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Abstract. We apply classical homogenization to derive macroscopic relaxation laws for crystal
surfaces with distinct inhomogeneities at the microscale. The proposed method relies on a multiscale
expansion in one spatial coordinate. This approach transcends the coarse graining applied previously
via Taylor expansions. Our work offers an extension of the static homogenization formulated in [Mar-
getis, Phys. Rev. E, 79 (2009), 052601] in order to account for surface evolution. The starting point
is the Burton-Cabrera-Frank (BCF) model for the motion of line defects (steps) separating nanoscale
terraces. We enrich this model with sequences of distinct material parameters, i.e., disparate diffu-
sivities of adsorbed atoms (adatoms) across terraces, kinetic sticking rates at step edges, and step
energies for elastic-dipole interactions. Multiscale expansions for the adatom concentration and flux
are used, with a slow diffusive time scale consistent with the quasi-steady regime for terrace diffusion.
This procedure is complemented by a weak formulation for the step chemical potential in terms of a
step free energy. The evolution laws incorporate appropriate averages of the microscale parameters.
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1. Introduction. Crystal surface structures are critical ingredients of thin film
epitaxy as well as surface chemistry and catalysis. Aspects of surface evolution remain
an area of active interest [8,14,23]. A crucial issue is to elucidate how the microscale
dynamics of constituent atomic defects influence the surface morphological evolution
at large scales. This concern broadly motivates the present article.

Vicinal crystal surfaces are characterized by nanoscale flat regions (terraces) ori-
ented in the high-symmetry direction and separated by line defects (steps) which are
typically one atomic layer high. The steps considered here are monotonic (of the same
‘sign’). Their number is fixed by the miscut angle set in laboratory experiments [14].

A standard approach to deriving macroscopic limits of stepped surfaces essen-
tially relies on Taylor expansions for the step positions and step density; see, e.g., [5,
21,22,28,29,32,34,42]. This coarse graining is appropriate when material parameters
remain unchanged across terraces. However, this approach is in principle inadequate
if the surface has strong inhomogeneities, namely, distinct diffusivities and kinetic
rates across terraces at the nanoscale. We call such a stepped surface ‘composite’.

In this article, we address the question: what is the macroscale description of
surface relaxation consistent with the microstructure inhomogeneities of a composite
stepped surface? To provide an answer, we invoke singular perturbations, i.e., classical
homogenization and multiscale expansions, in one spatial coordinate. This approach
is deemed more general than the previous coarse graining. Our main results comprise
evolution laws that contain microscale averages of material parameters.

It is tempting to claim that homogenization is not needed since the requisite
averaging may stem from an electric circuit analog for the stepped surface [28, 31].
In this view, for instance, sequences of terrace diffusivities correspond to in-series
electric conductances per unit length; hence, the average diffusivity would be the
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appropriate, effective circuit parameter. We believe that this view is incomplete for at
least two reasons. First, it is static, leaving out the issue of time scales and evolution.
Second, in this picture effective circuit parameters are determined by averaging at the
(microscale) level of a few steps and terraces. This kind of averaging is conceptually
different from the averaging required by homogenization in the macroscopic limit.
One can in fact argue that the electric-circuit analog is a byproduct of, rather than a
substitute for, homogenization.

The present work forms an extension of a recent, brief report on Fick’s law for
surface diffusion [19]. Here, more details on the derivation of Fick’s law are provided,
the roles of time scales and the mesoscale are quantified and discussed extensively,
and the continuum laws comprise more variables, e.g., the step chemical potential.

Our analysis leaves open questions. The main focus is the consistency of macro-
scopic laws with a microscale model of a composite surface. Accordingly, the contin-
uum limit is assumed to exist. Our derivation of Fick’s law relies on formal arguments
in terms of the classical solution for a microscale diffusion equation. In contrast, our
treatment of the step chemical potential is based on a weak formulation [21]. It is
expected that a weak formulation (not based on classical, closed-form solutions) can
be applied for all evolution laws. This aspect is not fully developed here. We restrict
attention to one spatial coordinate; the theory of a composite stepped surface in 2+1
dimensions is not addressed. We believe that the extension of continuum laws to 2+1
dimensions would bear no surprising results, yet it would require a homogenization
technology different from the one applied here. It is hoped that our work will serve
as an invitation to further investigations.

We assume that the reader is familiar with the basic concepts of epitaxial relax-
ation. For reviews on related topics, see, e.g., [8, 14, 16, 23].

1.1. Physical motivation. There are at least two categories of applications
that physically motivate our study. First, semiconductor surfaces may naturally ex-
hibit structural phases that depend on the temperature and crystal misorientation
angle. This ‘surface reconstruction’ amounts to material parameters that can vary
appreciably across adjacent terraces and has received considerable attention. In par-
ticular, the Si(001) system1 manifests a reconstruction in which dimer rows (chains
of bonded atoms) alternate from perpendicular to parallel to step edges across ter-
races [4, 17, 25, 36, 40].

Another category of phenomena involves surface compounds created by small
amounts of solutes added on a crystal. Such additions can cause dramatic morpho-
logical changes, affecting the crystal shape and stability [6, 11, 15, 33, 37, 39, 41]. This
observation implies that artificial, composite surfaces may have interesting, uncon-
ventional properties, and therefore need to be explored systematically.

A feature common in both of the above cases is the existence of microstructure
inhomogeneities. However, it is reasonable to expect that the surface appears homo-
geneous at a large enough length scale.

