2
i ) = −eni

mi
∂XΦ − ni

f̃(ui)

λ
,

where f̃ /λ denotes the ion friction and λ > 0 the constant ion collision mean free path,
and the balance laws of mass and momentum for electrons are

∂τne + ∂X(neue) = Zne,

∂τ (neue) + ∂X(neu
2
e +

pe

me

) =
ene

me

∂XΦ,

where the pressure is given by pe = kneTe, here Te denotes the electron temperature, the
ion temperature is zero. In addition Φ satisfies Poisson’s equation

−ε0
e
∂2

XΦ = ni − ne,
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where ε0 is the permittivity of free space. Usually, the ions are heavy compared to the
electrons, i.e., mi >> me. Passing to the limit me → 0 in the momentum equation for
electron one can formally obtain

∂X(kTene) = ene∂XΦ.

Integration in terms of X gives

ne = nch exp

(
eΦ

kTe

)
.

This is the well-known Boltzmann relation for electrons, in which nch denotes the char-
acteristic charged particle density, e the electron charge and k Boltzmann’s constant.

The above systems may be further simplified if we introduce quantities

cs =

√
kTe

mi
, λD =

√
ε0kTe

nche2

representing the ion sound speed and the electron Debye length. Indeed introducing the
following dimensionless variables

t =
τcs
λ
, x =

X

λ
, ε =

λD

λ
,

ni

nch

→ ni,
ui

cs
→ ui φ =

−eΦ
kTe

,

ne

nch

→ ne,
ue

cs
→ ue, m =

me

mi

, z = Zλ/cs,

the above coupled Euler-Poisson system may be rewritten as

∂tni + ∂x(niui) = zne,(2.1)

∂t(niui) + ∂x(niu
2
i ) = ni∂xφ− nif(ui), f(ui) :=

f̃(csui)

c2s
,(2.2)

and

∂tne + ∂x(neue) = zne,(2.3)

∂t(neue) + ∂x(neu
2
e) +

1

m
∂xne = −ne

m
∂xφ,(2.4)

coupled with Poisson’s equation

(2.5) ε2∂2
xφ = ni − ne.

Recall that the limit m → 0 in the above momentum equation (2.4) yields Boltzmann’s
relation

ne = exp(−φ).

Hence the limit system (m→ 0) may be rewritten in non-dimensional form

∂tn+ ∂x(nu) = ze−φ,

∂tu+ u∂xu = ∂xφ− f(u) − ze−φun−1,

ε2∂2
xφ = n− e−φ.

which is exactly the system (1.1)-(1.3) stated in Section 1.
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3. Quantum Formulation

In this section we will derive the system of Schrödinger equations such that their semi-
classical limit coincides with the Euler-Poisson system with linear damping f(ui) = αui

in the momentum equation for ions. This partially justifies the dispersive nature of the
force imposed by the Possion equation.

Let the desired Schrödinger equation take the form

(3.1) i~∂tψ
~ = −~2

2
∆xψ

~ + [V +
i~
2
Q]ψ~

with the potential V and nonhomogeneous term Q to be determined. We remark in pass-
ing that the connection between Schrödinger equations and the classical hydrodynamical
equations was already noted in 1927 by Madelung, in the context of semi-classical limit
of the nonlinear Schrödinger equation. To this end, one identifies two physical relevant
observable quantities–the fluid density |ψ|2, and the fluid velocity u~ := ~∇xargψ

~. For
the semi-classical regime it is customary to consider the following WKB(after Wentzel,
Kramers, and Brillouin) ansatz

ψ~ = A~(x, t) exp

(
i
S(x, t)

~

)

with A~ ≥ 0 assuming that the phase and the amplitude are sufficiently smooth, and we
expand the amplitude in powers of ~:

A~ = A0 + ~A1 + ~2A2 + · · ·
Insertion of this expression into (3.1) leads to the following relation between the wave
phase and its amplitude

−A~
(
∂tS +

1

2
|∇S|2 + V (x)

)
+
i~
2

(2∂tA
~+A~∆xS+2∇xA

~ ·∇xS−QA~)+
~2

2
∆xA

~ = 0.

