
BOSE-EINSTEIN CONDENSATION BEYOND MEAN FIELD:
MANY-BODY BOUND STATE OF PERIODIC MICROSTRUCTURE

DIONISIOS MARGETIS∗

Abstract. In Bose-Einstein condensation, integer-spin atoms (Bosons) occupy macroscopically
a one-particle quantum state, called condensate. We study time-independent quantum fluctuations
of a mean field limit in trapped, dilute atomic gases of repulsively interacting Bosons at zero temper-
ature. Our goal is to describe quantum-mechanically the lowest macroscopic many-body bound state
consistent with a microscopic Hamiltonian that accounts for spatial inhomogeneity in the particle
scattering processes. In the mean field limit, the wave function, Φ(t, x), of the condensate satisfies
a defocusing cubic nonlinear Schrödinger-type equation (NSE), the Gross-Pitaevskii equation. We
include macroscopic consequences of pair excitation, i.e., the scattering of particles in pairs from
the condensate to other states, proposed in [Wu, J. Math. Phys., 2 (1961), pp. 105–123]. From
a microscopic Hamiltonian with spatially varying interaction strength, we derive a Φ-dependent
integro-partial differential equation for the pair collision kernel, K. For a scattering length with pe-
riodic microstructure of subscale ε, we describe the effective many-body lowest bound state in terms
of Φ and K up to second order in ε. If the external potential Ve is slowly varying, Ve(x) = U(ε̆ x), we
solve the homogenized equations to leading order in ε̆ via boundary layer theory. As an application
of the perturbation program, we describe the partial depletion of the condensate.
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1. Introduction. A far-reaching advance in physics in 1995 was the first obser-
vation of Bose-Einstein condensation (BEC) in trapped dilute atomic gases [1,15]. In
BEC, particles with integer spin (Bosons) occupy a macroscopic one-particle quantum
state, usually referred to as the “condensate”. This possibility was first predicted for
non-interacting particles over 80 years ago [6,16,17]. Many recent experimental obser-
vations have stimulated theoretical research in systems without translation symmetry,
particularly when an external potential spatially confines the atoms.

Modeling dilute atomic gases involves at least three length scales: (i) the de
Broglie wavelength, ldB, for the wavelike nature of particles; (ii) the mean interparticle
distance, ld; and (iii) the scattering length, a, where a� ld � ldB. In the absence of
an external potential, ld = ρ−1/3 and ldB = (ρa)−1/2 where ρ is the gas density and
ρa3 � 1. With a trapping potential, another length is the typical size of the trap
which may be larger than or comparable to ldB. A known mean field limit involves a
cubic nonlinear Schrödinger-type equation (NSE) (or Gross-Pitaevskii equation) for
the one-particle wave function, Φ, of the condensate [33,34,54,68]. This description is
adequate for many experimental situations, but does not capture the partial depletion
of the condensate as particles scatter from it to other states [70].

In this article, we apply perturbation theory to study static effects beyond the
NSE in the BEC of trapped atomic gases with a varying positive scattering length at
zero temperature. We focus on the lowest many-particle bound state. This state en-
compasses the condensate as well as coherent superpositions of particle states amount-
ing to the scattering of atoms from the condensate in pairs. For non-translation in-
variant settings, this pair excitation formalism is due to Wu [68, 69] on the basis of
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the work by Lee, Huang and Yang on periodic systems [44]. The pair excitation is
described by the pair collision kernel, K, a function of two spatial variables. From a
microscopic Hamiltonian with a confining potential, we (i) derive partial differential
equations (PDEs) for Φ and K; (ii) homogenize these equations for an interaction
strength with a periodic microstructure; and (iii) describe the condensate depletion.

A novelty of our work lies in its focus on the interplay of a periodic scattering
length and trapping potential for estimating the condensate depletion. In [68, 69] no
explicit connection is made of an external potential to the fraction of particles out
of the condensate. Here, we show heuristically how the condensate depletion can be
influenced by spatial oscillations of the scattering length combined with a trap. For
this purpose, we revisit the pair excitation formalism in a reasonably general setting;
and extend this formalism to scattering lengths of periodic microstructure.

The physical motivation for our work comes from experimental efforts to relate
properties of ultracold atomic gases to the superfluidity of liquid Helium [11, 42, 70].
The Helium system is characterized by strong particle interactions, with a significant
fraction of particles leaving the condensate to occupy other states; and, thus, is less
amenable to a systematic theory. A plausible way to influence condensate depletion
in atomic gases would be to control the scattering length, e.g., near a Feshbach reso-
nance [10,12,40,62], or using an optical lattice [70]. We study an aspect of the former
possibility, aiming to understand the effects of inhomogeneous scattering processes,
namely, a spatially varying scattering length, on the many-particle bound state. In
contrast to an actual Feshbach resonance, in which particle interactions can switch
sign, the atomic interactions remain repulsive throughout our analysis.

Part of our results concern deviations from the usual mean field description of
the NSE because of pair excitation in a reasonably general setting of inhomogeneous
scattering with periodic microstructure. Such quantum fluctuations (defined in section
3) cannot be avoided in BEC; for example, these are considered responsible for phonon
creation [44, 68]. We simplify the particle model by removing complications that are
not absolutely essential for a fundamental treatment; for instance, the particles are
taken to be spinless. We consider weakly interacting atoms and non-periodic trapping
potentials, leaving periodic potentials for future work; see [38, 61] for the NSE.

The present approach has been inspired by and forms an extension of work
by Fibich, Sivan and Weinstein on the (one-particle) bound states of the focusing
NSE [25]. In our case, an additional complication stems from the spatial nonlocality in-
herent to couplings of the PDE for the kernelK with the condensate wave function, Φ.

The mathematical context of our study is quantum many-body perturbation the-
ory and homogenization via two-scale expansions. At the level of the many-particle
Hamiltonian, perturbations are applied to many-body operators in a Hilbert space via
heuristics. In the context of macroscopic equations, periodic homogenization, in the
spirit of Bensoussan, Lions and Papanicolaou [2,51], is applied to PDEs with nonlinear
couplings. We seek sufficiently regular solutions of the effective equations via singular
perturbations for traps that vary slowly in the spatial variable. The convergence and
strict legitimacy of the related asymptotic expansions is not addressed. It is hoped
that our investigations will serve as an invitation to more rigorous studies.

Because the pair-excitation approach is not used widely in applied mathematics,
we introduce some germane elementary concepts first, and then study their implica-
tions. For broad reviews of BEC in trapped atomic gases, the reader may consult,
e.g., [7, 11, 13, 42, 46, 53, 56].
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1.1. Particle model. An assumption throughout this article is that the number
of particles at state Φ remains O(N), where N is the total (conserved) number of
atoms. This hypothesis is consistent with the Bose-Einstein condensation.1

The starting point is the Hamiltonian, HN , of N Bosons. This HN encompasses
three major effects: (i) the repulsive pairwise particle interaction, V ; (ii) the spatially
varying scattering length, a(x); and (iii) the confining potential, Ve(x):

(1.1) HN =

N∑

j=1

[−∆j + Ve(xj)] +
∑

i<j

V(xi, xj) (xj ∈ R
3) ,

where the units are chosen so that ~ = 2m = 1 (~: Planck’s constant,m: atomic mass)
and xj are particle positions. In the above, Ve is a positive, smooth trapping potential
with Ve(x) → ∞ as |x| → ∞, e.g., Ve(x) = |x|2; and V(xi, xj) is a positive, symmetric,
short-range interaction, which may not be translation invariant. We represent V
by the Fermi pseudopotential for many-body problems, following Huang, Yang and
Luttinger [36]. This pseudopotential comes from an effective operator that reproduces
the low-energy far field in 2-body scattering [4]:2

(1.2) V(xi, xj)f(xi, xj) = g(xi) δ(xi − xj)
∂

∂xij

[
xijf(xi, xj)

]
(i 6= j) ,

where f is any 2-body wave function, g(x) := 8πa(x) > 0, xij := |xi − xj |, δ(x) is the
Dirac mass in R3, and a is the scattering length. A rigorous definition of constant a
can be found, e.g., in [22]. By omission of (∂/∂xij)xij , we use [68, 69]

(1.3) V(xi, xj) ⇒ V (xi, xj) = g(xi) δ(xi − xj) .

An alternate approach is to employ a regularized interaction potential, which would
be properly scaled by N [20–22]: V = N3bg(xi, xj) V1(N

b(xi − xj)) where V1 can be
chosen to be compactly supported and smooth, and b > 0.

The N -particle wave function ΨN(t, ~x), ~x = (x1, . . . , xN ), is a crucial quantity,
since it can generate all observable properties of the atomic gas. For Bosons, this ΨN

is symmetric with respect to arbitrary permutations of the N atoms, and satisfies

(1.4a) i∂tΨN = HNΨN (i2 = −1) .

For many applications, it is reasonable to consider the initial data

(1.4b) ΨN(0, ~x) =

N∏

j=1

Φ(xj) ,

where Φ(x) corresponds to the condensate at t = 0. Bound states of ΨN are particular
solutions to (1.4a) of the form ΨN = e−iEN tΘ(~x) where EN is the total energy.

In the (simplest) case with V ≡ 0, the wave function can be the tensor product

(1.5) ΨN(t, ~x) = Ψ0
N :=

N∏

j=1

Φ(t, xj) , Φ(0, xj) = Φ(xj) ,

1A formal definition of Bose-Einstein condensation invokes the appropriate projection operator
for the condensate; see Penrose and Onsager [52].

2The scattering length, a(x), enters our description as an ad hoc function. In contrast, in recent
works by Elgart, Erdős, Schlein and Yau [18, 20–22] the (constant) scattering length emerges as an
effective parameter from the mean field limit of many-particle quantum dynamics.
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where Φ(t, x) obeys a linear Schrödinger equation on (0,∞) × R3. A nontrivial V in
HN (i) introduces nonlinearities, and (ii) spoils the tensor product (1.5) because of
particle correlations. It is a remarkable feature of the quantum dynamics that, as
N → ∞, (1.5) still holds in an appropriate sense [22].

1.2. Mean field limit. The simulation of the particle model by (1.1)–(1.4) be-
comes impractical for N � 1. The many-body Schrödinger equation needs to be
replaced by PDEs for macroscopic variables of interest in lower dimensions. One such
variable is the condensate wave function, Φ. More generally, it is desirable to for-
mulate a macroscopic theory that appropriately encapsulates the N -body dynamics,
particularly the scattering of atoms in pairs, for finite yet large N .

The NSE results heuristically from the substitution of (1.5) into (1.4a) [68, 69].
Alternatively, consider the L2-variation of the energy functional [13, 33, 34, 46, 54]

(1.6) E [u, u∗] =
∫

R3

dx {|∇u|2 + (g/2)|u|4 + Ve(x)|u|2} .

The condensate wave function, Φ, satisfies

(1.7) i∂tΦ(t, x) =
δE [u, u∗]
δu∗

∣∣∣∣
(Φ,Φ∗)

= [−∆+ Ve(x) + g|Φ||2]Φ , g = 8πa .

The time-translation invariance and global gauge symmetry (by u 7→ eiθu) of (1.6)
entail that the energy, E , and mass, ‖Φ‖2L2, are conserved. For one-particle bound
states, one seeks solutions Φ(t, x) = e−iµtφ(x) where µ ∈ R is the particle ‘chemical
potential’. If g < 0 (focusing case), bound states exist even if Ve ≡ 0. This case was
studied at the level of NSE in [25], inspiring our work. We consider the defocusing
case (g > 0) with attention to the lowest many-body bound state in a trapping Ve.

1.3. Pair excitation. It is worthwhile mentioning the case with periodic bound-
ary conditions and constant scattering length, where the condensate is the state of
zero momentum. This case is more transparent to physical interpretation since it is
amenable to the Fourier transform on a lattice; the variables are (discrete) momenta.

Bogoliubov [5] addressed the problem of the particle energy spectrum for this
setting by invoking a manipulation of the Hamiltonian. His approach, discussed in
[45, 46], makes use of many-body operators in the Fourier space. The idea of pair
excitation was placed on a firmer basis ten years later by Lee, Huang and Yang [44],
who systematically considered the scattering of atoms from the condensate to states
of nonzero momenta. By diagonalizing an approximate matrix representation of the
Hamiltonian, these authors derived a formula for the N -particle wave function, ΨN ,
that distinctly deviates from the usual tensor product form: their formula expresses
excitation of particles from zero momentum to pairs of opposite momenta [44].

The periodic case serves as a paradigm for the use of operators in pair excitation.
We do not further elaborate on this case, focusing on the implications of an external
potential (which removes the translation invariance). For details on the periodic case,
the reader is referred to [44–46,67].

The extension of pair creation to settings with a trapping potential is nontrivial.
We adopt the extension by Wu [68,69], who applies the ansatz, or trial function,

(1.8) Ψ1
N(t, ~x) = C(t) eP[K](t)Ψ0

N(t, ~x) ,
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where Ψ0
N is the tensor product (1.5), C(t) is a normalization factor, and P [K](t) is

an operator that spatially averages out the excitation of particles from the condensate
Φ to other states with the effective kernel (“pair excitation function”) K. This K is
not a priori known (in contrast, e.g., to the case of the classical Boltzmann gas) but is
determined by means consistent with the many-body dynamics, (1.4a). The formula
for P is expressed conveniently in terms of many-body operators; see (3.7). In the
periodic case, (1.8) formally reduces to the many-body wave function found in [44].

By (1.4) and (1.8), Wu derives a system of dispersive PDEs for Φ and K; see
section 3.2 for an extension to a spatially varying scattering length. K and Φ are
coupled non-locally; the coupling is controlled by the scattering length. Observable
quantities, e.g., the condensate depletion, can be computed from K; see section 8.

The formalism of pair excitation appears generic for the many-body quantum
dynamics. Classical concepts, and too restrictive assumptions about the form of the
trap, are avoided. The consequences of pair excitation in a confining potential have
been studied in a limited number of cases. The effect of a slowly varying trap has been
studied via singular perturbations in time-independent [69] and time-dependent [48]
settings. Here, in the same vein, we apply singular perturbation to the zeroth- and
second-order homogenized equations for Φ and K. Other approaches that aim to
transcend the NSE are outlined (albeit non-exhaustively) in section 3.