1.2. Averaging and mesoscale. Our homogenization approach is adopted
from the basic theory of composites, e.g., [24, 27]. The central theme is to iden-
tify separate scales from the physical setting and governing equations for steps, and
then average out microscopic details in order to pass to the full continuum limit. The
averaging procedure is intimately connected to the structure of the governing laws
at the microscale. By requiring that classical solutions, e.g., the mass concentration

1The index (001) here indicates the surface orientation, i.e., the respective normal vector.
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and flux, of step flow remain bounded in the limit of a large number of steps, one
can obtain solvability (non-growth) conditions giving rise to an effective macroscopic
description.

In this framework, the notion of the mesoscale arises naturally. Its use facilitates
the interpretation of averages [24]. Intuitively, one may think of the mesoscale as any
surface region small enough to capture the underlying inhomogeneities yet sufficiently
large to allow for reliable averaging. The variation of material parameters and vari-
ables (e.g., step velocity) across steps and terraces is evident at the mesoscale; but
the corresponding averages of interest vary slowly across such mesoscale regions so
that the full continuum limit makes sense.

The above idea permeates the study of diffusion in layered media [12]. The homog-
enization scheme in [12] is static from the outset; and includes the layer boundaries
through the values of a fast, continuous spatial variable. The mass (adatom) con-
centration and flux are assumed to be continuous across these boundaries [12]. In
contrast, our setting encompasses relaxation dynamics. First, the step edges (terrace
boundaries) are moving; hence, the step velocity law plays a pivotal role. Second,
densities and fluxes are in principle discontinuous across step edges because of the
assumed attachment-detachment kinetics at steps. Third, the microscale Fick’s law
for diffusion is complemented with a step chemical potential, which expresses ther-
modynamically the change in the free energy for each step.

1.3. Kinetic processes. It is of interest to spell out the physical mechanisms
underlying the model. We focus on surface relaxation, in the absence of growth. The
steps move as a result of mass conservation under two main kinetic effects [14]: (i)
the diffusion of adsorbed atoms (adatoms) on terraces, often simplified via the quasi-
steady approximation whereby adatom diffusion equilibrates faster than steps move;
and (ii) the atom attachment-detachment at step edges. A variable entering this
description is the (discrete) step chemical potential, which is a thermodynamic force
equal to the variation of the step free energy with respect to the step positions. In our
study, this energy accounts for entropic and nearest-neighbor elastic-dipole step-step
interactions. Elements (i) and (ii) permeate the celebrated Burton-Cabrera-Frank
(BCF) model [3].

By comparison to real material systems, this setting appears incomplete. For
example, terrace diffusion anisotropies are not included. The dipole character of
step-step interactions here does not fully describe long-range interactions that may
be present, e.g., on the reconstructed Si(001). Diffusion of atoms along step edges,
evaporation/condensation, desorption and external material deposition are left out.

In particular, a study of surface reconstructions that accounts for, e.g., the geom-
etry of dimer rows with alternating orientations on adjacent terraces of Si(100) [1,17],
would require an in-depth analysis of anisotropic effects in 2+1 dimensions. Fur-
thermore, the reconstruction generates internal stresses which may induce monopole-
dipole step-step interactions [38]. This effect is of course not captured by the elastic-
dipole model for steps used here [18].

In the spirit of the BCF theory [3], we assume that step motion occurs near
thermodynamic equilibrium. This assumption is believed to be adequate for surface
relaxation at macroscopic time scales. Material deposition from above and far-from-
equilibrium kinetics are not touched upon here. Our methodology should still be
applicable within the BCF framework for sufficiently small external deposition flux.

We expect that the present one-dimensional (1D) setting is, in a certain sense,
minimal for surface reconstructions. Specifically, our formulation singles out issues
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intimately connected to averaging. In this vein, we circumvent complications which
may arise in a two-dimensional (2D) geometry or richer kinetics.

1.4. Macroscopic limit. We pass to the full continuum in the limit of vanishing
step height, a, with fixed step density (surface slope). The ensuing variables of interest
are treated asO(1), a-independent quantities. As in previous treatments of continuum
limits for step flow, e.g., [21], the main macroscopic variables are the surface height,
the adatom flux, and the continuum-scale step chemical potential.

Our analysis does not avoid certain simplifying hypotheses (and thus bears re-
spective limitations) traditionally present in the study of continuum limits [21]. Step
trains are monotone and facets are absent. Microscale effects near facets are known
to pose challenging, open problems [20]. We assume that (appropriate) microscale
averages of interest vary sufficiently slowly. The full continuum limit is assumed to
exist rather than proved to exist. The latter task would require a rigorous study of
(e.g., derivation of a priori estimates for) solutions to the discrete step flow.

We employ primarily formal (yet streamline) arguments of classical homogeniza-
tion [2] similarly to studies of diffusion in layered media [12]. Our homogenization
approach is accompanied by a weak formulation for the continuum-scale step chem-
ical potential of the composite stepped surface. On the other hand, mathematical
niceties such as the convergence of multiscale expansions [30], although a prerequisite
for complete analytical understanding, lie beyond our present scope.

1.5. Article organization and notation. The remainder of this article is or-
ganized as follows. Section 2 offers an overview of the model, our assumptions and the
homogenization formalism: we introduce the physical setting and give the equations
of step motion (section 2.1); introduce aspects of the relevant scales (section 2.2);
and describe germane notions of homogenization (section 2.3). Section 3 contains a
summary of the main results (especially for readers who wish to skip technical details
of derivations). In section 4, we give details of the requisite multiscale expansions,
order by order in perturbation, for 1+1 dimensions; and thereby derive the desired
evolution laws. In section 5, we briefly discuss the extension of the homogenization
approach to the radial setting. In section 6, we summarize our findings, discuss their
possible implications, and mention pending issues.