Nullifying the expressions related to the first two powers of ~ we derive the WKB system
with corrector term QA2

0

∂tS +
1

2
|∇S|2 + V = 0,

and the leading order of the amplitude A0 solves the forced transport equation

∂tA
2
0 + ∇ · (A2

0∇S) = QA2
0.

When ~ is small the leading term A0 becomes significant. Set (ρ, U) := (A2
0,∇S) one then

has the following system

∂tρ + ∇ · (ρU) = Qρ,

∂tU + U · ∇U = −∇V.

In order to recover (2.1), (2.2), it suffice to take (ρ, U) := (ni, ui), Q := Qi = znen
−1
i

and V := Vi such that −∇xVi = ∇φ− α∇xSi −Q∇xSi, i.e.,

Vi = αSi + z∇−1
x

[
ne

ni
∇xSi

]
− φ.

Assume the wave function for ions is ψi and for electron is ψe, therefore

ni = |ψi|2, ne = |ψe|2.
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Hence the Poisson equation (2.5) becomes

ε2∆xφ = |ψi|2 − |ψe|2,
or φ = ε−2∆−1(|ψi|2 − |ψe|2). Note that the phase Si = ~arg(ψi). A combination of the
above facts gives

Qi = z|ψe|2|ψi|−2,

Vi = −ε−2∆−1(|ψi|2 − |ψe|2) + α~arg(ψi) + ∇−1
x [Qi~∇x(argψi)].

To close the system we need to derive the equation for ψe. To this end, we take (ρ, U) :=
(ne, ue), Q := Qe = z and

V := Ve =
1

m
[φ+ ln|ψe|2] + z~arg(ψe)

such that −∇Ve = − 1
m
∇x[φ+ lnne] − zue.

From the above analysis we see that the scaled Euler-Poisson system (2.1)-(2.4) with
(2.5) can be formally realized as a semi-classical limit of the following coupled Schrödinger
Poisson system for Ψ = (ψi, ψe)

(3.2) i~∂tΨ = −~2

2
∆Ψ + [V +

i~
2
Q]Ψ,

with V = (Vi, Ve)
> and Q = (Qi, Qe)

> defined above.
Passing to the limit m→ 0 in the second equation of (3.2) one has

φ+ ln|ψe|2 = 0, i.e. |ψe|2 = e−φ.

The limiting Schrödinger-Poisson equation for ψ := ψi becomes

i~∂tψ = −~2

2
∆ψ +

[
α~arg(ψ) − φ+ ∇−1

x (z~e−φ|ψ|−2∇x(arg(ψ)))
]
ψ,(3.3)

ε2∆φ = |ψ|2 − e−φ,(3.4)

which is the desired quantum description of the Euler-Poisson equation (1.1)-(1.3) for
f(u) = αu.

4. Boundary layers and transition layer

4.1. The initial boundary value problem. We wish to show the initial boundary
value problem for (1.1)-(1.3) with initial conditions

(4.1) n = 1, u = 1, φ = 0, −∞ < x < 0, t = 0,

and boundary conditions

(4.2) u = uw(t, ε), φ = φw(t, ε) at x = xw(t, ε), t > 0.

Consistency requires that φw(0, ε) = 0 and uw(0, ε) = 1.
In our formulation there will be two fundamental length scales:

ξ =
x

ε
+ ε−1/5b(τ) the sheath scale (inner),

y =
x

ε4/5
+ b(τ) the intermediate scale (outer),
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and the time scale

τ =
t

ε2/5
.