1.4. Periodic microstructure. Following [25], we set

(1.9) g(x) = g0[1 +A(x/ε)] > 0 , 0 < ε� 1 ,

where A(x) is smooth and periodic with zero average. For example, in one spatial

dimension (1D) with unit period, impose A(x + 1) = A(x) and
∫ 1

0
dxA(x) = 0.

1.5. Program. The heart of our analysis is perturbation theory at two levels.
The first level concerns the microscopic dynamics: perturbations are applied to

the microscopic Hamiltonian HN to single out the effect of pair excitation. We review
Wu’s method [68], which is a generalization of the periodic case [44]; and add an
extension to include a spatially varying scattering length.

To serve these goals, we revisit the formalism of quantized fields, which underlies
closely related works with a physics perspective [44, 68]. Most recently, Rodnianski
and Schlein use quantized fields to derive estimates for the rate of convergence to the
mean field limit [58]. An extension of this work in the spirit of Wu’s approach is
offered in [32]. By quantized fields, the N -body Hamiltonian is viewed as an operator
on the Fock space, F, the Hilbert space for states with arbitrary number of particles.

The next level of analysis focuses on solutions of the derived static macroscopic
PDEs for Φ andK. If the coupling parameter g has the microstructure (1.9), the PDEs
for the many-body bound state are amenable to classical periodic homogenization [2].
For the lowest bound state, we derive homogenized equations for Φ and K including
a higher-order correction in ε. Solutions to these equations are determined for slowly
varying traps, when the Boson system is nearly (but not exactly) translation invariant.

1.6. Limitations. The many-body perturbation scheme is general enough to
include a wide class of external potentials, such as the periodic potentials of recent
experimental setups [70]. However, periodic Ve’s [38, 61] are not studied here.

The classical homogenization is carried out formally, restricted to up to two
(nonzero) terms in each two-scale expansion (for Φ and K). The next higher-order
terms and convergence of the expansions are not addressed in this article.
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We focus on zero temperature, T = 0. For finite temperatures (T > 0), the con-
densate coexists with thermally excited states described by a set of (a priori unknown)
wave functions, {Φj}, which are taken orthogonal to Φ. This means that, for T > 0,
the PDEs for Φ and K need to be complemented with PDEs for Φj . (For the mean
field limit of this case see, e.g., [30, 37].) This task is left for future work.

1.7. Article outline. In section 2 we outline our conventions. In section 3, we
review the main formalism: in section 3.1 we revisit the quantized fields; in section 3.2
we describe the perturbation method [68]; and in section 3.3 we delineate other ap-
proaches. In section 4, we summarize our main results. In section 5, we apply the
many-body theory to a varying scattering length: in section 5.1 we uncover the mean
field limit; in section 5.2 we develop macroscopic equations with pair creation; and
in section 5.3 we outline corrections to the NSE. In section 6, we homogenize the
derived PDEs: in section 6.2 we focus on the NSE; and in section 6.3 we describe
the procedure for K. In section 7, we find approximate homogenized solutions for
a slowly varying trap. In section 8, we compute the fraction of particles out of the
condensate. In section 9, we discuss our results and some open problems.

2. Notation conventions. We adhere to the following conventions throughout.
• C is the complex plane and N = {1, 2, . . .}. The star (∗) operation denotes
Hermitian conjugation (applied to numbers, functions, and operators).

• d is the one-particle spatial coordinate. We take d = 3, unless we state
otherwise; for example, in section 6 some results are stated for d ≥ 1.

• B(γ, δ) is the δ-neighborhood of the hypersurface γ (embedded in R
d).

• Td denotes the d-dimensional unit torus (cell). Functions that satisfy A(x+
ek) = A(x) for all x = (x1, . . . , xd) ∈ Rd and k = 1, . . . d, where ek’s are unit
Cartesian vectors, are called 1-periodic. 〈A〉 is the average (or mean) of A.

• (F,G)2 denotes the one-particle inner product
∫
D
F (x)G(x) dx, D ⊆ Rd, with

induced norm ‖F‖L2(D). An inner product in Fock space is denoted by 〈·, ·〉F.
• L2

s(R
3n) is the space of symmetric L2 functions on R3n, which are invariant

under permutations of the particle spatial coordinates, (x1, . . . , xn).
• As usual, H1 denotes the Sobolev space W k,p for k = 1 and p = 2, with dual
space H−1; and H1

av is the space ofH1 1-periodic functions with zero average.
• The dual space H−1

av (Td) = {f ∈ H−1(Td)
∣∣ 〈f〉 = 0} is the Hilbert space

equipped with (f, h)H−1
av (Td) = ((−∆)−1f, h)L2(Td) [27, 51]. ‖A‖−1 denotes

the H−1
av -norm of the 1-periodic A(x).

• The Fourier transform of h ∈ L2(Rd) is defined by ĥ(λ) =
∫
Rd h(x)e

−iλ·x dx.

• Suppose F is L2(Td), 1-periodic of zero mean. Define ∂−α
x :=

∏d
k=1 ∂

−αk

xk by

∂−α
x F (x) :=

∑

j 6=0

F̂j∏d
k=1(i2πjk)

αk

ei2πj·x , α = (α1, . . . , αd) ,

αk = 0, 1, . . .; j = (j1, . . . , jd) ∈ Zd := {. . . ,−1, 0, 1, . . .}d, and∑
j 6=0 F̂j e

i2πj·x

is the Fourier series for F . In this vein, we define (−∆)−s (s > 0) by

(−∆)−sF (x) :=
∑

j 6=0[F̂j/(4π
2|j|2)s]ei2πj·x; 〈∂−αF 〉 = 0 = 〈(−∆)−sF 〉.

• Writing f = O(g) (f = o(g)) means that f/g is bounded (tends to zero) in
some limit. The symbol f ∼ g is used to imply f − g = o(g).

3. Background. In this section we review the Fock space formalism, and the
many-body perturbation scheme introduced for 3D in [68, 69]. For further details on
the quantized fields, the reader may consult, e.g., [3, 28, 29, 35, 58].
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3.1. Fock space. The Fock space, F, is defined as the Hilbert space F = C ⊕⊕
n≥1 L

2
s(R

3n) (where
⊕

denotes the direct sum). F consists of vectors υ formed

by sequences {υ(n)} of n-particle symmetric wave functions, where υ(n) ∈ L2
s(R

3n)
and n ≥ 0. In this context, |vac〉 := {1, 0, . . .} = υ(0) ∈ F denotes the “vacuum
state”, which has no particles at all. The N -particle state ΨN is represented in F by
{υ(n)}n≥0, where υ

(n) ≡ 0 for n 6= N and υ(N) = ΨN [58].
The next step is to express the Hamiltonian as an operator on a sector of F. For

this purpose, consider the Boson field annihilation operator ψ(x) and its adjoint, the
creation operator ψ∗(x), x ∈ R3. For a one-particle wave function f ∈ L2(R3), the
creation and annihilation operators a∗(f) and a(f) on F are defined by

(3.1) (a∗(f)υ)(n)(~xn) = n−1/2
n∑

j=1

f(xj)υ
(n−1)(x1, . . . , xj−1, xj+1, . . . , xn) ,

(3.2) (a(f)υ)(n)(~xn) =
√
n+ 1

∫

R3

dx f∗(x)υ(n+1)(x, ~xn) ; ~xn := (x1, . . . , xn) .

It follows that a(f) and a∗(g) satisfy the commutation relations a(f)a∗(g)−a∗(g)a(f) =:
[a(f), a∗(g)] = (f, g)L2 and [a(f), a(g)] = [a∗(f), a∗(g)] = 0. Accordingly, the operator-
valued distributions ψ(x) and ψ∗(x) are defined by3

(3.3) a∗(f) =

∫
dx f(x)ψ∗(x) , a(f) =

∫
dx f∗(x)ψ(x) ,

where ψ(x), ψ∗(x) are time-independent in the Schrödinger picture. Thus, [ψ(x), ψ∗(y)] =
δ(x − y) and [ψ∗(x), ψ∗(y)] = [ψ(x), ψ(y)] = 0; evidently, ψ(x)|vac〉 = 0. The par-
ticle number operator, N , on F satisfies (Nυ)(n) = nυ(n) and is given by N =∫
dxψ∗(x)ψ(x). Note that ψ∗ψ corresponds to the particle density.
The Hamiltonian HN on F corresponds to the operator H where (Hυ)(n) =

H(n)υ(n), H(n) = Hn. In view of (1.1), this H is written in the form

(3.4) H =

∫
dx ψ∗(x)[−∆x + Ve(x)]ψ(x) +

1

2

∫
dxdy ψ∗(x)ψ∗(y)V(x, y)ψ(y)ψ(x) .

By restriction to the N -particle sector of F, we will use the symbol HN in place of H.

3.2. Many-body perturbation theory. The perturbation scheme should ex-
press the intuitive physical picture that a small fraction of particles escape from the
condensate to occupy other states. Accordingly, split ψ(x) as [68, 69]

(3.5) ψ(x) = ψ0(t, x) + ψ1(t, x) ,

where ψ0 is the Boson annihilation field operator for the condensate,

(3.6) ψ0(t, x) := N−1/2a0(t)Φ(t, x) , a0(t) := N−1/2

∫
dxΦ(x)ψ(x) ,

Φ is the condensate wave function, ‖Φ‖2L2(R3) = N , and the operator a0(t) obeys

[a0(t), a
∗
0(t)] = 1 and a0(t)|vac〉 = 0; ψ1 is the Boson field annihilation operator in the

space orthogonal to the condensate, i.e.,
∫
dxΦ(x)ψ1(x) = 0.4

3The domain of integration is implied by the variables and is often not shown.
4The t-dependence of ψ1 will be suppressed, unless an explicit statement is made to the contrary.
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The heart of the perturbation analysis lies in the treatment of ψ1 as small in an ap-
propriate sense. For a more precise statement, see Remark 3.1. This implies that the
Hamiltonian (3.4) can be expanded in powers of ψ1 and ψ∗

1 , where different powers
yield distinct approximations at the macroscopic level when combined with corre-
sponding expressions for ΨN . A difficulty is to construct viable expressions for ΨN .

The standard mean field limit stems from the linearization of HN in ψ∗
1 and ψ1

by use of the tensor product ansatz (1.5) [69]. Then, the NSE dynamics comes from
enforcement of the N -body Schrödinger equation (1.4a), as shown in section 5.1.

The retainment of higher-than-linear ψ1 and ψ∗
1 terms in HN warrants the inclu-

sion of pair excitation [68]. For example, quadratic terms amount to pairs of opposite
momenta for the periodic case. The expansion for HN must be accompanied with the
modification of the ansatz for ΨN according to (1.8); see section 5.2 for more details.

The operator P generating pairs from the condensate reads [68, 69]

(3.7) P(t) = [2N0(t)]
−1

∫ ∫
dxdy ψ∗

1(t, x)ψ
∗
1(t, y)K(t, x, y) a0(t)

2 ,

where N0(t) = (ΨN , a
∗
0(t)a0(t)ΨN )2 is the number of particles at the condensate,

a∗0(t) (a0) is the creation (annihilation) operator for a particle at the state Φ, and K
is the pair excitation function. In (3.7), a20 annihilates two particles at the condensate,
while ψ∗

1(x)ψ
∗
1(y) creates two particles at other states at positions x and y. Thus,

(3.7) implies a particle-number-conserving scheme. For definiteness, we assume that

(3.8) K(t, x, y) = K(t, y, x) , (Φ(·),K(·, y))2 = 0 ,

and ‖K(t, x, ·)‖L2(R3), ‖K(t, ·, ·)‖L2(R3×R3) <∞.
The ψ1-expansion of the Hamiltonian is combined with the heuristic rule

(3.9) N = a∗0(t)a0(t) +

∫
dx ψ∗

1(t, x) ψ1(t, x) ,

which sets the particle number operator equal to the (fixed) number N . This replace-
ment is made for later algebraic convenience. Equation (3.9) should be interpreted to
mean that NΨN = NΨN , by restriction to the N -sector of F.

Remark 3.1. The number of particles out of the condensate equals

(3.10) N1 = 〈ΨN ,N1ΨN〉F ; N1 :=

∫
ψ∗
1(x)ψ1(x) dx .

The perturbation scheme relies on the assumption that N1/N0 be small, where N0 =
〈ΨN , a

∗
0a0ΨN〉F is the number of particles at the condensate; thus, N1/N � 1.

Equation (3.9) introduces a bookkeeping procedure that respects conservation
of the total number of particles. Accordingly, a∗0a0 in HN will be replaced by N −∫
dxψ∗

1ψ1, so that N enters HN explicitly; see section 5.
Remark 3.2. In this framework, the notion of quantum fluctuations describes

the many-body dynamics that arise from the presence of quadratic and higher-order
ψ1 and ψ∗

1 terms in the many-particle Hamiltonian, HN . In this case, ΨN deviates
significantly from the tensor product form (1.5).

3.3. On past works. Theoretical efforts to describe quantum fluctuations in
BEC date back to the 1940s. Recent variants, e.g. [57,64], of Bogoliubov’s approach [5]
essentially invoke basis functions for particle excitations in correspondence to the
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external potential, Ve(x). In the translation-invariant case, Ve = const., the most
convenient set of such basis functions of course represents states of fixed particle
momenta, thus consisting of plane waves, eik·x.

The scheme by Esry et al. [23, 24] is based on a combination of many-body tech-
niques, namely, the Hartree-Fock, “random phase” and “configuration interaction”
approximations. This scheme appears to be tailored to the shape of the trap; basis
functions are chosen accordingly. Other theories offer corrections to the NSE from a
mean field viewpoint for the interaction between the condensate and other states; see,
e.g., Gardiner [26], Castin and Dum [8], and Kolomeisky et al. [43]. These schemes in-
volve only the condensate wave function; hence, they seem not to be genuinely different
from the limit where particle correlations are lumped to parameters of a macroscopic
theory that involves one dependent variable (Φ). It should be mentioned that studies
of the excitation spectrum based on what is known in physics as the “Bogoliubov-de
Gennes equations” [56] retain mostly features of the NSE. We can hardly view these
methods as an exact substitute for the pair excitation formalism of this article.