Throughout this article, the terms ‘full continuum limit’, ‘macroscale’ and ‘macro-
scopic limit’ are used interchangeably. The time dependence is often (but not always)
suppressed for notational economy. The symbol Ql(x, y), where l is an integer, de-
notes the coefficient of εl in the ε-perturbation expansion for Q, whereas Q(x, y)l is the
usual lth power of Q; such a distinction (of perturbation order from power) should
be self-explanatory. By f = O(g) we imply that C1 ≤ |f(z)/g(z)| ≤ C2 for some
positive constants C1 and C2 as the parameter or variable z approaches an extreme
value. Writing f = o(g) amounts to |f(z)/g(z)| ↓ 0.

2. Model and scale separation. Our goal with this section is to clarify the
scale separation, and related concepts and notation needed in homogenization.

First, we describe briefly the physical setting of steps and terraces in 1+1 dimen-
sions. Second, we discuss the underlying scales. The smallest scale is the step height,
a, and the largest scale is the size of the crystal sample, λ. We define a mesoscale as
an intermediate region of size d, a � d � λ, which helps formulate and interpret the
averaging procedure. Third, we review the basic elements of classical homogenization.

2.1. Microscale model. The geometry consists of N steps descending in the
positive x direction; see Figure 2.1. We assume that all steps have the same height, a,
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Fig. 2.1. Schematic (cross section) of steps with atomic height a and positions xi(t) in one
spatial coordinate (x). The ith terrace, xi−1 < x < xi, has diffusivity Di; and the bounding steps
have attachment-detachment kinetic rates ku,i−1 (up-step at xi−1) and kd,i (down-step at xi).

an atomic length. The step positions are xi(t) where t denotes time; i = 0, . . . , N − 1
and N � 1. Let xi(0) > xi−1(0). The step ordering is presumed fixed for t > 0
because of the dipolar repulsive step interactions [see (2.6)].2 We conveniently assume
that xi lie on a torus (under periodic boundary conditions). To ensure that the surface
slope is kept fixed, we set wi(t) := xi(t) − xi−1(t) = O(a) for the ith-terrace width,
wi. By xN−1(0)− x0(0) = O(λ) for N � 1, we (initially) we have the relation

(2.1)

N−1
∑

i=1

wi(0) = O(Na) as N → ∞.

The total length is λ = Na = O(1). Define ε := a/λ and set λ = 1 for convenience.
Consider the ith terrace, Tit = {x |xi−1(t) < x < xi(t)}, and let Ut := ∪N

i=1Tit,
|Ut| = O(λ). The adatom concentration, ρi(x, t) ≡ ρεi(x, t), is defined via3

(2.2) ∂x[Di(x)∂xρi] = ∂tρi for x ∈ Tit ,

where t ∈ (0, T ] and T = T ε is large enough to account for macroscopic observations
(section 2.3). The diffusivities Di(x) are positive and satisfy

(2.3) 0 < Dm ≤ Di(x) ≤ DM for i = 0, 1, . . . , N − 1 ,

regardless of N ; Dm and DM are constants (and independent of N).
Let %ε(·, t) represent the extension of the adatom concentration on U ⊇ U t (U t:

closure of Ut) for all t ≥ 0; e.g., U = [0, 1]. We must have % ≡ ρi for x ∈ Tit and all
t ≥ 0. Assume that %ε(·, t) is C2 (twice continuously differentiable in x) on Ut and
bounded on U . At each x = xi this %

ε satisfies the kinetic conditions [3]

J ε(x−
i , t)− vi%

ε(x−
i , t) = kd,i[%

ε(x−
i , t)− ρeqi ] ,(2.4a)

−J ε(x+
i , t) + vi%

ε(x+
i , t) = ku,i[%

ε(x+
i , t)− ρeqi ] , vi = dxi/dt .(2.4b)

In the above, Q(x±
i ) is the restriction of Q(x) (where Q = J , %) at x = xi from left

(−) or right (+). The variable J ε(x, t) is the terrace adatom flux defined by Fick’s law

2A proof that the step ordering is preserved by the flow is feasible but not pursued here.
3Note that we do not apply the quasi-steady approximation at this stage. Accordingly, (2.2)

gives rise to convective terms in the overall flux of adatoms impinging on a step edge; cf. (2.4).
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J ε(x, t) = −Di(x)∂x%
ε(x, t) in Tit; this is supplemented with the convective term vi%

ε

at the step edge, where vi is the step velocity. Note that J ε(·, t) is C1 (continuously
differentiable) on Ut and bounded on U . In (2.4), the parameters k`,i are positive
and bounded kinetic attachment-detachment (sticking) rates for an up- (` = u) and
a down- (` = d) step edge, accounting for the Ehrlich-Schwoebel barrier [7, 35]. The
discrete variable ρeqi represents the equilibrium concentration at the ith step edge.

