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MULTI-WINDOW GABOR FRAMES IN AMALGAM SPACES

Radu Balan, Jens G. Christensen, Ilya A. Krishtal, Kasso A. Okoudjou,
and José Luis Romero

Abstract. We show that multi-window Gabor frames with windows in the Wiener
algebra W (L∞, �1) are Banach frames for all Wiener amalgam spaces. As a by-product
of our results we positively answer an open question that was posed by Krishtal and

Okoudjou [28] and concerns the continuity of the canonical dual of a Gabor frame with
a continuous generator in the Wiener algebra. The proofs are based on a recent version
of Wiener’s 1/f lemma.

1. Introduction

A Gabor system is a collection of functions G(g,Λ) =
{

π(λ)g
∣
∣λ ∈ Λ

}
, where Λ =

αZ
d × βZ

d is a lattice, g ∈ L2(Rd), and the time-frequency shifts of g are given by

π(x, ω)g(y) = e2πiω·yg(y − x) (y ∈ R
d).

This system is called a frame if ‖f‖2
2 ≈ ∑λ |〈f, π(λ)g〉|2. In this case, there exists a

dual Gabor system G(g̃, Λ) =
{

π(λ)g̃
∣
∣λ ∈ Λ

}
providing the L2-expansions

f =
∑

λ

〈f, π(λ)g〉π(λ)g̃ =
∑

λ

〈f, π(λ)g̃〉π(λ)g.(1.1)

It is known that under suitable assumptions on g and g̃ that expansion extends to
Lp spaces [3, 17, 20, 21]. To some extent, these results parallel the theory of Gabor
expansions on modulation spaces [14, 18]. However, since modulation spaces are de-
fined in terms of time–frequency concentration — and are indeed characterized by
the size of the numbers 〈f, π(λ)g〉 — Gabor expansions are also available in a more
irregular context, where Λ does not need to be a lattice. In contrast, the theory
of Gabor expansions in Lp spaces relies on the strict algebraic structure of Λ. In-
deed, as shown in [30], Poisson summation formula implies that the frame operator
Sf :=

∑
λ 〈f, π(λ)g〉π(λ)g can be written as

Sf(x) =
1
βd

∑

j∈Zd

∑

k∈Zd

(
g(x − j/β − αk)g(x − αk)

)
f(x − j/β).(1.2)

This expression allows one to transfer spatial information about g to boundedness
properties of S and is at the core of the Lp-theory of Gabor expansions.

One often has explicit information only about g, while the existence of g̃ is merely
inferred from the frame inequality. It is then important to know whether certain good
properties of g are also inherited by g̃, so as to deduce the validity of (1.1) in various
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function spaces. The key technical point is showing the S in invertible not only in L2

but also in the other relevant spaces. This was proved for modulation spaces in [19,22]
and for Lp spaces in [26]. In this latter case the analysis relies on the fact that S−1 is
the frame operator associated with the dual Gabor system G(g̃, Λ) and thus admits
an expansion like the one in (1.2).

The objective of this article is to extend the Lp-theory of Gabor expansions to
multi-window Gabor systems (see [2, 23]),

G(Λ1, . . . ,Λn, g1, . . . , gn) =
{

π(λi)gi
∣
∣λi ∈ Λi, 1 ≤ i ≤ n

}
,

where Λ1, . . . ,Λn ⊆ R
2d are lattices Λi = αiZ

d × βiZ
d and g1, . . . , gn : R

d → C.
The challenge in doing so is that, in contrast to the case of a single lattice Λ, the
corresponding dual system does not consist of lattice time–frequency translates of a
certain family of functions g̃1, . . . , g̃n. The main technical point of this article is to
show that, nevertheless, S−1 admits a generalized expansion

S−1f(x) =
∑

k

Gk(x)f(x − xk),(1.3)

where now the family of points {xk}k may not be contained in a lattice. We then
prove that certain spatial localization properties of g1, . . . , gn imply corresponding
localization properties for the family {Gk}k, and deduce that S−1 is bounded on Lp-
spaces. For technical reasons we work in the more general context of Wiener amalgam
spaces, that are spaces of functions that belong locally to Lq and globally to Lp.

To achieve this, we study a Banach algebra of operators admitting an expansion
like in (1.3) with a suitable summability condition. We then resort to a recent Wiener-
type result on non-commutative almost-periodic Fourier series [4] to prove that this
algebra is spectral within the class of bounded operators on Lp. This means that if an
operator from that algebra is invertible on Lp, then the inverse operator necessarily
belongs to the algebra. This approach is now common in time–frequency analysis
[1,4–7,10,14,19,22,24,25,29] but its application to spaces that are not characterized
by time–frequency decay is rather subtle. As a by-product, we obtain consequences
that are new even for the case of one generator. We prove that if all the functions
gi are continuous, so is every function in the dual system. This question was posed
in [26].