Static theories of BEC often focus on the low-density expansion for the ground
state energy of the particle system; see, e.g., works by Lieb et al. [45–47]. For periodic

boundary conditions (without a trap), the expansion parameter is known to be
√
ρa3

where ρ is the gas density [60, 67]. In the presence of a trap, the expansion for the
ground state energy corresponds to having K act back to the NSE for Φ. (Thus,
the NSE must acquire nontrivial corrections.) The issue of obtaining pair-excitation
corrections to the mean-field energy of the Bose gas is not addressed here. Such cor-
rections have been pursued via a hydrodynamic theory for superfluids in [50, 55, 56].

4. Overview of results. The main results of the remainder of this article con-
cern: (i) the derivation of equations of motion for the condensate and pair excitation
with a spatially varying scattering length; (ii) two-scale expansions for Φ and K when
the scattering length has a periodic microstructure; (iii) solution of the effective (ho-
mogenized) equations for slowly varying traps; and (iv) description of an expansion
for the fraction of particles out of the condensate.

4.1. Equations for Φ and K (sections 5.1 and 5.2). Starting from the
Hamiltonian (1.1) with a spatially varying scattering length and the many-body wave
function (1.8), we show that, for bound states, the condensate wave function Φ(x)
and pair excitation kernel K(x, y) satisfy

(4.1) LΦ(x) := [−∆x + Ve(x) + g(x)Φ(x)2 − µ]Φ(x) = 0 ,

[L(x) + L(y) + g(x)|Φ(x)|2 + g(y)|Φ(y)|2]K(x, y) + g(x)Φ(x)2δ(x− y)

= −C[Φ,K;A](x, y) +N−1ℵ[Φ,K;A](x, y) .(4.2)

In the above, L(x) = −∆x + Ve(x) + g(x)Φ(x)2 − µ, and C[Φ,K;A] and ℵ[Φ,K;A]
are (in principle) nonlinear functionals of Φ and K; see (5.4) and (5.16).

4.2. Two-scale expansions (sections 6.2 and 6.3). If the interaction strength
g(x) has the periodic microstructure (1.9), then Φ = Φε and K = Kε admit expan-
sions of the form

(4.3) Φε = Φ0(x)+ ε
2Φ2(x/ε, x)+ . . . , Kε = K0(x, y)+ ε

2K2(x/ε, y/ε, x, y)+ . . . .

By classical homogenization, the zeroth-order terms Φ0 and K0 are found to essen-
tially satisfy PDEs (4.1) and (4.2), with g(x) replaced by g0. The higher-order coeffi-
cients Φ2 and K2 carry information for the oscillations of the scattering length. The
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corresponding equations are described in Proposition 6.8 (condensate wave function)
and Proposition 6.11 (pair excitation kernel), along with Remarks 6.9 and 6.13. The
energy per particle of the condensate is e = e0 + ε2e2 + . . .; see Remark 6.10.

4.3. Slowly varying trap (sections 7.1 and 7.2). For Ve(x) = U(ε̆x), ε̆� 1,
we derive simplified formulas for the coefficients Φj and Kj (j = 0, 2) of two-scale
expansions (4.3) by singular perturbation theory. A plausible boundary layer in the
NSE stems from a neighborhood of the surface {x ∈ R3

∣∣U(x) < µ}.
The outer and inner solutions for Φ0 are described by (7.6) and (7.9); see Remark

7.1. The solutions pertaining to Φ2 are described in (7.11) and (7.14), along with
Remark 7.3. Formulas for the energy e are provided in (7.8) and (7.13); the effect of
oscillations in g(x) is pointed out in Remark 7.2.

In regard to the coefficients Kj (j = 0, 2), we use center-of-mass coordinates and
separate these into the fast x − y and slow ε̆(x + y)/2. Formulas (7.21) and (7.25)
describe the outer and inner solutions for the Fourier transform of K0(x, y) in x − y
when ε̆(x+ y)/2 lies inside the trap. The corresponding outer solution for the Fourier
transform of K2 is provided by (7.32).

4.4. Description of condensate depletion (sections 8.1 and 8.2). The
fraction ξεsc of particles that occupy one-particle states other than the condensate is
computed through two-scale expansions (4.3). First, on the basis of formal expression
(8.1) for ξεsc in terms of the trace of an operator depending on K, we derive a formal
ε-expansion, ξεsc ∼ ξsc,0 + ε2ξsc,2; see (8.3)–(8.5). Second, the coefficients of this
expansion are computed explicitly for a macroscopic trap, Ve(x) = U(ε̆x), by use of
the formulas of section 7; see (8.11) and (8.13). The effects on ξsc of particle repulsions
and trapping potential are commented in Remarks 8.2 and 8.3.

5. Equations of motion: Varying scattering length. In this section, we
derive macroscopic equations from Hamiltonian (3.4). The starting point is to express
HN in terms of powers of ψ1 and ψ∗

1 via the simplified interaction (1.3). Thus, we
write HN = H(0) +H(1) + H(2) + H(3) + H(4) where H(m) denotes the constituent
part of HN where ψ1 and ψ∗

1 appear m times.

5.1. Mean field. Next, starting from the microscopic description we show by
heuristics that Φ(t, x) obeys the NSE with a varying scattering length,

(5.1) i∂tΦ(t, x) = [−∆+ Ve(x) + g(x)|Φ|2 − (1/2)ζ(t)]Φ ,

where

(5.2) ζ(t) := N−1

∫
dx g(x) |Φ(t, x)|4 .

For bound states, we set5

(5.3) Φ(t, x) = e−i(µ−ζ/2)tΦ(x) ,

eliminating ζ from (5.1), where µ− ζ/2 is the energy per particle of the condensate.
We consider the lowest µ and real Φ. Equation (5.1) yields

(5.4) [−∆+ Ve(x) + g(x)Φ2]Φ = µΦ .

5For notational economy, we use the same symbol, Φ, for the time-independent wave function.



BOSE-EINSTEIN CONDENSATION BEYOND MEAN FIELD 11

We proceed to show (5.1) by revisiting, and slightly modifying, Wu’s approach
[69]. The Hamiltonian (3.4) needs to be linearized in ψ1 and ψ∗

1 . Hence, we write

(5.5) HN ∼ H(0) +H(1) ,

where, by use of the operator identity a∗0
2a20 = a∗0a0(a

∗
0a0 − 1), we have

(5.6) H(0) =

∫
dx

{
Φ∗(t, x)[−∆+ Ve(x)]Φ(t, x) +

N − 1

2N
g(x)|Φ(t, x)|4

}
,

(5.7) H(1) = N−1/2

∫
dx ψ∗

1

{
a0(−∆+ Ve)Φ +N−1a∗0a

2
0 g(x)Φ|Φ|2

}
+ c.c. ,

where “c.c.” denotes the Hermitian conjugate of the first term in the right-hand side.
Recall (3.9), by which a∗0a0 ∼ N to imply that

1− 1

N
〈ΨN , a

∗
0a0ΨN 〉F � 1 .

To this order, the N -body wave function is replaced by the tensor product (1.5):

(5.8) Ψ0
N =

a∗0
N

√
N !

|vac〉 .

By Schrödinger equation (1.4a) with (5.5) and the ΨN given by (5.8), we obtain

(5.9) (i∂ta
∗
0)Ψ̃N−1(t) = [H̃(0) + H̃(1)]Ψ̃N−1(t) .

Here, we used the identity a0a
∗
0
n = a∗0

na0 + na∗0
n−1, and

(5.10) Ψ̃N−1(t) := N
a∗0

N−1

√
N !

|vac〉 ,

(5.11) H̃(0) := N−1a∗0(t)

∫
dx

{
Φ∗(−∆+ Ve)Φ +

N − 1

2N
g(x) |Φ|4

}
,

(5.12) H̃(1) := N−1/2

∫
dx ψ∗

1

{
(−∆+ Ve)Φ +

N − 1

N
g(x)Φ|Φ|2

}
.

The next step is to write down an equation of motion for a∗0(t); (5.9) implies

(5.13) i∂ta
∗
0 = H̃(0) + H̃(1) .

By a0 = N−1/2
∫
dxΦ(x)ψ(x), (5.13) yields

(5.14)

∫
dy ψ∗(y) (i∂tΦ) =

∫
dy ψ∗(y)

{
−∆y+Ve+

N − 1

N
g(y)|Φ|2−N − 1

2N
ζ

}
Φ(y) ,

where ζ = ζ(t) is defined by (5.2). The contraction of (5.14) with ψ(x), where
[ψ(x), ψ∗(y)] = δ(x− y), leads to (5.1).
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5.2. Next higher order: Pair excitation. In the remainder of this article, we
restrict attention to the lowest one-particle bound states. In this section, we derive
an equation of motion for the pair excitation kernel K for varying scattering length.
By (3.7), the stationary form of K(t, x, y) consistent with (5.4) reads

(5.15) K(t, x, y) = e−i(2µ−ζ)tK(x, y) ,

since, by (3.6), a0(t) depends on time via the factor ei(µ−ζ/2)t. We show that the
K(x, y) entering the right-hand side of (5.15) satisfies the integro-differential equation

0 = (−∆x −∆y)K + g(x)Φ(x)2δ(x− y) + {−2ζ̃ − 2ζ − 2ζe + Ve(x) + Ve(y)

+ 2[g(x)|Φ(x)|2 + g(y)|Φ(y)|2]}K(x, y) +

∫
dz g(z)Φ∗(z)2K(x, z)K(y, z)

−N−1

{∫
dz [Φ(y)K(x, z) + Φ(x)K(y, z)]g(z)|Φ(z)|2Φ∗(z)

+ Φ(x)Φ(y)[g(x)|Φ(x)|2 + g(y)|Φ(y)|2 − ζ]

}
,(5.16)

where Φ obeys (5.4), and ζ̃ and ζe are constants defined in (5.21); cf. (4.9) of [69] with
constant g. Assuming a unique solution of (5.16) in an appropriate space, we infer
that if Φ is real, the corresponding K(x, y) should be taken to be real.

We proceed to derive (5.16). By keeping quadratic in ψ1 and ψ∗
1 terms in HN ,

and applying ansatz (1.8) with (3.7) and N0 = N , we write the Hamiltonian as

(5.17) HN ∼ HN,2 = H(0) +H(1) +H(2) .

By (5.4) and the orthogonality of Φ with ψ1, we assert that

(5.18) H(0) +H(1) = N
(
ζ̃ + ζe +

1
2ζ

)
,

H(2) =

∫
dx ψ∗

1 [−∆+ Ve − ζ̃ − ζe − ζ + 2g(x)Φ2]ψ1(5.19)

+
1

2
N−1a0

2

∫
dx g(x)Φ∗(x)2 ψ∗

1
2 + c.c. ;(5.20)

(5.21) ζ̃ := N−1

∫
dx |∇Φ|2 , ζe := N−1

∫
dxVe(x)|Φ(x)|2 .

The next step is to apply the many-body (stationary) Schrödinger equation (1.4a)
with HN replaced by (5.17) and the ΨN given by (1.8) and (3.7); thus,

(5.22) HN,2Ψ
1
N = ENΨ1

N ⇒
(
e−PHN,2e

P
)
Ψ0

N = ENΨ0
N .

Thus, the non-Hermitian operator H̃ := e−PHN,2e
P should be isospectral with HN,2

and have eigenfunction equal to the tensor product Ψ0
N .

The transformed operator H̃ can be computed via the Lie expansion (see, e.g., [66])

(5.23) e−PAeP =
∑

n≥0

(−1)n

n!
[P ,A]n ,
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where [P ,A]n is the iterated commutator defined by [P ,A]0 = A and [P ,A]n+1 =
[P , [P ,A]n]. A crucial property is [P , HN,2]n = 0, n ≥ 3. Following [69], we find

(5.24) H̃ = e−PHN,2e
P = N

(
ζ̃ + ζe +

1
2ζ

)
+ H̃a + H̃c

a .

The terms H̃a and H̃c
a in (5.24) play distinct roles. First, H̃a contains ψ∗

1ψ1 and
ψ2
1 and, thus, is compatible with the Ψ0

N of (5.22):

H̃a =

∫
dx

{
ψ∗
1(x)[−∆− ζ̃ − ζe − ζ + Ve + 2g(x)|Φ(x)|2]ψ1(x)

+ 1
2g(x)Φ

∗(x)
2

[
K(x, x) + 2

∫
dy K(x, y)ψ∗

1(y)ψ1(x)

]

+ 1
2N

−1g(x)Φ∗2a∗0
2ψ1(x)

2

}
.(5.25)

By contrast, H̃c
a contains ψ∗

1ψ
∗
1 , which is in principle incompatible with (5.22):

H̃c
a = N−1

∫
dx

{
1
2g(x)Φ

2ψ∗
1
2 −

∫
dy (∆xK)ψ∗

1(x)ψ
∗
1(y) + (−ζ̃ − ζe − ζ + Ve)

×
∫

dy K(x, y)ψ∗
1(x)ψ

∗
1(y) + 2g(x)|Φ(x)|2

∫
dy K(x, y)ψ∗

1(x)ψ
∗
1(y)

+ 1
2g(x)Φ

∗(x)2
∫

dy dz K(x, y)K(x, z)ψ∗
1(y)ψ

∗
1(z)

}
a20 .(5.26)

This H̃c
a is written as

(5.27) H̃c
a = (2N)−1

∫
dxdy ψ∗

1(x)ψ
∗
1 (y)L(x, y)a

2
0 ,

where the associated kernel is

L(x, y) = g(x)Φ(x)2δ(x− y)− (∆x +∆y)K + {−2ζ̃ − 2ζ − 2ζe + Ve(x) + Ve(y)

+ 2[g(x)|Φ(x)|2 + g(y)|Φ(y)|2]}K(x, y)

+

∫
dz g(z)Φ∗(z)2K(x, z)K(y, z)− σ(x)Φ(y) − σ(y)Φ(x) ;(5.28)

σ(x) is to be determined. Note the appearance of the Dirac mass because of the
(simplified) pseudopotential interaction.