Next, we describe ρeqi , which incorporates step energies, in terms of {xi} [14]:

(2.5) ρeqi = ρ∗e
µi/ϑ ∼ ρ∗(1 + µi/ϑ) , |µi| � ϑ ,

where µi is the step chemical potential (a thermodynamic force), ϑ is the Boltzmann
energy (i.e, the absolute temperature in units of energy), and ρ∗ is a given positive
constant.4 The quantity µi expresses step-step repulsions. If steps interact entropi-
cally and as elastic dipoles, we have [14, 18, 26]

(2.6) µi =
δEN [~x]

δxi
= ε−1

[

ği+1

(

ε

wi+1

)3

− ği

(

ε

wi

)3
]

, ği = O(1) > 0 ,

where ~x := (x0, . . . , xN−1). The quantity EN [~x] is the total step free energy,

(2.7) EN [~x] =
1

2

N
∑

i=1

ği

(

ε

xi − xi−1

)2

.

Alternatively, µi can be defined implicitly by the formula [21]

(2.8)

N−1
∑

i=0

viµi = ĖN ; Ė := dE/dt ,

where vi = ẋi is the ith step velocity. For reasonably arbitrary vi, this relation is
viewed as a weak formulation for µi (in the discrete setting), where {vi} is a test
sequence (say, discretization of a smooth test function).

The last ingredient is the step velocity law, or mass conservation for adatoms:

(2.9) ẋi = vi = −(Ω/ε)[J ε,+ − J ε,− − vi · (%
ε,+ − %ε,−)]

∣

∣

x=xi
,

where Ω is the atomic area and Q± := Q(x±); we henceforth set Ω = ε2. Equation
(2.9) concludes the description of the BCF-type model.

2.2. Mesoscale. The material parameters introduced at the microscale are {Di},
{kd,i, ku,i}, and {ği}. In this section, we define an intermediate scale, which facili-
tates the interpretation of averages emerging from homogenization (section 4) and is
consistent with the existence of the macroscopic limit. The averages of interest are
left unspecified in this section.

The main physical idea is that material parameters can vary appreciably within
numerous certain regions consisting of consecutive terraces. However, (appropriately
defined) material averages over each such region vary slowly across many such regions
of the macroscopic sample. The notion of the mesoscale helps express this idea. This
statement is mathematically vague at the moment but points to a plausible, and
appealing, situation: Despite the presence of inhomogeneities at the microscale, the
surface should appear homogeneous at a large enough scale.

4In principle, we could have considered this parameter as varying with i, i.e., use the sequence
{ρ∗,i}. However, since these are time-independent parameters, define ρ̃i := ρi/ρ∗,i and ρ̃eq

i
:=

ρeq
i
/ρ∗,i. Because of linearity, the form of step equations (with ρ̃’s) remains intact. Drop the tildes

and set ρ∗,i = ρ∗ = O(1) = const. without loss of generality.
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2.2.1. Some definitions. Consider M sequences of (consecutive) steps in the
step train, where M � 1, M < O(N). Let the jth subsequence contain nj steps

labeled by i ∈ Ij := {i∗(j), i∗ + 1, . . . , i◦(j)} where i∗(j) :=
∑j−1

k=1 nk, i◦(j) :=
∑j

k=1 nk − 1 with nj � 1 and nj = o(N) for j = 1, . . . ,M ; and i∗(1) := 0, i◦(M) =
N − 1. Each nj is kept fixed, but the total length of corresponding terraces is allowed
to vary by o(njε) during evolution.

So far, we have not specified how the above sequences of steps are chosen. For this
purpose, we resort to material parameter averages (to be determined in section 4). For
fixed ε, let the desired average for every {ζεi }i∈Ij be denoted ζ̄εj . Aiming at describing
changes of these averages across different Ij ’s, we define notions of slow variation.

Definition 2.1. (Discrete version of difference quotient.) The difference quotient
of size p ∈ Z \ {0} for the sequence {ζ̄εj}

M
j=1 is

(2.10) δpζ̄εj :=
ζ̄εj+p − ζ̄εj

p
.

Define δ0ζ̄εj := 0 for definiteness.

Definition 2.2. (Discrete version of slow variation.) The sequence {ζ̄εj}
M
j=1 is

slowly varying if, for fixed and sufficiently small ε, there exist large integers j∗(M) =
o(M) and j◦(M) with M − j◦ = o(M) such that, for every j∗ ≤ j ≤ j◦,

(2.11) |pδpζ̄εj | = o(ζ̄εj ) for all − p∗ ≤ p ≤ p◦ ; M � 1 (0 < j − p∗ , j + p◦ < M) ,

where p∗(j), p◦(j) = o(M) and njp∗, njp◦ = o(N); j∗, j◦, p∗, p◦ → ∞ as ε ↓ 0.
The integers j∗, j◦, p∗ and p◦ in principle depend on ε; p∗ and p◦ signify how much

one must shift j so that appreciable changes of the average ζ̄εj tend to occur. Note
that, for any large (yet finite) M , these p∗ and p◦ are small compared to M .

Remark 2.3. We henceforth assume that the sequence {Ij}
M
j=1, where |Ij | =

nj = o(N) � 1, is such that {ζ̄εj} is slowly varying.
Definitions 2.1 and 2.2 allude to transferring averages to a continuum setting.

Consider ε as small but finite; and replace the index j by the (eventually continuous)
height variable h = hi for fixed i(j) ∈ Ij . The use of the coordinate x = xi is
also appropriate if the step density is positive and O(1). However, the variable h
is a natural analog of the step number, i, since the step height is constant [22].
Accordingly, we introduce a ζ̄ε(h) such that ζ̄ε(hi(j)) = ζ̄εj .

Definition 2.4. (Continuous version of difference quotient.) The difference
quotient of size ν ∈ R \ {0} for a continuous version ζ̄ε(h) of {ζ̄εj}

M
j=1 is

(2.12) δ̃ν ζ̄ε(h) :=
ζ̄ε(h+ ν)− ζ̄ε(h)

ν
.