This paper is organized as follows. In Section 2 we define Wiener amalgam spaces
and recall their characterization via Gabor frames. In Section 3 we present the main
technical result of this paper: a spectral invariance theorem for a sub-algebra of
weighted-shift operators in B(Lp(Rd)). In Section 4, we use the result of the previous
section to extend the theory of multi-window Gabor frames to the class of Wiener
amalgam spaces. In particular, this last section contains a Wiener-type lemma for
multi-window Gabor frames.

2. Amalgam spaces and Gabor expansions

Before introducing the Wiener amalgam spaces, we first set the notation that will be
used throughout the paper.
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Given x, ω ∈ R
d, the translation and modulation operators act on a function f :

R
d → C by

Txf(y) := f(y − x), Mωf(y) := e2πiω·yf(y),

where ω · y is the usual dot product. The time–frequency shift associated with the
point λ = (x, ω) ∈ R

d × R
d is the operator π(λ) = π(x, ω) := MωTx.

Given two non-negative functions f, g, we write f � g if f ≤ Cg, for some constant
C > 0. If E is a Banach space, we denote by B(E) the Banach algebra of all bounded
linear operators on E.

We use the following normalization of the Fourier transform of a function f : R
d →

C:

f̂(ω) :=
∫

Rd

f(x)e−2πiω·xdx.

2.1. Definition and properties of the amalgam spaces. A function w : R
d →

(0, +∞) is called a weight if it is continuous and symmetric (i.e., w(x) = w(−x)). A
weight w is submultiplicative if

w(x + y) ≤ w(x)w(y), x, y ∈ R
d.

Prototypical examples are given by the polynomial weights w(x) = (1 + |x|)s, which
are submultiplicative if s ≥ 0. The main results in this article require to consider
an extra condition on the weights. A weight w is called admissible if w(0) = 1, it is
submultiplicative and satisfies the Gelfand–Raikov–Shilov condition

lim
k→∞

w(kx)1/k = 1, x ∈ R
d.

Note that this condition, together with the submultiplicativity, implies that w(x) ≥ 1,
x ∈ R

d.
Given a submultiplicative weight w, a second weight v : R

d → (0,+∞) is called
w-moderate if there exists a constant Cv > 0 such that

v(x + y) ≤ Cvw(x)v(y), x, y ∈ R
d.(2.1)

For polynomial weights v(x) = (1+ |x|)t, w(x) = (1+ |x|)s, v is w-moderate if |t| ≤ s.
If v is w-moderate, it follows from (2.1) and the symmetry of w that 1/v is also
w-moderate (with the same constant).

Let w be a submultiplicative weight and let v be w-moderate. This will be the
standard assumption in this article. We will keep the weight w fixed and consider
classes of function spaces related to various weights v. For 1 ≤ p, q ≤ +∞, we define
the Wiener amalgam space W (Lp, Lq

v) as the class of all measurable functions f :
R

d → C such that

‖f‖W (Lp,Lq
v) :=

⎛

⎝
∑

k∈Zd

‖f‖q
Lp([0,1)d+k)

v(k)q

⎞

⎠

1/q

< ∞(2.2)

with the usual modifications when q = +∞. As with Lebesgue spaces, we identity two
functions if they coincide almost everywhere. For a study of this class of spaces in a
much broader context see [12,13,16]. We only point out that, as a consequence of the
assumptions on the weights v and w, it can be shown that the partition {[0, 1)d + k :
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k ∈ Z
d} in (2.2) can be replaced by more general coverings yielding an equivalent

norm.
Weighted amalgam spaces are solid. This means that if f ∈ W (Lp, Lq

v) and m ∈
L∞(Rd), then mf ∈ W (Lp, Lq

v) and

‖mf‖W (Lp,Lq
v) ≤ ‖m‖L∞(Rd)‖f‖W (Lp,Lq

v).(2.3)

In addition, using the fact that v is w-moderate, it follows that W (Lp, Lq
v) is closed

under translations and

‖Txf‖W (Lp,Lq
v) ≤ Cvw(x)‖f‖W (Lp,Lq

v),(2.4)

where Cv is the constant in (2.1).
The Köthe-dual of W (Lp, Lq

v) is the space of all measurable functions g : R
d → C

such that g · W (Lp, Lq
v) ⊆ L1(Rd). It is equal to W (Lp′

, Lq′

1/v), where 1/p + 1/p′ =
1/q + 1/q′ = 1 for all 1 ≤ p, q ≤ ∞. In particular, the pairing

〈·, ·〉 : W (Lp, Lq
v) × W (Lp′

, Lq′

1/v) → C, 〈f, g〉 =
∫

Rd

f(x)g(x) dx

is bounded. The functionals arising from integration against functions in W (Lp′
, Lq′

1/v)

determine a topology in W (Lp, Lq
v) denoted by σ(W (Lp, Lq

v), W (Lp′
, Lq′

1/v)).