By (5.22) and (5.24), K(x, y) is determined by the condition that H̃c
a be zero [69]:

(5.29) L(x, y) ≡ 0 .

To find σ(x), use ‖Φ‖2L2(R3) = N ; thus, (5.28) leads to the integral equation

∫
dy K(x, y)[−∆y + Ve + 2g(y)|Φ(y)|2]Φ∗(y) + g(x)|Φ(x)|2Φ(x)

= Nσ(x) + Φ(x)

∫
dy σ(y)Φ∗(y) ,(5.30)

which has the explicit solution

(5.31) σ(x) = N−1

{∫
dyK(x, y)g(y)|Φ(y)|2Φ∗(y) + g(x)|Φ(x)|2Φ(x)− 1

2ζΦ(x)

}
.
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The substitution of this σ into (5.28) under (5.29) yields (5.16).
Equations (5.4) and (5.16) form the core of this article. Note that, to the present

order of approximation, the NSE (5.1) is decoupled from K.

5.3. Extension. In this section we briefly discuss how the NSE is modified to
include pair excitation with spatially varying scattering length, g(x) = 8πa(x). We
omit the derivation, since it is elaborate and lies outside the scope of this article,
and refer the interested reader to [68] for constant g. An observation is that (5.16) is
obtained from the constant-g PDE for K under simple replacements, e.g.,

(5.32) g

∫
dzΦ∗(z)2K(x, z)K(y, z) ⇒

∫
dz g(z)Φ∗(z)2K(x, z)K(y, z) .

Pair excitation can act back on (5.4), if terms cubic-in-ψ1, ψ
∗
1 are included in the

Hamiltonian HN . By analogy with [68], the modified PDE for Φ reads

(5.33) −BΦ(x) + [−∆+ g(x)ξ|Φ|2 + 2g(x)w(x, x)]Φ + g(x)K̃(x, x)Φ∗(x) = µΦ .

The parameter ξ is the condensate fraction (0 < ξ < 1), defined by [68]

(5.34) ξ = 〈ΨN , N
−1(a∗0a0)ΨN 〉F = 1−N−1

∫
w(x, x) dx = 1−N−1trW ,

via operator notation. The operator W is written formally as

(5.35) W = W1

(
1−W1

)−1
, W1 = K∗K ,

where K is the operator with kernel K(x, y).6 The kernel for W is

(5.36a) w(x, y) =
∑

n≥1

wn(x, y) ;

(5.36b) w1(x, y) =

∫
dz K∗(x, z)K(z, y) , wn(x, y) =

∫
dz w1(x, z)wn−1(z, y) ,

under the assumption that ‖K(x, ·)‖L2(Rd) < ∞. In the same vein, K̃(x, y) corre-

sponds to the operator K̃ = K(1 −W1)
−1. Formally, the respective kernels read [68]

(5.37a) K̃(x, y) =
∑

n≥0

K̃n(x, y) ,

(5.37b) K̃0(x, y) = K(x, y) , K̃n(x, y) =

∫
dz K(x, z)wn(z, y) n ≥ 1 .

The constant B entering (5.33) is defined by [68]

B = 1
2 ξζ + µ(ξN)−1Re

∫
dxdy K(x, y)K̃∗(y, x)

+iN−1Im

∫
dx g(x)K̃(x, x)Φ∗(x)2 + (ξN)−1

∫
dx [∆w(y, x)]

∣∣
x=y

.(5.38)

The nonlinear eigenvalue problem corresponding to (5.33) is not further studied
in this article.

6The operator K : L2(R3) → L2(R3) is defined by Kf(x) :=
∫
K(x, y)f(y) dy for f ∈ L2(R3).

We anticipate that W1 is bounded with norm, ‖W1‖, controlled by g0; for sufficiently small g0, ‖W1‖
can be small enough to ensure invertibility of 1−W1. In section 8, we sketch an argument that this
statement holds for a slowly varying trap; see Remark 8.1. A rigorous proof that (1−W1)−1 exists
would require a priori estimates on the solution of (5.16), and lies beyond our present purposes.
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6. Periodic homogenization. In this section, we study (5.4) and (5.16) with
the periodic g(x) of (1.9) for the lowest bound state. To demonstrate the computations
with relative ease, we present the homogenization program mainly in 1D (sections 6.2
and 6.3). The homogenization results are then extended to 3D without further ado.

6.1. Preliminaries. In this subsection, we outline our main assumptions for
one-particle spatial dimension d = 1, 2 or 3. The starting point consists of the two-
scale expansions

(6.1) Φε = Φ0(x̃, x)+
∑

n≥1

εn Φn(x̃, x) , Kε = K0(x̃(2), x(2))+
∑

n≥1

εnKn(x̃(2), x(2)) ,

where x̃(2) := (x̃, ỹ) = (x/ε, y/ε) is the fast variable and x(2) := (x, y) is the slow
variable. The eigenvalue µε for the condensate is real and expanded as

(6.2) µε =
∑

n≥0

εn µn , µn = O(1) as ε ↓ 0 .

The study of convergence of expansions (6.1) and (6.2) lies beyond our purposes.
We restrict attention to the computation of the first two nonzero terms of these
expansions, which we deem adequate for predictions regarding dilute atomic gases.
The corresponding energy is discussed in section 7. The procedure presented here can
be extended to higher orders, yet it becomes increasingly cumbersome in n.

Our main hypotheses are summarized in the following remarks.
Remark 6.1. We assume that the A(x̃) in (1.9) is 1-periodic and smooth; and Ve

is a smooth, positive trapping potential, monotone in |x| and growing algebraically
at large distances, i.e., Ve(x) = O(|x|%) as |x| → ∞, % > 1. In view of (1.9), we set

(6.3) A(x̃+ ek) = A(x̃) , 〈A〉 = 0 ,

for all k = 1, . . . , d where {ek}dk=1 are unit Cartesian vectors.
Remark 6.2. We consider 1-periodic Φn(·, x) and Kn(·, x(2)), and assume that

Kn(x̃(2), ·) ∈ W 1,1(Rd × Rd) (see section 7). Further, we impose ‖Φn(x̃, ·)‖H1(Rd) <
∞ and ‖Kn(x̃(2), ·)‖L2 < ∞. For later convenience, take Φn(x̃, x) to be bounded,
sufficiently differentiable and decay rapidly for large x, as anticipated from properties
of Ve(x) and A(x̃).

Remark 6.3. The physical domains of Φε and Kε are R
3 and R

3 × R
3 (d = 3).

It will be explicitly shown that the kernel Kε(x, y) is weakly singular on the diagonal
(x = y), due to the presence of the forcing term proportional to the Dirac mass in
(5.16); see Remark 7.4. In our homogenization program for the kernelK(x, y) (section
6.3), we essentially restrict attention off the diagonal (for x 6= y).

In sections 6.2 and 6.3 we make use of a few results, which we state here in the
form of lemmas for d spatial dimensions. The first lemma, given without proof, is a
consequence of the Fredholm alternative (see also [51] and Lemma 4 in [25]).

Lemma 6.4 (Solvability condition). Equation −∆u = S(·, x), where S(·, x) is
1-periodic, admits a 1-periodic solution u(·, x) only if

(6.4) 〈S(·, x)〉 =
∫

Td

S(x̃, x) dx̃ = 0 .

If (6.4) is satisfied, the solution to −∆x̃u = S(x̃, x) reads (see Remark 5 in [25])

(6.5) u(x̃, x) = −∆−1
x̃ S(x̃, x) + c(x) ,
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where c(x) is reasonably arbitrary. Note that ∆−1
x̃ S is 1-periodic with zero mean. We

refer to any solution of form (6.5) with 〈S〉 = 0 as “admissible”.

The next lemma concerns oscillatory integrals; for similar results, see, e.g., [19].

Lemma 6.5 (Oscillatory integrals I). Consider the function h : Rd → R and the
1-periodic P : Rd → R with 〈P 〉 = 0. Suppose P is bounded (P ∈ L∞(Rd)) and h has
m summable derivatives for some m ∈ N, with ∂βxh := ∂β1

x1
· · · ∂βd

xd
h → 0 as |x| → ∞,

where
∑d

k=1 βk ≤ m− 1, βk ≥ 0, β = (β1, . . . , βd); then,

(6.6)

∫

Rd

P

(
x

ε

)
h(x) dx = O(εm) as ε ↓ 0 .

Proof. Define the 1-periodic P (−α)(x̃) := ∂−α
x̃ P (x̃) where |α| := ∑d

k=1 αk = m.

I(ε) := εd
∫

Rd

P (x̃)h(εx̃) dx̃ = εd
∫

dx̃ [∂αx̃P
(−α)(x̃)]h(εx̃)

= (−1)|α|ε|α|+d

∫
dx̃ P (−α)(x̃)h(α)(εx̃) , h(α)(x) := ∂αx h ,(6.7)

where we applied integration by parts with vanishing boundary terms. Consequently,

(6.8) |I(ε)| ≤ εm‖P (−α)‖L∞

∫

Rd

|h(α)(x)| dx ≤ Cεm,

which is the desired estimate.

Another result for oscillatory integrals invokes the Fourier transform.

Lemma 6.6 (Oscillatory integrals II). Consider h : Rd → C and the 1-periodic
P : Rd → C where h ∈ L2(Rd), P ∈ L2(Td) and 〈P 〉 = 0. Suppose that the Fourier

transform of h(x) satisfies eiλ·x0 ĥ(λ) = c1 λ
−2s + o(|λ|−2s) as |λ| → ∞, λ ∈ Rd, for

some s > d/4, x0 6= 0 and constant c1 ∈ C. Then, we have the asymptotic formula

(6.9)

∫

Rd

P

(
x

ε

)
h(x) dx = c1 ε

2s (−∆)−sP

(
x0
ε

)
+ o(ε2s) as ε ↓ 0 .

Note that the condition 4s > d is consistent with h ∈ L2(Rd).

Proof. By P (x) =
∑

j 6=0 P̂ (j) e
i2πj·x and ĥ(λ) =

∫
Rd e

−iλ·x h(x) dx,

∫

Rd

P

(
x

ε

)
h(x) dx =

∑

j 6=0

P̂ (j)

∫
ei(2πj/ε)·xh(x) dx =

∑

j 6=0

P̂ (j) ĥ

(
−2πj

ε

)

=
∑

j 6=0

P̂ (j)

[
c1e

i2πj·(x0/ε)

(−2πj/ε)2s
+ o(ε2s|j|−2s)

]
as ε ↓ 0 ,(6.10)

which leads to the desired result, in view of the Fourier series for (−∆)−sP (x0/ε).

A few comments on the relevance of Lemmas 6.5 and 6.6 are in order. We apply
both lemmas to integrals with P (x̃) ≡ ∂−α

x̃ A(x̃). Lemma 6.5 is invoked for integrals
where h involves: (i) products of Φn, supplied with sufficient regularity, i.e., high
enough m; or (ii) products of Kn, for which m = 1 by hypothesis. Lemma 6.6 is used
to refine information about integrals containing products of Kn, in anticipation of a
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singularity on the diagonal for each factor. For example, in section 6.3 we encounter
an integral of the form

∫

Rd

dz P

(
z

ε

)
f(z)κ0(x, z)κ0(z, y) =

∑

j 6=0

P̂ (j)

∫
dz ei(2πj/ε)·zf(z)κ0(x, z)κ0(z, y) ,

where, by inspection of PDE (5.16) and from section 7 for K0 = κ0, κ0(x, z) is weakly
singular at z = x. As ε ↓ 0, the major contribution to integration comes from balls of
radii O(ε) centered at z = x and z = y. By assuming |x − y| > O(ε), we can isolate
these two contributions; thus, we compute

∫
dz ei(2πj/ε)·zf(z)κ0(x, z)κ0(z, y) ∼ f(x)κ0(x, y)

∫
dz ei(2πj/ε)·z κ0(x, z)

+ f(y)κ0(x, y)

∫
dz ei(2πj/ε)·z κ0(z, y) .(6.11)

The emerging integrals can be estimated by recourse to Lemma 6.6 if sufficient infor-
mation is provided for the Fourier transform of κ0(·, z). In the case where Ve tends
to become a constant (in some appropriate sense), the system becomes translation
invariant and Kn(x̃(2), x(2)) depends only on x− y. For a slowly varying Ve, an addi-
tional, slow variable is proportional to x+ y and can be treated as a parameter; thus,
Kn(x̃(2), x, y) depends primarily on x− y (see section 7 for details).

Remark 6.7. We assume that the Fourier transform of K0(x̃(2), x, ·), with fixed
x̃(2) and x, satisfies the hypothesis of Lemma 6.6 with x0 ≈ x and s ≥ 1. In fact, the
value s = 1 is extracted by heuristics in section 7 via the center-of-mass coordinates
and singular perturbations for macroscopic traps.

6.2. Effective equations for condensate. For d = 1, (5.4) for the condensate
wave function becomes

(6.12) {−∂2x + Ve(x) + g0[1 +A(x/ε)](Φε)2}Φε(x) = µεΦε .

In this section, we focus on (6.12) under (6.1) and (6.2). We will show that, as in the
case of the focusing NSE [25], we have Φ1 ≡ 0.