By direct analogy with Definition 2.2, we propose the following notion.
Definition 2.5. (Continuous version of slow variation.) The continuous version

ζ̄ε(h) is slowly varying if, for any ν = ν(ε) = O(p njε) = o(1) and p = o(M),

(2.13) |νδ̃ν ζ̄ε(h)| = o(ζ̄ε(h)) as ε ↓ 0 .

Equation (2.11) or (2.13) implies |ν(ε)∂hζ̄
ε(h)| � |ζ̄ε(h)|; ν(ε) expresses the height

change across a few mesoscale regions. By assuming that the slow variation persists
as ε ↓ 0 (or, N → ∞), we pass to the full continuum limit, ζ̄ε → ζ̄0 =: ζ0. In the
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following, we use the x coordinate (as an independent variable) in the place of h. By
abusing notation, we write ζ0(x) in place of ζ0(h(x))

Remark 2.6. The notions of this section can be extended to variables of the step
system as well. In other words, the slow variation is assumed to hold for thermody-
namic, kinetic and geometric variables, e.g., the step chemical potential, surface free
energy per unit length, adatom flux, step velocity, and discrete slopes ε/wi.

We now define the concept of a mesoscale region in light of the above discussion.
Definition 2.7. (Mesoscale.) Consider the set {Ij} for a given monotonic step

train, where |Ij | = nj � 1, nj = o(N), 1 ≤ j ≤ M and M,N → ∞. Assume
nj/nk = O(1) for any j and k (j 6= k), and n := maxj{nj}. Any one of the M
regions ∪i∈IjT(i+1)t is called the mesoscale. Accordingly, a mesoscale length is any
length L of the order of d := nε with ε � L = O(d) � 1 = λ.

2.2.2. Induced average. At this point, it is advisable to discuss briefly the full
continuum limit of averages.

Definition 2.8. (Induced average). Consider the given function f : R → R\{0}
and averages {ζ̄εj}

M
j=1. The mesoscale average ξ̄εj of {ξεi } induced by {ζεi } via f is5

f(ζ̄εj ) ξ̄
ε
j := n−1

j

∑

i∈Ij

f(ζεi )ξ
ε
i ; j = 1, . . . ,M .

For our purposes, f can be thought of as Lipschitz continuous; see Appendix A.
It is of interest to point out an implication of Definition 2.8 in the (full continuum)

limit ε ↓ 0. In a weak sense, by pairing in a sum {f(ζεi )} and {ξεi }, we have

(2.14) ε

N−1
∑

i=0

φif(ζ
ε
i ) ξ

ε
i =

M
∑

j=1

(njε)φ(xi(j))f(ζ̄
ε
j )ξ̄

ε
j −−→

ε↓0

∫

U

φ(x)f(ζ0(x))ξ0(x) dh(x) .

The set U is a fixed interval, e.g., [0, 1], and will henceforth be omitted in integration.

2.3. Elements of homogenization. Next, we review basics of homogenization
theory needed for our purposes, setting the technical framework for section 4.

First, we clarify the choice of Eulerian spatial variables. Define the fast variable

(2.15) y := (x− x̌)/ε ,

for some reference point x̌ (to be specified later); thus, make the replacement

∂x ⇒ ∂x + ε−1∂y ,

treating x and y as independent, and henceforth consider x as the slow spatial variable.
In view of diffusion equation (2.2), it is tempting to define fast and slow time vari-

ables as well. However, we wish to restrict attention to macroscopic times, consistent
with the quasi-steady approximation [14, 21].

Definition 2.9. (Quasi-steady regime.) For our purposes, the quasi-steady
regime is characterized by times t such that

(2.16) τ = ε2 t = O(1) .

5We use a bar on top for both the starting and the induced averages. These averages should be
distinguished by the context through the different symbols for their variables (ζ and ξ).
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In section 4, we show that this regime suffices to describe evolution laws consistent
with previous continuum limits.6 Accordingly, we replace

∂t ⇒ ∂t + ε2 ∂τ ,

treating t and τ as independent. In the same vein, consider T = T ε = O(ε−2) so that
τ lies in a fixed interval. Eventually, as ε ↓ 0, we claim that the dependent variables
of interest are stationary (i.e., settle to a steady state) in t.

A comment on the assumptions underlying the limit ε ↓ 0 is in order.
Remark 2.10. We take njε ↓ 0 and nj → ∞ for j = 1, 2 . . .. Consistent with

other continuum treatments, e.g., [21], the following hypotheses are made.
(i) The step density at the mesoscale is fixed, i.e.,

(2.17)
njε

xi◦ − xi∗

= O(1) as njε ↓ 0, nj → ∞ ;

see section 2.2 for definitions of i∗(j) and i◦(j). The left-hand side of (2.17) ap-
proaches the positive surface slope, m(x) := ∂xh.

(ii) The height, h, chemical potential, µi, and flux, J , are O(1) as ε ↓ 0.
(iii) The material parameters obey

k`,iε, Di, ği, ρ∗, ϑ = O(1) for all i (` = u, d) as ε ↓ 0 .

In particular, steps move in the regime of ‘mixed kinetics’ [9], where

(2.18)
Di

k`,iε
= O(1) .

Note that the step-step interaction strength ği is assumed to be independent of ε. This
hypothesis implies that by (2.7) the total step free energy, an extensive thermodynamic
quantity, scales as EN = O(ε−1) = O(N), which is consistent with µi = ∂xi

EN =
O(1) (see section 4.3).