For convenience set δ = ε2/5. Let us rewrite the Euler-Poisson system (1.1)-(1.3) at the
intermediate scale by introducing the asymptotic expansions

u = 1 +

∞∑

i=1

δiui,

n = 1 +
∞∑

i=1

δini,

φ =

∞∑

i=1

δiφi,

Substitution into the conservation of mass equation (1.1) with Dτ := ∂y + b′(τ)∂y gives

δ−1Dτ [δn1 + δ2n2] + δ−2∂y[δ(n1 + u1) + δ2(n1u1 + n2 + u2)] = z(1 − δφ1) + O(δ2),

and O(δ−1) terms are balanced if we take n1 = −u1+c(τ), where c(τ) denotes an arbitrary
function of τ , so that

(4.3) n = 1 − δ(u1 − c(τ)) + δ2n2 + · · · ,

and O(1) balance yields

(4.4) Dτn1 + ∂y(n1u1) = −∂y(n2 + u2) + z.

Substitution of the expansion into the momentum equation (1.2) yields

δ−1Dτ [δu1 + δ2u2] + δ−2(1 + δu1 + δ2u2)∂y(δu1 + δ2u2)

= δ−1∂y[φ1 + δφ2] − f(1) − f ′(1)(δu1) − z
(1 + δu1 + · · · )(1 − δφ1)

1 + δn1 + δ2n2 + · · ·
+O(δ2),

where Taylor’s expansion for f(1 + δu1 + · · · ) = f(1) + f ′(1)(δu1 + · · · ) has been used.
Balance at levels of O(δ−1) and O(1) gives

O(δ−1) : ∂y(u1 − φ1) = 0,

O(1) : Dτu1 + u1∂yu1 + ∂yu2 = ∂yφ2 − f(1) − z,(4.5)

respectively. Also Poisson’s equation (1.3) yields:

ε2δ−4∂2
y [δφ1 + δ2φ2] = δ(φ1 + n1) + δ2(n2 + φ2 −

φ2
1

2
) +O(δ3).

Since for δ = ε2/5, ε2δ−4 = δ, the relations from balance of terms O(δ) and O(δ2) give

O(δ) : n1 + φ1 = 0,(4.6)

O(δ2) : ∂2
yφ1 = n2 + φ2 −

φ2
1

2
.(4.7)

Substitution of (4.6), (4.7) into (4.5) gives

(4.8) Dτφ1 + c′(τ) + c(τ)∂yφ1 + φ1∂yφ1 = ∂y(φ2 − u2) − f(1) − z.
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Note that (4.4) with n1 = −φ1 and u1 = −n1 + c(τ) lead to

∂y(n2 + u2) = Dτφ1 + ∂yφ
2
1 + c(τ)∂yφ1

and (4.9) gives
∂y(n2 + φ2) = ∂3

yφ1 + φ1∂yφ1.

Both when inserted into (4.8) yield the following equation

2Dτφ1 + ∂yφ
2
1 + 2c(τ)∂yφ1 − ∂3

yφ1 = −f(1) − z − c′(τ).

In order to determine c(τ) we need to impose an additional condition. Assume that
the momentum nu approaches the state nu = 1 as y → −∞ for all τ . Thus one has
(1 + δu1 + · · · )(1 + δu1 + · · · ) → 1 as y → −∞ and n1 + u1 → 0 as y → −∞. This
combined with the fact that n1 + u1 = c(τ) implies c(τ) ≡ 0 and so the scaled potential
φ1 is governed by the “KdV=-f(1)-z” equation

(4.9) 2Dτφ1 + ∂yφ
2
1 − ∂3

yφ1 = −f(1) − z.