Proposition 6.8 (Consistency of two-scale expansion with NSE). The formal
two-scale expansion for Φε(x), x ∈ R, up to O(ε2), reads

(6.13) Φε(x) = f0(x) + ε2 {g0f0(x)3 [∂−2
x̃ A(x̃)] + f2(x)} + . . . ,

where f0, f2 ∈ H1(R), N−1‖f0‖2L2(R) = 1, (f0, f2)2 = 0, and

(6.14) L0f0 := [−∂2x + Ve(x) + g0f0(x)
2 − µ0]f0 = 0 ,

(6.15) L2f2 := [−∂2x + Ve(x) + 3g0 f0(x)
2 − µ0]f2(x) = 3g20f

5
0 ‖A‖2−1 + µ2f0 ;

L2 := L0 + 2g0f
2
0 . The lowest eigenvalue µε is given by expansion (6.2) with

(6.16) µ0 = ζ0 + ζ̃0 + ζe0 ,

(6.17) µ1 = 0 ,
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(6.18) µ2 = −3g20 ‖A‖2−1

(f0,L−1
2 f5

0 )2

(f0,L−1
2 f0)2

,

and

(6.19) ζ0 := g0N
−1‖f2

0‖2L2 , ζ̃0 := N−1‖∂xf0‖2L2 , ζe0 := N−1(f0, Vef0)2 .

In the proof of Proposition 6.8 we invoke the 1D versions of Lemmas 6.4 and 6.5.
We do not address the existence of solution to (6.14), assuming that a finite-energy
solution, f0, exists. For a rigorous variational treatment of bound states of NSE,
see, e.g., [59, 63] (and [31] for nodal solutions).7 Given a nontrivial f0, the existence
of a reasonably unique finite-energy f2 should stem from the invertibility of L2 (as
outlined in the proof below).

Proof. The substitution of (6.1) and (6.2) into (6.12) along with the replacement
of ∂x by ∂x + ε−1∂x̃ yield the following cascade of equations for Φn:

O(ε0) : −∂2x̃Φ0 = 0 =: S0 ,(6.20)

O(ε1) : −∂2x̃Φ1 = 2∂x∂x̃Φ0 =: S1 ,(6.21)

O(ε2) : −∂2x̃Φ2 = 2∂x̃∂xΦ1 − {−∂2x + Ve(x) + g0[1 +A(x̃)]Φ2
0 − µ0}Φ0 =: S2 ,(6.22)

O(ε3) : −∂2x̃Φ3 = 2∂x̃∂xΦ2 − {−∂2x + Ve(x) + 3g0[1 +A(x̃)]Φ2
0 − µ0}Φ1

+ µ1Φ0 =: S3 ,(6.23)

O(ε4) : −∂2x̃Φ4 = 2∂x̃∂xΦ3 − {−∂2x + Ve + 3g0[1 +A(x̃)]Φ2
0 − µ0}Φ2

− 3g0[1 +A(x̃)]Φ0Φ
2
1 + µ1Φ1 + µ2Φ0 =: S4 .(6.24)

Note the appearance of Ve only in the equations for n ≥ 2. Equations (6.20)–(6.24)
suffice for our purpose of determining Φ0 along with the corrections Φ1 and Φ2.

To determine µn for n ≥ 1, we need to consider the normalization condition
‖Φε‖2L2 = N (which affects the prefactor in the nonlinear term of the NSE for Φε).
The two-scale expansion (6.1) for Φε yields the conditions

(6.25) ‖Φ0‖2L2 = N , (Φ0,Φ1)2 = 0 , ‖Φ1‖2L2 + 2(Φ0,Φ2)2 = 0 ,

where N is a treated as an O(1) parameter.
PDEs (6.20)–(6.24) for Φn are recast conveniently to

(6.26) −∂2x̃Φn = Sn(x̃, x) ; Sn(x̃+ 1, x) = Sn(x̃, x) .

Equation (6.26) is solved via Lemma 6.4 for d = 1.
By (6.5), (6.20) and (6.21), the admissble Φ0 and Φ1 are x̃-independent:

(6.27) Φ0(x̃, x) = f0(x) , Φ1(x̃, x) = f1(x) .

By contrast, the remaining terms of expansion (6.1) are strictly (x̃, x)-dependent.
To derive an equation for f0(x) we resort to (6.22). By applying Lemma 6.4 to

S2(x̃, x) we obtain (6.14). Formula (6.16) for µ0 is obtained by taking the L2-inner
product of (6.14) with f0 and using the first one of relations (6.25), ‖f0‖2L2 = N . The
enforcement of (6.14) in (6.22) leads to

(6.28) ∂2x̃Φ2 = g0A(x̃)f0(x)
3 ⇒ Φ2(x̃, x) = g0f0(x)

3 [∂−2
x̃ A(x̃)] + f2(x) .

7In [31,59] the authors primarily address the focusing NSE. We deem their variational approach
as applicable to the defocusing case with a trapping potential.
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We address the f2(x) introduced above at a later stage of this proof.
Next, Φ1(x) = f1(x) is determined with recourse to (6.23). Application of solv-

ability condition (6.4) to the right-hand side of (6.23) entails

(6.29) [−∂2x + Ve(x) + 3g0f0(x)
2 − µ0]f1(x) = µ1f0(x) (g0 > 0) .

We now show that (6.29) admits only the trivial solution,

(6.30) µ1 = 0 , f1 = 0 (a.e.) .

Consider the following argument for given µ0 and (nontrivial) f0. Equation (6.29)
has the form L2f1 = µ1f0, where the operator L2[f0] = L0[f0] + 2g0f

2
0 is symmet-

ric. By (6.14) we have that L0 is positive, i.e., (f,L0f)2 ≥ 0 for any f ∈ H1(R).
In view of the second condition in (6.25), the (L2-) inner product of (6.29) with f1
furnishes (f1,L2f1)2 = µ1(f1, f0)2 = 0. On the other hand, for any f1 ∈ H1(R),
(f1,L2f1)2 = (f1,L0f1)2 + 2g0(f1, f

2
0 f1)2 > 0 only if ‖f1‖L2 6= 0; thus, L2 is positive

definite. Notice that 0 does not belong to the point spectrum of L2. We infer that
f1 = 0 (a.e.). Thus, (6.29) yields µ1 = 0. By (6.29), Φ3(x̃, x) is given by

(6.31) Φ3(x̃, x) = −2g0(∂xf
3
0 )[∂

−3
x̃ A(x̃)] + 3g0f0(x)

2f1(x) [∂
−2
x̃ A(x̃)] + f3(x) .

We turn our attention to f2(x) entering (6.28). By (6.24), we obtain

S4(x̃, x) = ∂2xf2 − Ve(x) f2(x) − 3g0f0[1 +A(x̃)]{f0(x)[g0f0(x)3(∂−2
x̃ A) + f2] + f2

1}
+ µ0 f2(x) + µ1f1(x) + µ2f0(x)− g0[3(∂

2
xf

3
0 ) + (Ve − µ0)f0(x)

3](∂−2
x̃ A)

+ 6g0 ∂x(f
2
0 f1)(∂

−1
x̃ A) .(6.32)

Hence, solvability condition (6.4) applied on S4 readily provides (6.15) by use of (6.30).
To derive (6.15) from (6.32), we invoke the relations

(6.33) 〈A (∂−2
x̃ A)〉 = (A, ∂−2

x̃ A)2 = −‖A‖2−1 .

It remains to assert (6.18) for µ2. Equation (6.15) is recast to the form L2f2 =
b(x), where b(x) := 3g20f

5
0 ‖A‖2−1+µ2f0 and the operator L2 = L0+2g0f

2
0 is invertible,

as is concluded in the course of deriving (6.30); thus, f2 = L−1
2 b(x):

(6.34) f2(x) = 3g20‖A‖2−1L−1
2 f5

0 + µ2 L−1
2 f0 .

The term µ2 can now be determined with recourse to the third one of conditions (6.25),
which reduces to (Φ0,Φ2)2 = 0. By (6.28), we have

(6.35) µ2(f0,L−1
2 f0)2 = −3g20‖A‖2−1(f0,L−1

2 f5
0 )2 − g0(f0, (∂

−2
x̃ A)f3

0 )2 .

This relation yields (6.18). We applied Lemma 6.5 to the integral for (f0, (∂
−2
x̃ A)f3

0 )2
with P (x̃) ≡ ∂−2

x̃ A(x̃); note that 〈∂−2
x̃ A〉 = 0 and f0 is sufficiently regular. By (6.34),

(6.36) f2(x) = 3g20‖A‖2−1

[
L−1
2 f5

0 − (f0,L−1
2 f5

0 )2

(f0,L−1
2 f0)2

L−1
2 f0

]
,

which indeed satisfies (f0, f2)2 = 0. This observation concludes our proof.
Remark 6.9. Proposition 6.8 can be directly extended to d spatial dimensions,

d ≥ 2. The two-scale expansion for Φε reads

(6.37) Φε(x) = f0(x) + ε2 {g0f0(x)3 [∆−1
x̃ A(x̃)] + f2(x)} + . . . ,
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where f0(x) and f2(x) satisfy

(6.38) [−∆x + Ve(x) + g0f0(x)
2 − µ0]f0 = 0 ,

(6.39) [−∆x + Ve(x) + 3g0 f0(x)
2 − µ0]f2(x) = 3g20f

5
0 ‖A‖2−1 + µ2f0 ;

‖A‖−1 = ‖A‖H−1
av (Td).

Remark 6.10. Proposition 6.8 provides an expansion for µ. A corresponding
expansion for the energy, e, per particle of the condensate follows from the relation
e = µ− ζ/2 via Lemma 6.5: e = e0 + ε2e2 + . . . , where

(6.40) e0 = µ0 −
g0
2
N−1

∫
f0(x)

4 dx , e2 = µ2 − 2g0N
−1

∫
f0(x)

3 f1(x) dx .

6.3. Effective equations for pair excitation. In this section, we focus on
(5.16) by neglecting terms proportional to N−1.8 For d = 1, the equation of interest
reads

0 = (−∂2x − ∂2y)K
ε + g0[1 +A(x/ε)]Φε(x)2δ(x − y) + {−2ζ̃ε − 2ζε − 2ζεe

+ Ve(x) + Ve(y) + 2g0([1 +A(x/ε)]|Φε(x)|2 + [1 +A(y/ε)]|Φε(y)|2)}Kε(x, y)

+ g0

∫
dz [1 +A(z/ε)]Φε(z)2Kε(x, z)Kε(y, z) ,(6.41)

where

ζε := g0N
−1

∫
dx [1 +A(x/ε)]Φε(x)4 , ζ̃ε := N−1

∫
dx (∂xΦ

ε)2 ,

ζεe := N−1

∫
dxVe(x)Φ

ε(x)2 .(6.42)

By substituting expansion (6.1) for Kε(x, y) into PDE (6.41), we derive effective
equations for the coefficients Kn. The nonlocal term will be treated with recourse to
Lemma 6.5 with m = 1 and Lemma 6.6 for s = 1 (see Remark 6.7). In the following,
we treat Φn as known.

Proposition 6.11. The two-scale expansion for the pair excitation function
Kε(x, y), (x, y) ∈ R2, reads

Kε(x, y) = κ0(x, y) + ε2{g0(∂−2
x̃ A(x̃))f0(x)

2 δ(x − y) + 2g0[(∂
−2
x̃ A(x̃))f0(x)

2

+(∂−2
ỹ A(ỹ))f0(y)

2]κ0(x, y) + κ2(x, y)} + . . . ,(6.43)

where κ0(x, y) and κ2(x, y) satisfy

L(xy)κ0 := {−∆xy + Ve(x) + Ve(y) + 2g0[f0(x)
2 + f0(y)

2]− 2µ0}κ0
= −C[f2

0 , κ0]κ0(x, y) +B0(x, y) , ∆xy := ∂2x + ∂2y ,(6.44)

(6.45) L(xy)κ2 = −2C[f2
0 , κ0]κ2(x, y) +B2(x, y) ,

8Because of this simplification, the orthogonality of Kε and Φε is strictly abandoned. This loss
is not expected to distort the essential physics (with d = 3) for large N [69].
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with L(xy) = L0(x) + L0(y) + g0[f0(x)
2 + f0(y)

2]. Recall that L0(x) = −∂2x + Ve(x) +
g0f0(x)

2 − µ0. The operator C[f, F ] and forcing terms B0(x, y), B2(x, y) are

C[f, F ]K(x, y) := g0

∫
dz f(z) Sym{F,K}(z;x, y) ,(6.46)

Sym{F,K}(z;x, y) := 1
2 [F (x, z)K(y, z) +K(x, z)F (y, z)] ,(6.47)

(6.48) B0(x, y) := −g0 f0(x)2 δ(x− y) ,

B2(x, y) := 2g0
[
3g0‖A‖2−1f0(x)

4 − f0(x)f2(x)
]
δ(x− y) + {2Z2

+9g20‖A‖2−1[f0(x)
4 + f0(y)

4]− 4g0[f0(x)f2(x) + f0(y)f2(y)]}κ0
−2C[f0f2, κ0]κ0 + 6g0 ‖A‖2−1 C[f4

0 , κ0]κ0 ;(6.49)

(6.50) Z2 := N−1g0
[
2(f3

0 , f2)2 − 3g0 ‖A‖2−1 ‖f3
0 ‖2L2

]
.

In the above, f0(x) and f2(x) are supposed to satisfy (6.14) and (6.15). We do
not address the existence and uniqueness of solutions to (6.44) and (6.45).9 Given an
f0, the K0 is assumed to exist uniquely. We show that K1 = 0, in correspondence to
Φ1 (see Proposition 6.8); our argument makes use of small enough g0.

We first state a property pertaining to the nonlocal term C[f2
0 , κ0]u.

Lemma 6.12. For given κ ∈ L2(Rd × Rd), the linear operator C̃[f, κ] defined by

(6.51) C̃[f, κ]u(x, y) := g0

∫

Rd

f(z)κ(x, z)u(z, y) dz , u ∈ L2(Rd × R
d) ,

is bounded in L2(Rd × R
d).

We omit the proof of this lemma, since this relies on standard estimates. We are
now in position to delineate the proof of Proposition 6.11.

Proof. The starting point consists of expansions (6.1) for Φε and Kε, which we
substitute in PDE (6.41) by use of the replacement

(6.52) ∆xy ⇒ ε−2 {(∂x̃ + ε∂x)
2 + (∂ỹ + ε∂y)

2} .