The next element to be discussed is the multiscale expansion. With regard to the
concentration %ε(x, t) of section 2.1, we write7

(2.19) %ε(x, t) = %0(x, y, τ, t) + ε %1(x, y, τ, t) + ε2 %2(x, y, τ, t) + o(ε2) x ∈ U ,

where the superscript l in %l (l = 0, 1, . . .) denotes perturbation order and %l = O(1)
as ε ↓ 0. We treat (2.19) as a global perturbation expansion, valid for all x of interest,
subject to conditions (2.4) (which should also be expanded in ε). Because of these
kinetic conditions, %l in principle depends on the mesoscale numbers nj .

To determine %l, it is necessary to apply dominant balance to (2.2) and enforce
conditions (2.4). By (2.19), the multiscale expansion for the adatom flux J ε reads

J ε = −Di(ε
−1∂y + ∂x)%

ε

= −Di

[

ε−1∂y%
0 + (∂y%

1 + ∂x%
0) + ε(∂y%

2 + ∂x%
1)
]

+ o(ε)

=: ε−1J (−1)(x, y, τ, t) + J 0(x, y, τ, t) + εJ 1(x, y, τ, t) + o(ε) x ∈ U .(2.20)

Expansion (2.20) must be interpreted in the appropriate weak sense [24]. We now
state our main requirement.

6Recall the full-continuum conservation law for adatoms, ∂th+Ω∂xJ 0 = 0 where h and J 0 are
the large-scale height and flux. By Ω = ε2 and ∂xJ 0 = O(1), we have ∂τh = O(1) for τ = ε2t.

7The rigorous study of convergence of (2.19) lies beyond our present purposes.
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Remark 2.11. (Solvability condition.) We impose the condition that the coef-
ficients %l in (2.19) be bounded in x, y and do not grow as nj → ∞ (M, N → ∞).
Likewise, the coefficients J l in expansion (2.20) for the flux should not grow with nj.
Naturally, the large-scale limit of step motion corresponds to the leading-order term

of (2.19). We give the following (obvious) definition for the sake of completeness.

Definition 2.12. (Full continuum limit.) The macroscopic limit of the adatom
concentration emerges from the leading-order term, %0, of expansion (2.19).

It is expected that %0 is independent of the fast variables, y and t (see section 4).

At this point, it is necessary to comment on the step velocity.

Remark 2.13. In view of motion law (2.9) and Definition 2.9, we set dxi/dτ =
O(1) and thereby infer that

(2.21) vi(t) = ε2 (dxi/dτ) = O(ε2) .

This scaling with ε is consistent with the level set motion ∂τh − u0∂xh = 0 for crys-
tal surfaces with the same parameters in all terraces, where u0(x, τ) = O(1) is the
continuum limit of an appropriate average of ε−2vi and m = |∂xh| = O(1).

The above considerations will furnish Fick’s law of diffusion [19] and the mass
conservation statement for composite vicinal surfaces (sections 4.1 and 4.2). These
laws involve the height profile, adatom flux and chemical potential.

Thus far, we have not discussed how the large-scale surface free energy, E , and
the chemical potential, µ, can be expressed in terms of the surface slope. It suffices
to mention that E and µ will be treated with recourse to summation formulas (2.7)
and (2.8), along with Definition 2.8. The details are deferred to section 4.3.

3. Main results. In this section, we summarize the main results, which include:
(i) Fick’s law, which relates the large scale adatom flux, J 0(x), and step chemical
potential µ(x), on the basis of the adatom attachment-detachment conditions (2.4);
(ii) a conservation law for the macroscopic height profile, h(x), from the step velocity
law (2.9); and (iii) a variational formula for the chemical potential, µ(x).

3.1. Adatom flux (section 4.1). The macroscopic adatom flux is

(3.1) J 0(x, τ) = −De(x;m(x, τ)) ∂x%
eq,0(x, τ) ,

where %eq,0 = %0 is the continuum-scale version of ρeqi and De is the effective parameter

(3.2) De(x;m(x)) =
D0(x)

1 + q0(x)m(x)
.

By the notation of section 2.2, D0 represents the average

(3.3) D0(x) = lim
njε↓0

nj→∞

Dj , Dj = D
ε

j =

[(

1

yi◦ − yi∗

∑

i∈Ij

yi+1 − yi
Di+1(x)

)]−1

.

Similarly, q0 incorporates an average for the attachment-detachment rates:

(3.4) q0(x) =
2D0(x)

k0(x) ε
, k0(x) = lim

njε→0

nj→∞

k̄j , k̄j(x) = 2

{[

n−1
j

∑

i∈Ij

(

1

ku,i
+

1

kd,i

)]}−1

,
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where the factor of 2 is included so that k0 = k if ku,i ≡ kd,i ≡ k, consistent with [21].
In (3.2), the variable m amounts to the (average) step density (cf. Remark 2.10)

(3.5) m(x, τ) = lim
njε↓0

nj→∞

mj(τ), mj =

(

n−1
j

∑

i∈Ij

mi(τ)
−1

)−1

=

(

njε

xi◦ − xi∗

)

,

where mi(τ) = ε/wi(τ) and wi is the ith terrace width. By section 2.2, we use x = xi

for some i = i(j) ∈ Ij , where x becomes continuous and thus the choice of i is imma-
terial as njε ↓ 0 (with nj → ∞). Thus, all sequences in j are viewed as functions of x.