4.2. Sheath inner layer solution. Set ξ = x
ε

+ b(τ)

ε1/5 and τ = t/ε2/5, we then have

ε3/5[∂τ + ε−1/5b′(τ)∂ξ]n+ ∂ξ(nu) = εze−φ,(4.10)

ε3/5[∂τ + ε−1/5b′(τ)∂ξ]u+ u∂ξu = ∂ξφ− εf(u) − εzun−1e−φ,(4.11)

∂2
ξφ = n− e−φ.(4.12)

Thus to leading order in ε, the solution is a profile satisfying

∂ξ(nu) = 0,(4.13)

u∂ξu = ∂ξφ,(4.14)

∂2
ξφ = n− e−φ.(4.15)

The original expansions for the transition layer give

lim
ε→0
y→0

u(y, τ) = 1 + ε2/5u1(y, τ) + · · · = 1,

lim
ε→0
y→0

n(y, τ) = 1 + ε2/5n1(y, τ) + · · · = 1,

lim
ε→0
y→0

φ(y, τ) = ε2/5φ1(y, τ) + · · · = 0,

and hence the matching condition for the steady inner sheath solution is

(4.16) lim
ξ→−∞

u(ξ, τ) = lim
ξ→−∞

n(ξ, τ) = 1, lim
ξ→−∞

φ(ξ, τ) = 0.

Thus integration of (4.14) subject to the above boundary conditions yields

(4.17) u2 = 1 + 2φ.

Substitution of (4.17) into the Poisson equation (4.15) gives the classical sheath equation

(4.18) ∂2
ξφ = (1 + 2φ)−1/2 − e−φ,

where nu = 1 derived from (4.13) has been used. Its energy integral is

(4.19)
1

2
(∂ξφ)2 =

√
1 + 2φ+ e−φ − 2,
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where again (4.16) is used. Consistency of the wall boundary implies that we must restrict
ourselves to the case when uw, φw satisfy (4.17)-(4.19).

5. Justification of the KdV dynamics

We are now in a position to modify the KdV = −f(1)−z model to match the dynamics
hidden in the inner layer solution.

Recall that the scaled quantities

y = ε−4/5x+ b(τ), ξ = ε−1x+ ε−1/5b(τ)

give

y = ε1/5ξ.

If write equation (4.9) in the independent and dependent variables ξ and φ = ε2/5φ1 we
obtain

2ε3/5Dτφ = ∂ξ[∂
2
ξφ− φ2] − ε(f(1) + z).

Note that the steady inner solution reads

∂2
ξφ− φ2 = F (φ),

where

F (φ) := (1 + 2φ)−1/2 − e−φ − φ2 ∼ O(φ3) for |φ| < 1/2.

We thus introduce the model

2ε3/5Dτφ = ∂ξ[∂
2
ξφ− φ2 − F (φ)] − ε(f(1) + z).

We now change back to the variables y and φ1 to obtain

2Dτφ1 = ∂3
yφ1 − 2φ1∂yφ1 − ε−2/5F ′(ε2/5φ1)∂yφ1 − (f(1) + z),

which is a perturbed KdV = −f(1)−z equation. In order to normalize the above equation
we introduce

ψ =
3
√

2

6

(
φ1 +

f(1) + z

2
τ

)
,

η =
3
√

2

(
y +

f(1) + z

4
τ 2

)
.

Then consider φ1 = 6
3√2
ψ − f(1)+z

2
τ :

2Dτφ1 =
12
3
√

2
[Dτψ +

3
√

2

2
(f(1) + z)τ∂ηψ] − (f(1) + z),

{∂y, ∂
2
y , ∂

3
y}φ1 =

6
3
√

2
{ 3
√

2∂η,
3
√

4∂2
η , 2∂

3
η}ψ,

and so

Dτψ + [6ψ + g(ε, ψ, τ)]∂ηψ − ∂3
ηψ = 0,(5.1)

where

g := 3ε−2/5G

(
ε2/5

(
6
3
√

2
ψ − f(1) + z

2
τ

))
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with G determined by

(5.2) G(φ) := F ′(φ) = e−φ − 2φ− (1 + 2φ)−3/2.