By dominant balance, we find a cascade of equations for Kn. These have the form

(6.53) −∆x̃ỹKn(x̃(2), x(2)) = Ssc
n (x̃(2), x(2)) ,

where the source terms Ssc
n are described below. To ensure the solvability of (6.53)

for 1-periodic functions Kn(·, x(2)), we apply condition (6.4). By (6.5), the admissible
solution to (6.53) reads

(6.54) Kn(x̃(2), x(2)) = −∆−1
x̃ỹ S

sc
n (x̃(2), x(2)) + κn(x, y) .

To obtain the source terms Ssc
n , we note the expansions

(6.55) ζε ∼ ζ0+ε
2ζ2 , ζ0 = g0N

−1‖f0‖22 , ζ2 = 4g0N
−1

[
(f3

0 , f2)2−g0‖A‖2−1‖f3
0‖22

]
,

9A complication is the delta function on the right-hand sides of these equations, which destroys
the L2 structure of their forcing terms. The appropriate weak formulation lies beyond our scope.
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ζ̃ε ∼ ζ̃0 + ε2ζ̃2 , ζ̃0 = N−1‖∂xf0‖22 ,

ζ̃2 = N−1

[
g20‖A‖2−1‖f3

0‖22 + 2(∂xf0, ∂xf2)2

]
,(6.56)

(6.57) ζεe ∼ ζe0 + ε2ζe2 , ζe0 = N−1(f0, Vef0)2 , ζe2 = 2N−1(f2, Vef0)2 .

Regarding (6.55), we have simplified the integrals containing A. Specifically, we write
A∂−2

x̃ A = 〈A(∂−2
x̃ A)〉 + Qos where 〈Qos〉 = 0 and 〈A(∂−2

x̃ A)〉 = −‖A‖2−1; and drop
the integral that involves Qos by virtue of Lemma 6.5.

Accordingly, the first two equations of the cascade do not involve Ve explicitly:

O(ε0) : −∆x̃ỹK0 = 0 =: Ssc
0 ,(6.58)

O(ε1) : −∆x̃ỹK1 = 2(∂x∂x̃ + ∂y∂ỹ)K0 =: Ssc
1 .(6.59)

In view of (6.54), we obtain

(6.60) K0(x̃, ỹ, x, y) = κ0(x, y) , K1(x̃, ỹ, x, y) = κ1(x, y) .

In order to find equations for κ0 and κ1, we have to consider the next two higher-order
terms Kn (n = 2, 3).

Proceeding to the next higher order, O(ε2), we find

Ssc
2 (x̃(2), x(2)) = −L(xy)κ0 − C[f2

0 , κ0]κ0 +B0(x, y)

− g0A(x̃)f
2
0 δ(x − y)− 2g0{A(x̃)f0(x)2 +A(ỹ)f0(y)

2}κ0 .(6.61)

Lemma 6.5 has been invoked for removal, to this order, of the oscillatory term A(z/ε)
from the kernel of the nonlocal term in PDE (6.41); the lemma dictates that this con-
tribution should appear at least to O(ε3) in the perturbation scheme. The application
of solvability condition (6.4) to (6.61) yields PDE (6.44) via 〈Ssc

2 〉 = 0.
Since µ0 is the lowest point of the spectrum for the condensate, 0 is not an

eigenvalue of L(xy). In particular, L(xy) is positive definite, i.e., (f,L(xy)f)2 > 0 for
every nonzero f ∈ H1(R2). It follows that L−1

xy exists. We will invoke the invertibility
of Lxy below in order to determine κ1.

By virtue of (6.44), K2 satisfies

(6.62) −∆x̃ỹK2 = −g0A(x̃)f2
0 δ(x− y)− 2g0[A(x̃)f0(x)

2 +A(ỹ)f0(y)
2]κ0 ,

by which

(6.63) K2 = g0(∂
−2
x̃ A)f2

0 δ(x−y)+2g0{(∂−2
x̃ A)f0(x)

2+(∂−2
ỹ A)f0(y)

2}κ0+κ2(x, y) ,

where κ2(x, y) must be consistent with the solvability condition on Ssc
3 .

Next, we address K3, bearing in mind Φ1 = 0 and Lemma 6.6 (for s = 1). Thus,
we derive (6.53) with

Ssc
3 = −

{
L(xy) + C[f2

0 , κ0]
}
κ1 + 2g0(∂

−1
x̃ A)∂x

[
f0(x)

2δ(x− y)
]

+ 4g0{(∂−1
x̃ A) ∂x[f0(x)

2κ0] + (∂−1
ỹ A) ∂y [f0(y)

2κ0]}
− 2g0[A(x̃)f0(x)

2 +A(ỹ)f0(y)
2] .(6.64)

The solvability condition (6.4), 〈Ssc
3 〉 = 0, yields the homogeneous PDE

(6.65)
{
L(xy) + C[f2

0 , κ0]
}
κ1 = 0 .
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By the invertibility of L(xy) and Lemma 6.12, we conclude that the operator L(xy) +
C[f2

0 , κ0] is invertible if g0 is sufficiently small [41]. Thus, the solution to (6.65) is

(6.66) κ1(x, y) = 0 (a.e.) .

Hence, the equation for K3 becomes

−∆x̃ỹK3 = 2g0(∂
−1
x̃ A)∂x

[
f2
0 δ(x− y)

]
+ 4g0[(∂

−1
x̃ A)∂x(f0(x)

2κ0)

+ (∂−1
ỹ A)∂y(f0(y)

2κ0)]− 2g0[A(x̃)f0(x)
2 +A(ỹ)f0(ỹ)

2]κ1

⇒ K3 = −2g0(∂
−3
x̃ A)∂x

[
f2
0 δ(x− y)

]
− 4g0[(∂

−3
x̃ A)∂x(f

2
0κ0) + (∂−3

ỹ A)∂y(f
2
0κ0)]

+ 2g0
[(
∂−2
x̃ A(x̃)

)
f0(x)

2 +
(
∂−2
ỹ A(ỹ)

)
f0(y)

2
]
κ1 + κ3(x, y) .(6.67)

Next, we consider the equation for K4, −∆x̃ỹK4 = Ssc
4 (x̃(2), x(2)), and find

Ssc
4 = −L(xy)K2 − 2g0

[
1 +A(x̃)

]
f0(x)

[
g0(∂

−2
x̃ A)f3

0 + f2]δ(x− y)

− 2g0
[
A(x̃)f0(x)

2 +A(ỹ)f0(y)
2
]
K2 − 4g0

{
[1 +A(x̃)]f0(x)Φ2(x̃, x)

+ [1 +A(ỹ)]f0(y)Φ2(ỹ, y)
}
κ0 + 2(∂x̃∂x + ∂ỹ∂y)K3(x̃(2), x(2))

− g0 lim
ε→0

∫
dz

[
1 +A

(
z
ε

)]{
f0(z)

2
[
K2

(
x̃, zε , x, z

)
κ0(y, z)

+ κ0(x, z)K2

(
ỹ, zε , y, z

)]
+ 2f0(z)

[
g0(∂

−2
z̃ A)f0(z)

3 + f2(z)
]

× κ0(x, z)κ0(y, z)
}
+ 2(ζ̃2 + ζ2 + ζe2)κ0(x, y) + OS ,(6.68)

where “OS” stands for terms oscillatory in (x/ε, y/ε), which stem from C[Af2
0 , κ0]κ0

by virtue of Lemma 6.6; such terms do not contribute to 〈Ssc
4 〉. Recall (6.28) in

regard to Φ2. Equation (6.45) results via evaluation of the requisite limit as ε ↓ 0
with recourse to (6.63) and Lemma 6.5, and enforcement of 〈Ssc

4 〉 = 0. Note that the
limit of the nonlocal term in the right-hand side of (6.68) yields the expression

−2C[f2
0 , κ0]κ2 − 2C[f0f2, κ0]κ0 + 6g0‖A‖2−1C[f4

0 , κ0]κ0

+ g20‖A‖2−1

[
f0(x)

4 + f0(y)
4
]
κ0(x, y) .

This observation concludes our proof.
Remark 6.13. Proposition 6.11 can be extended to d spatial dimensions, where

d = 2, 3. The two-scale expansion for Kε reads

Kε(x, y) = κ0(x, y) + ε2{g0(∆−1
x̃ A(x̃))f0(x)

2 δ(x − y) + 2g0[(∆
−1
x̃ A(x̃))f0(x)

2

+(∆−1
ỹ A(ỹ))f0(y)

2]κ0 + κ2(x, y)}+ . . . ,(6.69)

where κ0(x, y) and κ2(x, y) satisfy (6.44) and (6.45) with ∆xy = ∆x+∆y and L0(x) =
−∆x + Ve(x) + g0f0(x)

2 − µ0. The definitions of C, B0, B2 and Z2 can be written
down from (6.47)–(6.50).

7. Slowly varying trap. For d = 3, we now focus on expansions (6.37) and
(6.69), and discuss via heuristics approximate solutions for the homogenized coeffi-
cients with Ve(x) = U(ε̆ x), 0 < ε̆ � 1, x ∈ R3; ε̆ � ε. Our analysis is local, in the
spirit of [14,69]. As ε̆ ↓ 0, the system is expected to become nearly translation invari-
ant. This suggests that, order-by-order in ε, we separate the spatial variables into slow
and fast ones in terms of ε̆. This scale separation is carried out via singular perturba-
tions (since ε̆ multiplies the highest-order derivatives in the governing PDEs) [9]. For
each homogenized coefficient, we consider only the leading-order contribution in ε̆.
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Our approximations serve the need of computing observables such as the energy
per particle of the condensate and the fraction of particles out of the condensate.
These observables involve integrals on R3 or R6. To leading order in ε̆, the contribution
to integration comes, in a sense described below, from the region {x

∣∣U(x) < µ0}
which (loosely) defines the interior of the trap. Outside this region, Φε(x̃, ·) is expected
to decay rapidly; for all practical purposes, its values will be taken to be zero outside
the trap. A respective consideration holds for Kε(x̃(2), ·).

7.1. Condensate wave function. Next, we focus on two-scale expansion (6.37)
for Φε (see Remark 6.9). By changing variable according to x 7→ x̆ = ε̆ x, the PDE
for φε̆0(x̆) := f0(x̆/ε̆) becomes

(7.1) [−ε̆2∆2
x̆ + U(x̆) + g0(φ

ε̆
0)

2 − µε̆
0]φ

ε̆
0 = 0 ,

along with the normalization condition

(7.2)

∫
φε̆0(x)

2 dx = ε̆3N .

Treating φε̆0(x) as O(1), we choose to set

(7.3) ε̆3N = 1 .

In the same vein, the PDE for φε̆2(x̆) := f2(x̆/ε̆) reads

(7.4) [−ε̆2∆2
x̆ + U(x̆) + 3g0 (φ

ε̆
0)

2 − µε̆
0]φ

ε̆
2 = 3g20(φ

ε̆
0)

5 ‖A‖2−1 + µε̆
2φ

ε̆
0 ,

supplemented with the condition (φε̆2, φ
ε̆
0)2 = 0 by Proposition 6.8.

7.1.1. Zeroth-order homogenized solution. We briefly discuss an approxi-
mate solution to (7.1) by use of boundary layer theory [69].10

Outer solution. This is associated with the ‘Thomas-Fermi approximation’ [13].
By allowing ε̆ = 0, we reduce (7.1) to

(7.5) [U(x̆) + φ00(x̆)
2 − µ0

0]φ
0
0 = 0 ,

which in turn yields an approximate formula for φε̆0:

(7.6) φ00(x̆) =

{
g
−1/2
0

√
µ0
0 − U(x̆) x̆ ∈ R

δ
0 ,

0 x̆ ∈ R
c,δ
0 .

Here, Rδ
0 is the region that results from exclusion of a δ-neighborhood (to be specified

below) of the boundary of R0 := {x ∈ R3
∣∣U(x) < µ0

0} for small enough δ: R
δ
0 =

R0−B(∂R0, δ). This R0 is bounded with boundary ∂R0 = {U(x) = µ0
0}, comprising

classical turning points for the potential U(x). Similarly, Rc,δ
0 stems from excluding

from the complement of R0, R
c
0 = R3 \R0, a δ-neighborhood of ∂R0. Evidently, the

extension of φ00 across ∂R0 is continuous, while ∇φ00(x̆) = −g−1/2
0 [µ0

0 −U(x̆)]−1/2∇U
in R

δ
0. The vanishing of φ00 in R

c,δ
0 , which implies that φ0 decays rapidly outside the

trap, can be refined by use of the Wentzel-Kramers-Brillouin (WKB) formula [9], e.g.,
for a spherically symmetric Ve [14, 49].

10The ‘outer solution’ pertains to a leading-order approximation of the respective PDE by regular
perturbation (with ε̆ = 0) away from boundary layers, inside and outside the trap.
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The value of the constant µ0
0 can be evaluated with recourse to (7.2) under (7.3):

(7.7) µ0 ∼ µ0
0 = |R0|−1g0 + 〈U〉R0

; 〈U〉R0
:= |R0|−1

∫

R0

U(x) dx ,

where |R0| is the (g0-dependent) volume of R0, |R0| :=
∫
R0

dx. Result (7.7) yields

an approximate energy per particle of the condensate (see Remark 6.10):

(7.8) e00 = µ0
0 −

g0
2

∫

R0

φ00(x)
4 dx =

1

2
|R0|−1g0 + 〈U〉R0

− 1

2g0

∫

R0

[
U(x)−〈U〉R0

]2 dx .

By definition of R0, (2g0)
−1

∫
R0

(U(x)−〈U〉R0
)2dx < |R0|−1g0/2+ 〈U〉; thus, e00 > 0,

as it should.