Our derivation of (3.1) is intended to clarify by dominant balance why the con-
centration entering Fick’s law needs to be identified with %eq,0. This point was simply
stated (but not shown) in [19]. Equations (3.1)–(3.5) are supplemented with

(3.6) %eq,0(x) = ρ∗[1 + µ(x)/ϑ] .

By (3.3), Dj(x) is the harmonic average of the terrace diffusivities, Di, with
weights proportional to the terrace widths, wi. At the risk of redundancy, we re-
peat that this result is strongly reminiscent of an electric-circuit analog introduced by
Nozières [28] (see also, e.g., [14, 31], for related applications). In this electric-circuit
picture, the adatom concentration gradient is viewed as a distributed voltage. Hence,
the diffusivities play the role of in-series electric conductances per unit length of the
surface, and the effective diffusivity in each Ij is the appropriate overall conductance.
In this view, the effective circuit parameters are evaluated at the level of a few terraces,
without recourse to the generic behavior (e.g., non-growth) of large-scale solutions.
This circuit view is distinctly different from our homogenization approach. Further-
more, electric-circuit considerations appear to be static from the outset. In contrast,
homogenization incorporates the appropriate handling of time scales.

3.2. Adatom conservation (section 4.2). We will establish the relation

(3.7) m(x, τ)u0(x, τ) + ∂xJ
0(x, τ) = 0 ,

where u0(x, τ) denotes the continuum-scale step velocity (see Remark 2.13),

(3.8) u0(x, τ) := lim
nj→∞

ūj, ūj = n−1
j

∑

i∈Ij

ui , ui := ε−2vεi (t) = dxε
i/dτ ,

and m(x, τ) is given by (3.5). We will show that

(3.9) ∂τh(x, τ) = m(x, τ)u0(x, τ) (τ = ε2 t) ,

which describes the motion of the effective level set for the graph h(x, τ). Thus, (3.7)
becomes the familiar conservation law ∂th+Ω∂xJ

0 = 0 (Ω = ε2 is the atomic area).

3.3. Chemical potential (section 4.3). The fully continuum version of the
step chemical potential is provided by the (L2-) variational derivative

(3.10) µ =

(

δE [h]

δh

)

L2

,

which is implied (weakly) by the statement

(3.11) Ė(τ) =

∫

µ(x, τ) ∂τh dx .
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The functional E(τ) = E [h(·, τ)] is the large-scale surface free energy

E [h(·, τ)] = lim
ε↓0

(εEN )

=
1

3

∫

U

g0(x, τ)m(x, τ)3 dx .(3.12)

The large-scale interaction parameter g0(x, τ) is defined via (cf. Definition 2.8)

(3.13) g0(x, τ) = lim
njε ↓0

nj→∞

ḡj(τ) , ḡjm
2
j := n−1

j

∑

i∈Ij

(3ği/2)m
2
i (ği = O(1)) ,

where mj = (n−1
j

∑

i∈Ij
m−1

i )−1.

The second line of (3.12) in terms of g0 is a choice in accord with the elastic-
dipole origin of the step interaction energy. Alternatively, it suffices to define E [h]
as limε→0(εEN ) without resorting to the effective parameter g0. Note that g0 is
given as the average of {3ği/2}i∈Ij induced by mi = ε/wi via f(m) = m2. Hence,
g0 in principle depends on the surface slope, m(x, τ). In the special case with a
non-composite stepped surface, by ği = ğ = const. we have g0(x) = 3ğ/2 provided
the step densities squared, m2

i , vary sufficiently slowly within each Ij . Indeed, by
m2

i�
= m(x(h))2 for fixed i� ∈ Ij , expand m2

i�+p = m(x(h))2+O(pε) for i = i�+p ∈ Ij
(p = 0,±1, . . .); thus, n−1

j

∑

i∈Ij
m2

i → m(x(h))2 as ε ↓ 0.

4. Derivation of evolution laws. We proceed to derive in detail the results
stated in section 3. We assert that boundary conditions (2.4), which suffice for the
usual Fick’s law, are decoupled from the step velocity law (2.9) to the desired order
of perturbation (at the chosen time scale). Further, we construct the continuum-scale
chemical potential on the basis of (2.8) in terms of the step train free energy.

Consider the definitions of section 2.3. By virtue of variables (2.15) and (2.16)
along with expansion (2.19), diffusion equation (2.2) reads

(∂y + ε∂x)Di(x)(∂y + ε∂x)(%
0 + ε%1 + ε2%2 + . . .)(4.1)

= (ε2∂t + ε4∂τ )(%
0 + ε%1 + ε2%2 + . . .) i ∈ Ij ,(4.2)

where %l is the lth-order term for the adatom concentration.
Taking τ = O(1), we assume that each %l is stationary in t and subsequently set

∂t%
l ≡ 0. By dominant balance, we find the following cascade of equations:

O(ε0) : ∂2
y%

0 = 0 ,(4.3a)

O(ε1) : ∂2
y%

1 + ∂yx%
0 +Di(x)

−1∂x
[

Di(x)∂y%
0
]

= 0 ,(4.3b)

O(ε2) : ∂2
y%

2 + ∂yx%
1 +Di(x)

−1∂x
[

Di(x)
(

∂y%
1 + ∂x%

0
)]

= 0 . . . .(4.3c)

Equations (4.3) suffice for our purpose of identifying the macroscopic limit.
In subsections 4.1 and 4.2, our computations involve steps and terraces that cor-

respond to some fixed yet arbitrary Ij (j = 1, . . . , M). Set y := (x − x̌)/ε where
x̌ = xi∗ is the position of the first step in Ij ; thus, yi∗ = (xi∗ − x̌)/ε = 0.