2.2. Gabor expansions on amalgam spaces. We now recall the theory of Ga-
bor expansions on Wiener amalgam spaces as developed in [15, 17, 20, 21]. Let Λ =
αZ

d × βZ
d be a (separable) lattice which will be used to index time–frequency shifts.

For convenience we assume that α, β > 0. We point out that the theory depends
heavily on the assumption that Λ is a separable lattice αZ

d × βZ
d.

We first recall the definition of the family of sequence spaces corresponding to
amalgam spaces via Gabor frames. For a weight v and 1 ≤ p, q ≤ +∞ we define
the sequence space Sp,q

v (Λ) in the following way. We let FLp([0, 1/β)d) stand for the
image of Lp([0, 1/β)d) under the discrete Fourier transform. More precisely, a sequence
c ≡ { cj

∣
∣ j ∈ βZ

d
} ⊆ C belongs to FLp([0, 1/β)d) if there exists a (unique) function

f ∈ Lp([0, 1/β)d) such that

cj = f̂(j) = βd

∫

[0,1/β)d

f(x)e−2πijx dx, j ∈ βZ
d.

The space FLp([0, 1/β)d) is given by the norm ‖c‖FLp([0,1/β)d) := ‖f‖Lp([0,1/β)d).
We now let Sp,q

v (Λ) be the set of all sequences c ≡ { cλ

∣
∣λ ∈ Λ

} ⊆ C such that, for
each k ∈ αZ

d, the sequence (ck,j)j∈βZd belongs to FLp([0, 1/β)d) and

‖c‖Sp,q
v (Λ) :=

⎛

⎝
∑

k∈αZd

∥
∥(ck,j)j∈βZd

∥
∥q

FLp([0,1/β)d)
v(k)q

⎞

⎠

1/q

< +∞

with the usual modifications when q = ∞. When 1 < p < +∞ this is simply

‖c‖Sp,q
v (Λ) :=

⎛

⎝
∑

k∈αZd

∥
∥
∥
∑

j∈βZd

ck,je
2πij·

∥
∥
∥

q

Lp([0,1/β)d)
v(k)q

⎞

⎠

1/q

< +∞,

and the usual modifications hold for q = ∞.
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The following theorem from [21] introduces the analysis and synthesis operators,
clarifies their precise meaning and gives their mapping properties.

Theorem 1 ( [21], Theorem 3.2). Let w be a submultiplicative weight, v a w-moderate
weight, g ∈ W (L∞, L1

w) and 1 ≤ p, q ≤ +∞. Then the following properties hold:

(a) The analysis (coefficient) operator

Cg,Λ : W (Lp, Lq
v) → Sp,q

v (Λ), Cg,Λ(f) := (〈f, π(λ)g〉)λ∈Λ

is bounded with a bound that only depends on α, β, ‖g‖W (L∞,L1
w), and the

constant Cv in (2.1).
(b) Let c ∈ Sp,q

v (Λ) and mk ∈ Lp([0, 1/β)d) be the unique functions such that
m̂k(j) = ck,j. Then the series

Rg,Λ(c) :=
∑

k∈αZd

mkTkg

converges unconditionally in the σ(W (Lp, Lq
v), W (Lp′

, Lq′

1/v))-topology and,
moreover, unconditionally in the norm topology of W (Lp, Lq

v) if p, q < ∞.
(c) The synthesis operator Rg,Λ : Sp,q

v (Λ) → W (Lp, Lq
v) is bounded with a bound

that depends only on α, β, ‖g‖W (L∞,L1
w), and the constant Cv in (2.1).

The definition of the operator Rg,Λ is rather abstract. As shown in [15], the con-
vergence can be made explicit by means of a summability method.

For g ∈ W (L∞, L1
w), a sequence c ∈ Sp,q

v (Λ), and N, M ≥ 0 let us consider the
partial sums

RN,M (c)(x) :=
∑

|k|∞≤αN

∑

|j|∞≤βM

ck,je
2πijxg(x − k).

In the conditions “|k|∞ ≤ N, |j|∞ ≤ M” above we consider elements (k, j) ∈ Λ =
αZ

d × βZ
d; it is important that we use the max norm. We also consider the regularized

partial sums

σN,M (c)(x) :=
∑

|k|∞≤αN

∑

|j|∞≤βM

rj,Mck,je
2πijxg(x − k),

where the regularizing weights are given by

rj,M :=
d∏

h=1

(
1 − |jh|

β(M + 1)

)
.(2.5)

We then have the following convergence result [15,21].

Theorem 2. Let w be a submultiplicative weight, g ∈ W (L∞, L1
w), v a w-moderate

weight and 1 ≤ p, q ≤ +∞. Then the following properties hold:

(a) If 1 < p < ∞ and q < ∞, then

RN,M (c) → Rg,Λ(c) as N, M → ∞
in the norm of W (Lp, Lq

v).
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(b) For each c ∈ Sp,q
v (Λ),

σN,M (c) → Rg,Λ(c) as N, M → ∞
in the σ(W (Lp, Lq

v), W (Lp′
, Lq′

1/v))-topology and also in the norm of W (Lp, Lq
v)

if p, q < +∞.