Inner solution. We seek a (local) description of φ0(x) inside possible boundary layers,
noticing that the extension of φ00 by (7.6) breaks down near ∂R0. In particular,
the extension of ∇φ00 is not L2

loc(R
3) by integration on any region that contains a

measurable part of ∂R0, in contrast to the anticipated behavior of ∇φε̆0.
To remedy this pathology, consider the variation of φε̆0 along the local normal to

∂R0 (for C1 boundary ∂R0) [69]. For fixed xbd ∈ ∂R0 (where U(xbd) = µ0
0), define

ν(xbd) := ∇U(xbd)/|∇U(xbd)|. By the expansion U(x) = U(xbd) + Uo ν · (x − xbd) +
o(|x − xbd|) with Uo = |∇U(xbd)| > 0 and a flat boundary approximation, we locally
reduce (7.1) to the 1D equation

(7.9a) [−∂2η + η+(φin0 )2]φin0 = 0 ; η :=

(
Uo

ε̆2

)1/3

ν · (x̆−xbd) , φ
in
0 :=

g
1/2
0

(ε̆Uo)1/3
φε̆0 ,

In (7.9a), x̆ lies in the local normal to ∂R0 near xbd, viz., x̆− xbd = b ν(xbd) for |b| ≤
O(ε2/3), so that η = O(1); and tangential derivatives of φ̆0 have been neglected. Thus,
the boundary layer width near ∂R0 is estimated to be O(ε̆2/3); thus, δ = O(ε̆2/3).
The boundary conditions for (7.9) via asymptotic matching with (7.6) are

(7.9b) φin0 → 0 as η → ∞ , φin0 ∼ √−η as η → −∞ .

Remark 7.1. It is known that (7.9) is solved by a 2nd Painlevé transcendent
[39, 69]. It has been shown that φin0 (η) ∼

√
2Ai(η) as η → +∞ where Ai is the Airy

function; see, e.g., [49] and references therein. Let PII(η) denote this particular 2nd
Painlevé transcendent.

Equations (7.6) and (7.9) combined should yield a composite approximation for
φε̆0 that is sufficiently regular across ∂R0.

7.1.2. Higher-order homogenized solution. In the spirit of 7.1.1, we now
focus on (7.4), which takes the form
(7.10)
(−ε̆2∆+ Ueff)φ

ε̆
2 = F2 ; Ueff := U + 3g0(φ

ε̆
0)

2 − µε̆
0 , F2 := 3g20(φ

ε̆
0)

5‖A‖2−1 + µε̆
2φ

ε̆
0 .

By (7.6), we find Ueff(x̆) ∼ 2[µ0
0 − U(x̆)] > 0 for x̆ ∈ R

δ
0 (inside the trap); and

Ueff(x̆) ∼ U(x̆)− µ0
0 > 0 outside the trap. Thus, φε̆2 should decay rapidly outside R0.

(This behavior can be captured more precisely by the WKB approximation, which we
do not pursue here.) We proceed in the same vein as in section 7.1.1.
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Outer solution. By setting ε̆ = 0 in (7.10), we find that φε̆2(x̆) is approximated by
(7.11)

φ02(x̆) =

{
g
−1/2
0

{
3
2 [µ

0
0 − U(x̆)]3/2‖A‖2−1 +

1
2µ

0
2[µ

0
0 − U(x̆)]−1/2

}
x̆ ∈ R

δ
0 ,

0 x̆ ∈ R
c,δ
0 .

Note that the extension of this φ02(x̆) across ∂R0 is not L
2
loc. This observation calls for

using boundary layer theory in the vicinity of ∂R0 (as discussed below). The value
of µ0

2 comes from the condition (f0, f2)2 = 0 (by Proposition 6.8), which yields

(7.12) µε̆
2 ∼ µ0

2 = −3‖A‖2−1|R0|−1

∫

R0

[µ0
0 − U(x)]2 dx ;

µ0
0 is described by (7.7). By Remark 6.10, the respective contribution to the energy

per particle of the condensate is

(7.13) e02 = −3g−1
0 ‖A‖2−1

∫

R0

[µ0
0 − U(x)]3 dx < 0 .

Remark 7.2. The perturbations of this section indicate that the oscillations of
the scattering length cause a decrease in the energy per particle of the condensate.
The magnitude of this decrease is found to be proportional to ‖A‖2−1.

Inner solution. Consider (7.10) along the local normal to ∂R0, inside the boundary
layer conjectured in section 7.1.1. By the definitions of (7.9a), taking η = O(1) we

assert that Ueff(x̆) ∼ (Uoε̆)
2/3[η + 3PII(η)

2] and F2(x̆) ∼ µ0
2g

−1/2
0 (Uoε̆)

1/3PII(η), in
view of Remark 7.1. Thus, we obtain the equation

(7.14a) ∂ηηφ
in
2 − [η + 3PII(η)

2]φin2 = PII(η) ; φin2 := −(µ0
2)

−1g
1/2
0 (Uoε̆)

1/3φε̆2 .

By matching with the outer solution (7.11) for O(ε2/3) < |x̆ − xbd| � 1, we require
that φin2 (η) satisfies

(7.14b) φin2 (η) → 0 as η → ∞ , φin2 (η) ∼ −1

2
(−η)−1/2 as η → −∞ .

Remark 7.3. It follows that φin2 (η) = P ′
II(η), the derivative of the 2nd Painlevé

transcendent of section 7.1.1 [39]; in particular, φin2 (η) ∼
√
2Ai′(η) as η → ∞.

7.2. Pair excitation kernel. Next, we turn our attention to expansion (6.69)
for spatial dimension d = 3 (see Remark 6.13). This expansion can be invoked for
the depletion of the condensate (section 8). Again, the underlying idea is that, for
a slowly varying trap, the Boson system is nearly translation invariant. Accordingly,
Kε(x, y) is expected to depend predominantly on x − y [68, 69]. Here, we follow the
technique invoked in [69] where x− y is treated as a fast variable (in ε̆).

The transformation to the center-of-mass coordinates reads

(7.15) (x, y) 7→ (x#, X) =

(
x− y,

x+ y

2

)
.

This change of variables is motivated by the observation that κj(x, y) (j = 0, 2) are
controlled primarily by forcings proportional to the Dirac mass, δ(x − y), when the
external potential is sufficiently slowly varying.
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7.2.1. Zeroth-order kernel. The 3D analog of (6.44) reads

0 =
(
− ε̆2

2 ∆X̆ − 2∆x#

)
ßε̆0 +

{
U(X̆ + ε̆

2x#) + U(X̆ − ε̆
2x#)

+2g0
[
φε̆0(X̆ + ε̆

2x#)
2 + φε̆0(X̆ − ε̆

2x#)
2
]
− 2µε̆

0

}
ßε̆0 + g0φ

ε̆
0(X̆)2 δ(x#)

+g0

∫

R3

dz φε̆0(X̆ − ε̆
2x# + ε̆z)2 ßε̆0(x# − z, X̆ + ε̆

2z) ß
ε̆
0(z, X̆ − ε̆

2x# + ε̆
2z) ,(7.16)

where, in the spirit of section 7.1, we define

(7.17) X̆ := ε̆X > O(ε̆) , x# = O(1) , ßε̆0(x#, X̆) := κ0(X̆/ε̆+ x#/2, X̆/ε̆− x#/2) .

Thus, variations of κ0 with respect to X are slow and variations with respect to x#
are fast. This view is consistent with the (anticipated) nearly translation invariant
character of the Boson system. Apply the approximations [69]

U(ε̆X + ε̆
2x#) + U(ε̆X − ε̆

2x#) ∼ 2U(X̆) ,

φε̆0(ε̆X + ε̆
2x#)

2 + φε̆0(ε̆X − ε̆
2x#)

2 ∼ 2φε̆0(X̆)2 ,

∫
dz φε̆0(X̆ − ε̆

2x# + ε̆z)2 ßε̆0(x# − z, X̆ + ε̆
2z) ß

ε̆
0(z, X̆ − ε̆

2x# + ε̆
2z)

∼ φε̆0(X̆)2
∫

dz ßε̆0(x# − z, X̆) ßε̆0(z, X̆) ,

since the major contribution to integration is expected to come from z = O(1). Hence,
the nonlocal term in (7.16) is reduced to a convolution integral.

Accordingly, we solve (7.16) approximately via the Fourier transform of ßε̆0(·, X̆),

treating X̆ as a parameter. The Fourier transform ß̂ε̆0(λ, X̆) satisfies

(7.18)
(
− ε̆2

2 ∆X̆+2λ2
)
ß̂ε̆0+2[U(X̆)+2g0φ

ε̆
0(X̆)2]ß̂ε̆0+g0φ

ε̆
0(X̆)2+g0φ

ε̆
0(X̆)2(ß̂ε̆0)

2 ≈ 0 .

We solve this equation by singular perturbations for ε̆� 1.

Outer solution. By setting ε̆ = 0 in (7.18), we uncover the approximation ß̂00 where

(7.19) 1
2g0φ

0
0(X̆)2(ß̂00)

2 + [U(X̆) + 2g0φ
0
0(X̆)2 + λ2 − µ0

0]ß̂
0
0 +

1
2g0φ

0
0(X̆)2 = 0 ;

λ0(X̆)2 := U(X̆) + 2g0φ
0
0(X̆)2 − µ0

0, and X̆ ∈ R3 \B(∂R0,O(ε2/3)) (see section 7.1).
Equation (7.19) has the solution

(7.20) ß̂00(λ, X̆) =
−λ2 − λ0(X̆)2 +

√
[λ2 + λ0(X̆)2]2 − g20φ

0
0(X̆)4

g0φ00(X̆)2
,

with ß̂00(·, X̆) ∈ L2(R3). In particular, if g0(φ
0
0)

2 � λ2 + λ20 we have

ß̂00(λ, X̆) ∼ −1

2

g0φ
0
0(X̆)2

λ2 + λ0(X̆)2
,

which is consistent with the hypotheses of Lemma 6.6 for s = 1.
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A further simplification of (7.20) ensues from (7.6) [69]:

(7.21) ß̂00(λ, X̆) =
−λ2 − g0φ

0
0(X̆)2 + |λ|

√
λ2 + 2g0φ00(X̆)2

g0φ00(X̆)2
if X̆ ∈ R

δ
0 .

On the other hand, if X̆ ∈ R
c,δ
0 we obtain ß̂00(λ, X̆) = 0, which can be refined via the

WKBmethod in X̆ (for fixed λ). Equation (7.21) is inverted to give the pair-excitation
kernel (for X̆ ∈ R

δ
0) [69]

(7.22) ß00(x#, X̆) = π−2

(
g0
2

)3/2

φ00(X̆)3ϑ(x#, X̆)−1Im[S00(iϑ)− S04(iϑ)] ,

where ϑ(x#, X̆) = (2g0)
1/2φ00(X̆)|x#| and Sαβ is Lommel’s function [65].

Remark 7.4. In the limit x# = x− y → 0 with X̆ ∈ R
δ
0 (inside the trap),

(7.23) ß00(x#, X̆) ∼ −
(
g0
8π

)
φ00(X̆)2

|x#| .

Boundary layer. We now consider the pair excitation kernel when the slow center-of-
mass coordinate ε̆(x+y)/2 lies inside the boundary layer for φε̆0, near ∂R0 (see section
7.1.1). We (locally) define ßin0 (χ#, η) := (Uoε̆)

−1κ0(x, y) with χ# := (Uoε̆)
1/3x# =

(Uoε̆)
1/3(x−y); here, η(X̆) = (Uo/ε̆

2)1/3ν(xbd)·(X̆−xbd) and xbd ∈ ∂R0. Accordingly,
by a flat boundary approximation, (7.16) is reduced to

0 =
[
− 1

2∂
2
η − 2∆χ#

+ 2η + 4(φin0 )2
]
ßin0 + (φin0 )2 δ(χ#)

+ (φin0 )2
∫

dz ßin0 (χ# − z, η) ßin0 (z, η) , X̆ ∈ B(∂R0,O(ε̆2/3)) .(7.24)

By assuming ßin0 (·, η) ∈ L2(R3), we obtain an ordinary differential equation for

its Fourier transform, ß̂in0 (λ, η):

(7.25a) − 1
2∂

2
η ß̂

in
0 + 2

[
λ2 + η + 2(φin0 )2

]
ß̂in0 + (φin0 )2(ß̂in0 )2 + (φin0 )2 = 0 ;

recall−∂2ηφin0 +ηφin0 +(φin0 )3 = 0. Consider λ as fixed. Boundary conditions for (7.25a)

stem from asymptotic matching with the outer solution, ß̂00, of (7.20) as η → ±∞:11

(7.25b) ß̂in0 (λ, η) ∼ −1 + |λ|
√
−2

η
as η → −∞ , ß̂in0 (λ, η) → 0 as η → ∞ .

Equations (7.25) form a canonical boundary value problem for the zeroth-order ho-
mogenized pair excitation kernel in the center-of-mass boundary layer close to ∂R0.
The solution of (7.25) and subsequent Fourier inversion to obtain ßin0 are not further
pursued in this article.

11Note that |λ| is not allowed to become arbitrarily large in (7.25b). If η is kept fixed and |λ| → ∞,

a different asymptotic limit ensues: ß̂in
0

= O(λ−2), consistent with ßin
0
(·, η) ∈ L2(R3).
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7.2.2. Higher-order kernel, κ2. The heuristics of the preceding subsection can
be extended to ßε̆2(x#, X̆) := κ0(X̆/ε+x#/2, X̆/ε−x#/2). We outline the procedure
for the outer solution below.

The function ßε̆2(x#, X̆) obeys

4Λ(x#, X̆) ≈ [−ε̆2∆X̆ − 4∆x#
+ 4W (X̆)]ßε̆2(x#, X̆)

+ 4g0φ
ε̆
0(X̆)2

∫
dz ßε̆0(x# − z, X̆)ßε̆2(z, X̆) ,(7.26)

for given φε̆0(X̆), φε̆2(X̆) and ßε̆0(x#, X̆), where

(7.27) W (x) = U(x) + 2g0φ
ε̆
0(x)

2 − µε̆
0 ,

Λ(x, y) = −g0{φε̆0(y)φε̆2(y)− 3g0‖A‖2−1φ
ε̆
0(y)

4}δ(x)
+ {Z2 + 9g20‖A‖2−1φ

ε̆
0(y)

4 − 4g0φ
ε̆
0(y)φ

ε̆
2(y)}ßε̆0(x, y)

− g0[φ
ε̆
0(y)φ

ε̆
2(y)− 3g0‖A‖2−1φ

ε̆
0(y)

4]

∫
dz ßε̆0(x− z, y)ßε̆0(z, y) ,(7.28)

and Z2 is a constant defined by (6.50).
Equation (7.26) is Fourier-transformed in x#, by treatment of X̆ as a parameter.