As before we take φ = φw(ε2/5τ, ε) at the wall y = 0 and from the intermediate sheath
layer we see ∂2

ξφ = (1 + 2φw)−1/2 − e−φw at y = 0 as well.

6. From Perturbed KdV to KdV

As is well known KdV equation of the form

(6.1) ∂τ q + ∂ηq + 6q∂ηq − ∂3
ηq = 0

with periodic or decaying data on (−∞,∞), is a completely integrable system and the
solution of its corresponding initial value problem can be explicitly solved via the cele-
brated inverse scattering approach [3]. It is also believed that any perturbation imposed
on the original KdV would easily render the failure of approach due to the loss of the
integrability. In this section we wish to bridge between our proposed model (5.1) and the
exact KdV equation (6.1).

Clearly ‘KdV = −f(1)−z′ equation is fundamentally different from the exact equation
because the presence of the dissipation imposed by the damping and ionization. For the
damping and ionization free case f(1) = 0, z = 0, we will show the perturbed equation
can be linked to the exact KdV equation by a nontrivial transformation, see [6, 7].

First we replace the perturbed equation (5.1) by keeping only the leading perturbation
term in g(ε, ψ). It follows from (5.2) that

G(φ) = [1 − φ+
φ2

2
+ · · · ] − 2φ− [1 − 3φ+

15

2
φ2 + · · · ] = −7φ2 +O(φ3), as |φ| → 0,

which upon substitution of its leading term into (5.1) gives a simplified perturbed equation

(6.2) ∂τψ + b′(τ)∂ηψ +

(
6ψ − 1176

3
√

4
ε2/5ψ2

)
∂ηψ − ∂3

ηψ = 0.

Let ψ be the solution of the equation (6.2), and introduce a transformation

(6.3) q := −ψ − 14
3
√

2
ε1/5∂ηψ +

196
3
√

4
ε2/5ψ2.

A simple calculation gives

− [∂τq + b′(τ)∂ηq + 6q∂ηq − ∂3
ηq]

=

(
1 +

14
3
√

2
∂η +

392
3
√

4
ε2/5ψ

) [
∂τψ + b′(τ)∂ηψ +

(
6ψ − 1176

3
√

4
ε2/5ψ2

)
∂ηψ − ∂3

ηψ

]
,

from which we can conclude that the new unknown q satisfies a KdV-type equation

(6.4) ∂τ q + b′(τ)∂ηq + 6q∂ηq − ∂3
ηq = 0

if ψ satisfies the perturbed equation (6.2). Note that given q, ψ is not uniquely deter-
mined from the transformation (6.3). Nevertheless such transformation does lead us from
perturbed KdV equation to the exact KdV equation with possibly time dependent linear
convection (6.4). But now we are in a extremely interesting situation. If b′(τ) = 1 i.e.,
b(τ) = τ , then the initial boundary value problem for (6.1) is exactly the equation con-
sidered by Fokas [1] in the study of the boundary value problem for (6.1) on the right half
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line. But the case here is subtly different. In Fokas’s problem wave moves away from the
boundary η = 0 while in our case on the negative half line waves move into the wall. In
fact this can be seen as the source of the sheath formation. It thus seems very interesting
to know if result such as Fokas’s can be obtained for the negative half line problem.

7. Conclusions

The intent of this investigation is to formulate a unified model to describe the dynamics
hidden in the plasma-sheath transition layer and inner layer for weakly ionized plasma.
The main observation in this work is that above mentioned dynamics is governed by a
KdV equation, which reflects the dispersive mechanism hidden in the physical process.

The solution methodology is to use asymptotic methods to simplify the governing equa-
tions. The asymptotic expansions take advantage of the many different length and time
scales in the problem, and the varying magnitudes of material parameters. In particular,
the discrepancy in length scales allows us to isolate the sheath transition region from
both pre-sheath region and the inner sheath region. Again this discrepancy allows us to
combine the sheath transition and the inner layer into one model equation —a modified
KdV equation.
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