Remark 1. A more refined convergence statement, with more general summability
methods, can be found in [15]. We will only need the norm and weak convergence of
Gabor expansions but we point out that the problem of pointwise summability has
also been extensively studied [15,17,20,21,31].

Proof. Part (a) is proved in [21, Proposition 4.6]. The case p < +∞ of (b) is proved
in [15, Theorem 4], where only unweighted amalgam spaces are considered. The same
proof extends with simple modifications to the weighted case and weak*-convergence
for p = ∞. �

We now present a representation of Gabor frame operators that will be essential
for the results to come. For proofs see [30] or [21, Theorem 4.2 and Lemma 5.2] for
the weighted version.

Theorem 3. Let w be a submultiplicative weight, v a w-moderate weight, g, h ∈
W (L∞, L1

w) and 1 ≤ p, q ≤ +∞. Then the operator Rh,ΛCg,Λ : W (Lp, Lq
v) →

W (Lp, Lq
v) can be written as

Rh,ΛCg,Λf = β−d
∑

j∈Zd

GjT j
β
f,(2.6)

where

Gj(x) :=
∑

k∈Zd

g(x − j/β − αk)h(x − αk), x ∈ R
d.(2.7)

In addition, the functions Gj : R
d → C satisfy

∑

j∈Zd

‖Gj‖∞w(j/β) � ‖g‖W (L∞,L1
w)‖h‖W (L∞,L1

w) < +∞.(2.8)

As a consequence, the series in (2.6) converges absolutely in the norm of W (Lp, Lq
v).

3. The algebra of L∞-weighted shifts

3.1. L∞-weighted shifts. Guided by (2.6), we will now introduce a Banach*-
algebra of operators on function spaces that will be the key technical object of the
article. For an admissible weight w we let Aw be the set of all families M = (mx)x∈Rd ∈
�1w(Rd, L∞(Rd)) with the standard Banach space norm

‖M‖Aw =
∑

x∈Rd

‖mx‖L∞(Rd)w(x) < +∞.(3.1)

The algebra structure and the involution on Aw, however, will be non-standard. They
will come from the identification of Aw with the class of operators on function spaces
of the form

f →
∑

x∈Rd

mxf(· − x).(3.2)
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Observe that due to (3.1) the family M = (mx)x∈Rd has countable support and also
that the operator in (3.2) is well defined and bounded on all Lp(Rd), p ∈ [1,∞] (recall
that the admissibility of w implies that w ≥ 1).

With a slight abuse of notation, given a function m ∈ L∞(Rd) we also denote by
m the multiplication operator f → mf . It is then convenient to write M ∈ Aw as

M =
∑

x∈Rd

mxTx, (mx)x∈Rd ∈ �1w(Rd, L∞(Rd)),

and endow Aw with the product and involution inherited from B(L2(Rd)). More
precisely, the product on Aw is given by

(
∑

x

mxTx

)(
∑

x

nxTx

)

=
∑

x

(
∑

y

mynx−y(· − y)

)

Tx

and the involution – by
(
∑

x

mxTx

)∗
=
∑

x

mx(· + x)T−x =
∑

x

m−x(· − x)Tx.

It is straightforward to verify that with this structure Aw is, indeed, a Banach*-
algebra which embeds continuously into B(L2(Rd)). We shall establish a number of
other continuity properties of the operators defined by families in Aw in Proposition 1
below. These will be useful in dealing with Gabor expansions on amalgam spaces.

Before that, we mention that the identification of families in Aw and operators
on B(Lp(Rd)) given by the operator in (3.2) is one to one; this follows from the
characterization of Aw in the following subsection and can easily be proved directly.
Because of this we shall no longer distinguish between the families in Aw and operators
generated by them. We will write Aw ⊂ B(Lp(Rd)) if we need to highlight that we
treat members of Aw as operators on Lp(Rd). We also point out that for m ∈ L∞(Rd)
and x, w ∈ R

d

(3.3) MωmTxM−ω = e2πiω·xmTx.

Proposition 1. Let 1 ≤ p, q ≤ +∞ and let v be a w-moderate weight. Then the
following statements hold:

(a) Aw ↪→ B(W (Lp, Lq
v)). More precisely, every M =

∑
x mxTx ∈ Aw defines a

bounded operator on W (Lp, Lq
v) given by the formula

M(f) :=
∑

x

mxf(· − x).

The series defining M : W (Lp, Lq
v) → W (Lp, Lq

v) converges absolutely in
the norm of W (Lp, Lq

v) and ‖M‖B(W (Lp,Lq
v)) ≤ Cv‖M‖Aw , where Cv is the

constant in (2.1).
(b) For every M ∈ Aw, f ∈ W (Lp, Lq

v) and g ∈ W (Lp′
, Lq′

1/v),

〈M(f), g〉 = 〈f,M∗(g)〉 .