The transformed outer solution which approximates ß̂ε̆2(λ, X̆) is

(7.29) ß̂02(λ, X̆) =
Λ̂0(λ, X̆)

λ2 +W0(X̆) + g0φ00(X̆)2 ß̂00(λ, X̆)
, X̆ ∈ R

3 \B(∂R0, δ) ,

where δ = O(ε2/3); Λ̂0(λ, X̆) andW0(X̆) result from the replacement of φε̆0(X̆), φε̆2(X̆)

and ß̂ε̆0(λ, X̆) in Λ̂(λ, X̆) andW (X̆) by the outer solutions φ00(X̆), φ02(X̆) and ß̂00(λ, X̆),

respectively. The extension of this ß̂02(λ, ·) across ∂R0 is not continuous because φ00φ
0
2

is not. By virtue of (7.6) and (7.11), we have the simplified formulas

(7.30) Λ̂0(λ, X̆) =
3

2
g20‖A‖2−1[φ

0
0(X̆)4 + |R0|−1‖(φ00)2‖2L2] [1 + ß̂00(λ, X̆)]2 ,

(7.31) W0(X̆) = g0φ
0
0(X̆)2 , X̆ ∈ R

δ
0 ;

accordingly,

ß̂02(λ, X̆) =
3

2
g20‖A‖2−1[φ

0
0(X̆)4 + |R0|−1‖(φ00)2‖2L2 ]

× [1 + ß̂00(λ, X̆)]2

λ2 + g0φ00(X̆)2[1 + ß̂00(λ, X̆)]
, X̆ ∈ R

δ
0 .(7.32)

Notice that this ß̂02 has a zero at λ = 0 for fixed X̆. On the other hand, if X̆ ∈ R
c,δ
0

we obtain ß̂02(λ, X̆) = 0.
Approximation (7.29) breaks down if X̆ ∈ B(∂R0,O(ε2/3)). A remedy is to

use the local coordinate η and the inner solutions for φ0, φ2 and ß0; and proceed
as in section 7.2.1, invoking boundary layer theory and asymptotic matching. By
construction, the ensuing approximation should be continuous across ∂R0. We leave
details of this computation to the interested reader.
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8. Application: Condensate depletion. In this section, we describe the par-
tial depletion of the condensate, as particles scatter from it in pairs, to the first two
orders of the homogenization program for the lowest bound state. To leading order,
the condensate is partially depleted because of the repulsive particle interactions with
strength g0 (g0 > 0). To the next higher order, the depletion is influenced by the os-
cillatory character of the scattering length, i.e., the function A(x/ε). In the case with
a slowly varying trap, we explicitly compute the fraction of particles out of the con-
densate. We show how this fraction is controlled by an appropriate norm of A(x/ε).
Recall that Φε(x) and Kε(x, y) are considered real; and Kε(x, y) = Kε(y, x).

8.1. Homogenization-based expansion. We seek a formal ε-expansion for
the condensate depletion on the basis of our homogenization. By (5.34), the fraction
of particles that occupy states out of the condensate, or depletion fraction, is [68]

(8.1) ξεsc := 1− ξε = N−1〈Ψε
N , (ψ

∗
1ψ1)Ψ

ε
N 〉F = N−1

∫
wε(x, x) dx = N−1trWε ,

where the operator Wε has kernel wε(x, y) defined by (5.36); 0 < ξεsc < 1. For
ease of notation, we provide an expansion for ξεsc in terms of a formal expansion for
Wε. In view of Remark 3.1, we assume that ξεsc is small enough that the many-body
perturbation scheme leading to the PDEs for Φε and Kε makes sense,

(8.2) ξεsc � 1 .

Specifically, we show that, in correspondence to Proposition 6.11 (with Remark
6.13), the depletion fraction can be expanded as

(8.3) ξεsc = ξsc,0 + ε2ξsc,2 + . . . = trW(0) + ε2 trW(2) + . . . ,

where

(8.4a) W(0) =
∑

n≥1

K2n
(0) = K2

(0)(1−K2
(0))

−1 ,

W(2) =
∑

n:even

n≥2

n−2
2∑

m=0

K2m
(0){{K(0),K(2)},K2n−2−4m

(0) }K2m
(0)

+
∑

n:odd

n≥1

[ n−3
2∑

m=0

K2m
(0) {{K(0),K(2)},K2n−2−4m

(0) }K2m
(0) +Kn−1

(0) {K(0),K(2)}Kn−1
(0)

]
;(8.4b)

K(l) (l = 0, 2) is the operator with kernel κl(x, y); and the anticommutator {·, ·} is
{A,B} := AB+ BA, as usual. Note that K(0) and K(2) may not commute in general.
In the special case where K(0) and K(2) commute, we can write

(8.5) W(2) = 2
∑

n≥1

nK2n−1
(0) K(2) = 2K(0)K(2)(1−K2

(0))
−2 .

For sufficiently small g0, the operator K(0) is expected to be appropriately bounded

so that (1−K2
(0))

−k exists for k = 1, 2; see section 8.2 (Remark 8.1).
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We proceed to sketch a derivation of (8.3) and (8.4), by resorting to an extension
of the binomial expansion for non-commuting operators. Noting the formal relations
Wε =

∑
n≥1 Wε

n, Wε
n = (W ε

1 )
n and Wε

1 = (Kε)2, where Kε has kernel Kε(x, y), we

seek a two-scale expansion for the kernel wε
1(x, y) of Wε

1 up to O(ε2). By (6.43) with
Remark 6.13, we find

wε
1(x, y) =

∫
dz κ0(x, z)κ0(z, y) + ε2

{
g0
[
(∆−1

x̃ A)f0(x)
2 + (∆−1

ỹ A)f0(y)
2
]

×
[
κ0(x, y) + 2

∫
dz κ0(x, z)κ0(z, y)

]
+ 2

∫
dz Sym[κ0, κ2](z;x, y)

}
+ . . . ,(8.6)

where Sym[·] is defined by (6.47). Equation (8.6) suggests the operator form

(8.7) Wε
1 = K2

(0) + ε2
[
$K(0)(1 + 2K(0)) + {K(0),K(2)}

]
+ . . . ,

where $(·, ·, x, y) is 1-periodic in R3×R3 with 〈$〉 = 0. Now raise Wε
1 to the power n

(n = 1, 2, . . .), sum up the terms (Wε
1)

n, and take the total trace of the resulting Wε

up to order O(ε2) (by integration on the diagonal, for x = y and x̃ = ỹ) in order to
compute ξεsc by (8.1). The contribution of $ can be eliminated by virtue of Lemma
6.5. Thus, ξεsc is effectively determined up to O(ε2) from the sum of traces of

[
K2

(0) + ε2 {K(0),K(2)}
]n
, n = 1, 2, . . . ,

where in principle K(0) and {K(0),K(2)} do not commute. Equations (8.3) and (8.4)
result by direct multiplication, induction, and summation in n.

8.2. Slowly varying potential. Consider the external potential Ve(x) = U(ε̆x).
By use of the center-of-mass coordinates and a slow variable in ε̆, as in section 7, the
operators K(0) and K(2) are found to commute approximately. Indeed, let x# = x− y

and X̆ = ε̆(x + y)/2, along with κ0(x, y) = ß0(x#, X̆) and κ2(x, y) = ß2(x#, X̆), and
apply the approximation

∫
κ0(x, z)κ2(z, y) dz =

∫
ß0

(
z′, X̆ +

εx#
2

− εz′

2

)
ß2

(
x# − z′, X̆ − εz′

2

)
dz′

∼
∫

ß0(z
′, X̆) ß2(x# − z′, X̆) dz′ =

∫
ß2(z

′, X̆) ß0(x# − z′, X̆) ,(8.8)

to leading order in ε̆, as ε̆ ↓ 0. Symbolically, we write

K(0)K(2) ∼ K(2)K(0) ⇒ {K(0),K(2)} ∼ 2K(0)K(2) ,

to imply (8.8). Alternatively, replace each operator by the Fourier transform of the
above approximation for ßl(·, X̆), treating X̆ as a O(1) parameter.

A few comments on the operator K(0) are in order. The appropriate norm of
K(0) : L

2(R3) → L2(R3) is written as

‖K(0)‖2 = N−1‖κ0‖2L2(R3×R3) = N−1

∫∫
|κ0(X + x#/2, X − x#/2)|2 dx#dX

= (Nε̆3)−1

∫∫
|ß0(x#, X̆)|2 dx#dX̆ ∼ N−1

(2π)3

∫

R0

dX̆

∫

R3

dλ |ß̂00(λ, X̆)|2 ;(8.9)
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cf. section 7.2.1. By formula (7.21) for ß̂00, use of spherical coordinates for λ, and the

change of variable |λ| 7→ τ with |λ| =
√
2g0(φ00)

2 sinh τ inside Rδ
0, we find ß̂00 = −e−2τ

and directly obtain

(8.10) ‖K(0)‖2 ∼ 27/2

105π2

∫

R0

dx [µ0
0 − U(x)]3/2 .

In addition, we notice that, since µ0 → 0 as g ↓ 0, the volume |R0| should become
arbitrarily small in this limit; thus, ‖K(0)‖ → 0 as g0 ↓ 0.

Remark 8.1. The above sketchy argument suggests that if g0 is nonzero but small
enough, then (1−K2

0)
−1 is meaningful [41].

8.2.1. Zeroth-order depletion. By (8.3) and (8.4a) along with the use of the
Fourier representation for K(0) and spherical coordinates, we wind up with the integral

ξεsc ∼ ξsc,0 =
1

(2π)3

∑

n≥1

∫

R0

dx

∫
dλ |ß̂00(λ, x)|2n

=
1

2π2

∑

n≥1

∫

R0

dx

∫ ∞

0

d|λ| |λ|2 |ß̂00(λ, x)|2n

=
1

2π2

∑

n≥1

8n

(16n2 − 1)(16n2 − 9)

∫

R0

dx [2g0φ
0
0(x)

2]3/2

=

√
2

12π2

∫

R0

dx [µ0
0 − U(x)]3/2 .(8.11)

Remark 8.2. The approximate depletion fraction ξsc,0 scales with g0 in a fashion
depending upon the shape of the trapping potential, U(x). For example, if U(x) =

|x|%, we find ξsc,0 ∼ c g
3
2

%+2
%+3

0 .

8.2.2. Higher-order depletion. Next, we indicate how the oscillatory part,
A(x/ε), of the scattering length can cause a decrease of the depletion fraction. In
(8.3), the coefficient ξsc,2 contains information about A(x/ε). By using the series of
(8.5), along with the hypothesis of a slowly varying trap, we compute

(8.12) ξsc,2 ∼ 1

(2π)3

∑

n≥0

2(n+ 1)

∫

R0

dx

∫
dλ ß̂00(λ, x)

2n+1ß̂02(λ, x) .

By formulas (7.29)–(7.31), we have

ξsc,2 ∼ −3
√
2

8π2
‖A‖2−1

∫

R0

{
g20φ

0
0(x)

4

+ |R0|−1‖g0(φ00)2‖2L2

}
[g0φ

0
0(x)

2]1/2 dx ,(8.13)

where φ00(x) is introduced in (7.6). Notice
Remark 8.3. The periodic oscillations of the scattering length cause a relative

decrease of the depletion fraction by an amount proportional to ‖A‖2−1, in contrast
to the effect of repulsive interactions to zeroth order.
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9. Conclusion. We studied the Bose-Einstein condensation of dilute atomic
gases with repulsive particle interactions at zero temperature. Our goal with this
work was to explore a many-particle scenario for transcending the mean field formal-
ism of the NSE when the scattering length has a periodic microstructure. The main
effect beyond mean field is pair excitation, by which particles are scattered in pairs
from the condensate to other states at different positions; a macroscopic-like function
that describes this process is the pair excitation kernel, K(x, y). Our focus was the
lowest many-body bound state, which depends on both the condensate wave function,
Φ(x), and the kernel K(x, y).

We applied perturbation theory at the microscopic and macroscopic levels. First,
by revisiting Wu’s formulation [68], we demonstrated how the integro-PDE for K
can emerge from the particle Hamiltonian when the scattering length has a periodic
microstructure. This stage involves manipulation of operators in the Fock space.
Second, by classical homogenization theory, we derived effective equations for Φ and
K up to the second order in the subscale ε of the scattering length. Third, in order to
obtain some insight into solutions of these effective equations, we considered a slowly
varying trap, U(ε̆x), and applied singular perturbation theory to leading order in ε̆.
Lastly, we indicated what predictions can possibly be made for the fraction, ξsc, of
particles out of the condensate.

A noteworthy result is an expansion for ξsc, which reveals the dependence of
this fraction on the physical parameters, including the size and shape of the trap, the
strength of the repulsive interactions, particularly the oscillatory part of the scattering
length. According to our formula for ξsc, the oscillations of the scattering length favor
a relative decrease of the depletion fraction. This finding suggests that the spatial
manipulation of the scattering length may cause an effect opposite to raising the
(positive) interaction strength in the unperturbed (lacking periodic microstructure)
system.

Our work has not addressed several pending issues. For example, although we
indicated that K acts back on Φ and thus modifies the NSE, we have not studied
the correction to the condensate energy that stems from the coupling of the PDE
for Φ with K. Another issue concerns settings with a spatially periodic and time-
dependent scattering length and trapping potential. Our analysis was restricted to
zero temperature, in the absence of thermally excited states. The extension of pair
excitation to finite but small temperatures (well below the phase transition point) is
a task worthy of attention. An issue is to derive (from the microscopic Hamiltonian)
equations of motion for Φ, K and, in addition, the wave functions of thermally excited
states. Furthermore, the homogenization of such macroscopic equations would be the
next step. The modeling and analysis of the finite-temperature Boson gas beyond
mean field in a trap is left for near-future work.
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[19] A. Erdélyi, Asymptotic Expansions, Dover, New York, 1956, pp. 27–29.
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