(c) For every M ∈ Aw, the operator M : W (Lp, Lq
v) → W (Lp, Lq

v) is continuous
in the σ(W (Lp, Lq

v), W (Lp′
, Lq′

1/v))-topology.
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Proof. Part (a) follows immediately from (2.3) and (2.4). Part (b) follows from the
fact the involution in Aw coincides with taking adjoint. The interchange of summation
and integration is justified by the absolute convergence in part (a). Part (c) follows
immediately from (b). �

3.2. Spectral invariance. In this section we shall exhibit the main technical result
of the article. We remark that similar and more general results appear in [8,9,27]. We,
however, feel obliged to present a proof here because the rest of our paper is based on
this result. The key ingredient in the proof is the identification of the algebra Aw with
a class of almost periodic elements associated with a certain group representation. We
give a brief account of the theory as required for our purposes. For a more general
presentation see [4] and references therein.

For y ∈ R
d and M ∈ B(Lp(Rd)), p ∈ [1,∞], let ρ(y)M := MyMM−y. Explicitly,

ρ(y)Mf(x) = e2πiy·x(Mg)(x), g(x) = e−2πiy·xf(x).

The map ρ : R
d → B(B(Lp(Rd))) defines an isometric representation of R

d on the
algebra B(Lp(Rd)). This means that ρ is a representation of R

d on the Banach space
B(Lp(Rd)) and, in addition, for each y ∈ R

d, ρ(y) is an algebra automorphism and
an isometry.

A continuous map Y : R
d → B(Lp(Rd)) is almost-periodic in the sense of Bohr if

for every ε > 0 there is a compact K = Kε ⊂ R
d such that for all x ∈ R

d

(x + K) ∩ {y ∈ R
d | ‖Y (g + y) − Y (g)‖ < ε, ∀g ∈ R

d} �= ∅.
Then Y extends uniquely to a continuous map of the Bohr compactification R̂d

c of
R

d, also denoted by Y . Thus, now Y : R̂d
c → B(Lp(Rd)), where R̂d

c represents the
topological dual group (i.e., the group of characters) of R

d when R
d is endowed with

the discrete topology. The normalized Haar measure on R̂d
c is denoted by μ̄(dy).

For each M ∈ B(Lp(Rd)), we consider the map,

M̂ : R
d → B(Lp(Rd)), M̂(y) := ρ(y)M = MyMM−y.(3.4)

An operator M ∈ B(Lp(Rd)) is said to be ρ-almost periodic if the map M̂ is
continuous and almost periodic in the sense of Bohr. For every ρ-almost periodic
operator M, the function M̂ admits a B(Lp(Rd))-valued Fourier series

M̂(y) ∼
∑

x∈Rd

e2πiy·xCx(M) (y ∈ R
d).(3.5)

The coefficients Cx(M) ∈ B(Lp(Rd)) in (3.5) are uniquely determined by M via

Cx(M) =
∫

R̂d
c

M̂(y)e−2πiy·xμ̄(dy) = lim
T→∞

1
(2T )d

∫

[−T,T ]d
M̂(y)e−2πiy·xdy(3.6)

and, therefore, satisfy

ρ(y)Cx(M) = e2πiy·xCx(M).(3.7)

Hence, they are eigenvectors of ρ (see [4] for details).
Within the class of ρ-almost periodic operators we consider AP p

w(ρ), the subclass
of those operators for which the Fourier series in (3.5) is w-summable, where w is an
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admissible weight. More precisely, a ρ-almost periodic operator M belongs to AP p
w(ρ)

if its Fourier coefficients with respect to ρ satisfy

‖M‖AP p
w(ρ) :=

∑

x∈Rd

‖Cx(M)‖B(Lp(Rd))w(x) < +∞.(3.8)

By the submultiplicativity of w we know that w ≥ 1, so for operators in AP p
w(ρ) the

series in (3.5) converges absolutely in the norm of B(Lp(Rd)) to M̂(y):

M̂(y) =
∑

x∈Rd

e2πiy·xCx(M), y ∈ R
d,(3.9)

where each Cx ∈ B(Lp(Rd)) satisfies (3.6) and, hence, (3.7). In particular, for y = 0,
it follows that each M ∈ AP p

w(ρ) can be written as

M =
∑

x∈Rd

Cx(M).(3.10)

Conversely, if M is given by (3.10), with the coefficients Cx satisfying (3.8) and (3.7), it
follows from the theory of almost-periodic series that M ∈ AP p

w(ρ) and Cx

satisfy (3.6).
Theorem 3.2 from [4] establishes the spectral invariance of AP p

w(ρ) ↪→ B(Lp(Rd)),
p ∈ [1,∞] (the result there applies to a more general context). Our goal here is
to establish connection between Aw and AP p

w(ρ) and prove a spectral invariance
result for Aw.

To achieve this goal we first characterize the eigenvectors Cx of the representation ρ.

Lemma 1. For any 1 ≤ p ≤ ∞ and any m ∈ L∞(Rd) and x ∈ R
d, Cx = mTx is an

eigenvector of ρ : R
d → B(Lp(Rd)). For 1 ≤ p < ∞ these are the only eigenvectors.

Proof. If Cx = mTx, then, according to (3.3), it satisfies (3.8).
The converse works only for 1 ≤ p < ∞. Suppose that Cx ∈ B(Lp(Rd)) satis-

fies (3.8). Using (3.3) once again we have

ρ(y)(CxT−x) = e2πiy·xCxe−2πiy·xT−x = CxT−x.

It follows that CxT−x commutes with every modulation My. Hence, CxT−x must be
a multiplication operator m, so Cx = mTx. �

For p = ∞ there are eigenvectors of ρ which are not of the form mTx. An example of
such an eigenvector is given in [27, Section 5.1.11]. Hence, one would need additional
conditions to conclude that Cx = mTx for some m ∈ L∞(Rd).

From the discussion above, AP p
w(ρ) consists of all the operators M =

∑
x∈Rd Cx,

with Cx satisfying (3.8) and (3.7). In addition, by the previous lemma, for 1 ≤ p < ∞
an operator Cx satisfies (3.7) if and only if it is of the form Cx = mTx, for some
function m ∈ L∞(Rd). In this case, ‖Cx‖B(L2(Rd)) = ‖m‖∞ and, thus, (3.8) reduces
to (3.1). Hence we obtained

Proposition 2. For p ∈ [1,∞) the class Aw ⊂ B(Lp(Rd)) coincides with AP p
w(ρ),

the class of ρ-almost periodic elements, having w-summable Fourier coefficients.

For p = ∞, the two classes are different. Nevertheless, the results we have obtained
so far are sufficient to prove our main technical result.
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Theorem 4. Let w be an admissible weight. Then, the embedding Aw ↪→ B(Lp(Rd)),
p ∈ [1,∞] is spectral. In other words, if M ∈ Aw defines an invertible operator∑

x mxTx ∈ B(Lp(Rd)) for some p ∈ [1,∞], then M−1 ∈ Aw.

Proof. For 1 ≤ p < ∞ the result follows from Proposition 2 and [4, Theorem 3.2].
This last result states that AP p

w(ρ) is spectral.
For p = ∞ we follow a different path. Given an operator

M =
∑

x∈Rd

mxTx ∈ Aw ⊂ B(L∞(Rd))

with
∑

x∈Rd w(x)‖mx‖L∞(Rd) < ∞, we consider the operator

N =
∑

x∈Rd

Tx(m−x)Tx =
∑

x∈Rd

m−x(· − x)Tx ∈ Aw ⊂ B(L1(Rd)),

which is well defined since ‖Tx(m−x)‖L∞(Rd) = ‖m−x‖L∞(Rd). By direct computa-
tion, the transpose (Banach adjoint) of N : L1(Rd) → L1(Rd) is precisely M :
L∞(Rd) → L∞(Rd). Thus, M = N ′ and by Lax [28, Theorem 3, Chapter 20] it
follows that N is invertible when M is invertible. Now, by spectrality of Aw in
B(L1(Rd)) (as obtained earlier) and [28, Theorem 8(ii), Chapter 15], we obtain that
M−1 = (N−1)′ ∈ Aw, that is M−1 =

∑
x∈Rd nxTx for some bounded functions nx

such that
∑

x∈Rd w(x)‖nx‖L∞(Rd) < ∞. �

Remark 2. In concrete terms, Theorem 4 says that if M : Lp(Rd) → Lp(Rd) is an
invertible operator of the form M =

∑
x∈Rd mxTx with {mx : x ∈ R

d} ⊆ L∞(Rd) and∑
x‖mx‖∞w(x) < +∞, for an admissible weight w, then M−1 : Lp(Rd) → Lp(Rd)

can also be written as M−1 =
∑

x∈Rd nxTx, for some measurable functions nx, x ∈ R
d

satisfying
∑

x‖nx‖∞w(x) < +∞.

Remark 3. In [26] two of us used a special case of Theorem 4 for ρ-periodic (rather
than ρ-almost periodic) operators in B(L2(Rd)). In [26, Example 2.1], however, we
neglected to mention this restriction and erroneously implied that all of the operators
in B(L2(Rd)) were ρ-periodic.

3.3. Corollaries of spectral invariance. Let us denote by σp(M) and σAw(M)
the spectra of the operator M ∈ Aw in the algebras B(Lp(Rd)), p ∈ [1,∞], and Aw,
respectively.

Corollary 1. Consider M =
∑

x mxTx ∈ Aw. Then σp(M) = σAw(M) for all
p ∈ [1,∞].

We conclude the section with the following very important result.

Theorem 5. Assume that M ∈ Aw satisfies M∗ = M =
∑

x mxTx and Ar‖f‖r ≤
‖Mf‖r for some Ar > 0 and all f ∈ Lr(Rd) for some r ∈ [1,∞]. Then M−1 ∈ Aw.

Moreover, suppose that E ⊆ W (Lp, Lq
v), 1 ≤ p, q ≤ +∞, is a closed subspace (in the

norm of W (Lp, Lq
v)) such that ME ⊆ E. Then M−1E ⊆ E and, as a consequence,

ME = E.

Proof. From Corollary 1 we deduce that σAw(M) = σr(M) = σ2(M) ⊂ R since
M ∈ B(L2(Rd)) is self-adjoint. Recall that in Banach algebras every boundary point
of the spectrum belongs to the approximative spectrum. The boundedness below
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condition, however, implies that 0 does not belong to the approximative spectrum of
M ∈ B(Lr(Rd)). Hence, 0 /∈ σr(M) and, by Theorem 4, M−1 ∈ Aw.

To prove the second part, let Aw(E) be the subalgebra of Aw formed by all those op-
erators S such that SE ⊆ E. Since E is closed in W (Lp, Lq

v) and Aw ↪→ B(W (Lp, Lq
v))

by Proposition 1, it follows that Aw(E) is a closed subalgebra of Aw (we do not claim
that it is closed under the involution). From the first part of the proof it follows that
the set C \ σAw(M) is connected. Consequently (see for example [11, Theorem VII
5.4]), σAw(E)(M) = σAw(M). Finally, 0 /∈ σAw(M) = σAw(E)(M) which proves that
M−1 ∈ Aw(E), as desired. �

4. Dual Gabor frames on amalgam spaces

4.1. Multi-window Gabor frames. Let Λ = Λ1×· · ·×Λn be the Cartesian product
of separable lattices Λi = αiZ

d × βiZ
d and let g1, . . . , gn ∈ W (L∞, L1

w). We consider
the (multi-window) Gabor system

G =
{

gi
λi := π(λi)gi

∣
∣λi ∈ Λi, 1 ≤ i ≤ n

}
.

We consider the system G as an indexed set, hence G might contain repeated elements.
The frame operator of the system G is given by

SG = Sg1,Λ1 + · · · + Sgn,Λn ,

where Sgi,Λi = Rgi,ΛiCgi,Λi (see Section 2.2). For 1 ≤ p, q ≤ +∞ and a w-moderate
weight v, we define the space Sp,q

v (Λ) := Sp,q
v (Λ1) × · · · × Sp,q

v (Λn) endowed with the
norm

‖c = (c1, . . . , cn)‖Sp,q
v (Λ) :=

n∑

i=1

‖ci‖Sp,q
v (Λi).

The analysis map is W (Lp, Lq
v) � f → CG(f) := (Cgi,Λi(f))1≤i≤n ∈ Sp,q

v (Λ), while
the synthesis map is Sp,q

v � c → RG(c) :=
∑n

i=1 Rgi,Λi(ci) ∈ W (Lp, Lq
v). With these

definitions, the boundedness results in Theorem 1 extend immediately to the multi-
window case. The frame expansions are however more complicated since the dual
system of a frame of the form of G may not be a multi-window Gabor frame. We now
investigate this matter.

4.2. Invertibility of the frame operator and expansions.

Theorem 6. Let w be an admissible weight, g1, . . . , gn ∈ W (L∞, L1
w) and Λ =

Λ1 × · · · × Λn, with Λi = αiZ
d × βiZ

d separable lattices. Suppose that the Gabor
system

G =
{

gi
λi := π(λi)gi

∣
∣λi ∈ Λi, 1 ≤ i ≤ n

}

is such that its frame operator SG is bounded below in some Lr(Rd) for some r ∈
[1,∞], i.e.,

Ar‖f‖r ≤ ‖SGf‖r, Ar > 0 for all f ∈ Lr(Rd).

Then the frame operator SG is invertible on W (Lp, Lq
v) for all 1 ≤ p, q ≤ +∞

and every w-moderate weight v. Moreover, the inverse operator SG−1 : W (Lp, Lq
v) →

W (Lp, Lq
v) is continuous both in σ(W (Lp, Lq

v), W (Lp′
, Lq′

1/v)) and the norm topologies.
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Proof. For each 1 ≤ i ≤ n, the frame operator Sgi,Λi = Rgi,ΛiCgi,Λi belongs to the
algebra Aw as a consequence of the Walnut representation in Theorem 3. Hence,
SG = Sg1,Λ1 + · · · + Sgn,Λn ∈ Aw. Since SG is bounded below in Lr(Rd), Theorem 5
implies that SG−1 ∈ Aw. The conclusion now follows from Proposition 1. �

We now derive the corresponding Gabor expansions.

Theorem 7. Under the conditions of Theorem 6, define the dual atoms by g̃i
λi :=

SG−1(gi
λi). Let 1 ≤ p, q ≤ +∞ and v be a w-moderate weight. Then the following

expansions hold:

(a) For every f ∈ W (Lp, Lq
v),

f = lim
N,M→∞

n∑

i=1

∑

|k|∞≤N

∑

|j|∞≤M

rβij,M

〈
f, g̃i

(αik,βij)

〉
gi
(αik,βij)

= lim
N,M→∞

n∑

i=1

∑

|k|∞≤N

∑

|j|∞≤M

rβij,M

〈
f, gi

(αik,βij)

〉
g̃i
(αik,βij)

,

where the regularizing weights rβij,M are given in (2.5) and the series converge
in the σ(W (Lp, Lq

v), W (Lp′
, Lq′

1/v))-topology. For p, q < +∞ the series also
converge in the norm of W (Lp, Lq

v).
(b) If 1 < p < +∞ and q < +∞, for every f ∈ W (Lp, Lq

v),

f = lim
N,M→∞

n∑

i=1

∑

|k|∞≤N

∑

|j|∞≤M

〈
f, g̃i

(αik,βij)

〉
gi
(αik,βij)

= lim
N,M→∞

n∑

i=1

∑

|k|∞≤N

∑

|j|∞≤M

〈
f, gi

(αik,βij)

〉
g̃i
(αik,βij)

,

where the series converge in the in the norm of W (Lp, Lq
v).

Remark 4. A more refined convergence statement including more sophisticated
summability methods can be obtained using the results in [15].

Proof. Theorem 2 implies that for all f ∈ W (Lp, Lq
v),

SG(f) = lim
N,M→∞

n∑

i=1

∑

|k|∞≤N

∑

|j|∞≤M

rβij,M

〈
f, gi

(αik,βij)

〉
gi
(αik,βij)

(4.1)

with the kind of convergence required in (a). Since SG−1 ∈ Aw, Proposition 1
implies that SG−1 : W (Lp, Lq

v) → W (Lp, Lq
v) is continuous both in the norm and

σ(W (Lp, Lq
v), W (Lp′

, Lq′

1/v))-topology. Consequently, we can apply SG−1 to both sides
of (4.1) to obtain the first expansion in (a). The second one follows by applying (4.1)
to the function SG−1(f) and using Proposition 1 to get

〈
SG−1(f), gi

λi

〉
=
〈
f, SG−1(gi

λi)
〉

=
〈
f, g̃i

λi

〉
.

The statement in (b) follows similarly, this time using the corresponding statement
in Theorem 2. �
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4.3. Continuity of dual generators. We now apply Theorem 5 to Gabor expan-
sions.

Theorem 8. In the conditions of Theorem 6, let 1 ≤ p, q ≤ +∞ and let v be a
w-moderate weight. Let E ⊆ W (Lp, Lq

v) be a closed subspace (in the norm of W (Lp, Lq
v))

such that SGE ⊆ E. Suppose that the atoms g1, . . . , gn ∈ E. Then the dual atoms,
g̃i

λi = SG−1(gi
λi) ∈ E.

Proof. As seen in the proof of Theorem 6, SG ∈ Aw. Hence, the conclusion follows
from Theorem 5. �

As an application of Theorem 8 we obtain the following corollary, which was one
of our main motivations. The case n = 1 was an open problem in [26].

Corollary 2. In the conditions of Theorem 6, if all the atoms g1, . . . , gn are contin-
uous functions, so are all the dual atoms g̃i

λi = SG−1(gi
λi).

Proof. We apply Theorem 8 to the subspace W (C0, L
1
w) formed by the functions of

W (L∞, L1
w) that are continuous. To this end we need to observe that SGW (C0, L

1
w) ⊆

W (C0, L
1
w). Since SG = Sg1,Λ1 + · · ·+Sgn,Λn , it suffices to show that each Sgi,Λi maps

W (C0, L
1
w) into W (C0, L

1
w).

Let f ∈ W (C0, L
1
w). The Walnut representation of Sgi,Λi in Theorem 3 gives

Sgi,Λi(f) = β−d
i

∑
j Gi

jTj/βi
f with absolute convergence in the norm of W (L∞, L1

w).
Hence it suffices to observe that each of the functions Gi

j is continuous. According to
Theorem 3 these are given by

Gi
j(x) :=

∑

k∈Zd

gi(x − j/βi − αik)gi(x − αik).

Since the function gi is continuous it suffices to note that in the last series the conver-
gence is locally uniform. This is an easy consequence of the fact that ‖gi‖W (L∞,L1

w) <
+∞. �
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[20] K. Gröchenig and C. Heil, Gabor meets Littlewood–Paley: Gabor expansions in Lp(Rd), Stud.

Math., 146(1) (2001), 15–33.
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