The dependence of the coefficient %l(x, y) on the fast variable, y, in principle
stems from kinetic conditions (2.4). These conditions are imposed at the microscale
boundaries yi = (xi − x̌)/ε. By subtracting conditions (2.4), we eliminate ρeqi and
obtain

(4.4) %+ − %− = −ε

(

J−

kd,iε
+

J +

ku,iε

)

+ εvi

(

%−

kd,iε
+

%+

ku,iε

)

y = yi .
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Equation (4.4) expresses a jump of the adatom concentration across each step edge,
including the convective term, %vi.

4.1. Fick’s law. In this subsection, we derive (3.1)–(3.5). For notational econ-
omy, we suppress the time dependence in most of our computations.

Since xi(t) = xε
i(t) are moving boundaries, or Lagrangian coordinates, we expand

(4.5) xi = x0
i + εx1

i + ε2 x2
i + . . . .

By Remark 2.13 and expansion (2.20) for the flux, the step velocity law (2.9) reads8

(4.6) vεi (t) = ε2[ui(τ) + o(1)] =
(

J (−1),− − J (−1),+
)

+ o(1) y = yi ,

where ui(τ) = O(1) and J (−1),± is the restriction of the leading-order flux term
J (−1)(x, y) at y = y0i from left (−) or right (+). Thus, to the lowest order in pertur-
bation, the adatom flux is continuous across step edges, J (−1),+ = J (−1),−. In fact,
this property can be extended to the next higher order for J as well, as shown below.

4.1.1. Lowest (zeroth) order. First, consider (4.3a). The solution reads

(4.7) %0(x, y) = Ai(x)y +Bi(x) y0i−1 < y < y0i (i ∈ Ij) ,

where Ai and Bi are viewed as O(1) integration constants, to be found via boundary
conditions at step edges. By virtue of (4.6), the leading-order mass flux obeys

(4.8) εJ (x) → J (−1)(x, y) = −Di(x)∂y%
0(x, y) = −Di(x)Ai(x) y0i−1 < y < y0i .

Thus, the continuity of flux to this order yields

(4.9) DiAi = Di−1Ai−1 = . . . = Di∗Ai∗ ⇒ Ai(x) =
Di∗(x)

Di(x)
Ai∗(x) .

The dominant balance of conditions (4.4) entails

%0,+ − %0,− = −

(

1

ku,iε
+

1

kd,iε

)

J (−1) at y = y0i ,

where %0,± denotes the restriction of %0 at y0i from left (−) or right (+). By (4.7),

(Ai+1 −Ai)y
0
i +Bi+1 − Bi =

(

Di

ku,iε
+

Di

kd,iε

)

Ai .

To obtain Bi, we add up the last equations backwards in i in terms of a telescopic
sum. The result is

(4.10) Bi = Bi∗ +Ai∗Di∗

[

−
y0i
Di

+

i−1
∑

p=i∗

(

yp+1 − yp
Dp+1

+
∑

`=u,d

2

k`,pε

)]

(i ∈ Ij , i > i∗) .

8In (4.6) we leave the step number dependence (via i) in the leading-order term for vε
i
. Al-

ternatively, we could have set vε
i
(t) = ε2[u0(x, τ) + o(1)], anticipating that the step velocity has a

macroscopic limit. By adhering to (4.6), we will show that such a u0 is the mesoscale arithmetic
mean of the discrete, O(1) step velocities ui in the continuum limit.
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By (4.7), (4.9) and (4.10), we find

%0(x, y) =
Di∗(x)Ai∗ (x)

Di(x)
(y − y0i ) +Bi∗(x)

+Di∗(x)Ai∗(x)

i−1
∑

p=i∗

(

y0p+1 − y0p
Dp+1(x)

+
∑

`=u,d

2

k`,pε

)

.(4.11)

Now recall Remark 2.11, which implies a solvability condition on %0. By (2.3)
(which exacts the bounds for Di(x)), we assert that

(4.12) 0 <
y0i − y0i∗
DM

≤
i−1
∑

p=i∗

y0p+1 − y0p
Dp+1(x)

≤
y0i − y0i∗
Dm

,

where y0i − y0i∗ = O(nj) for large enough i in Ij . Hence, the sums in (4.11) diverge as
nj → ∞ with i = i◦, unless

Ai∗(x) ≡ 0 .

We showed the following (anticipated) property.
Proposition 4.1. The zeroth-order adatom concentration is

(4.13) %0(x, y) = Bi∗(x) =: B(x) ,

i.e., independent of the fast variable. Thus, the corresponding flux is J (−1)(x, y) ≡ 0.

4.1.2. First order. In order to obtain a relation between J 0 and B(x), we
proceed to computing the next-order adatom coefficient, ρ1(x, y). By (4.3b) and
Proposition 4.1, we readily obtain

(4.14) %1(x, y) = Ci(x)y + Fi(x) y0i−1 + εy1i−1 < y < y0i + ε y1i ,

suppressing the time variable, s. Thus, the adatom concentration up to O(ε) is
B(x) + ε[Ci(x)y + Fi(x)]. The corresponding terrace adatom flux reads

(4.15) J (x, y) ∼ J 0(x, y) = −Di(x)[Ci(x)+∂xB(x)] (y0i−1+εy1i−1 < y < y0i +ε y1i ) .

By dominant balance applied to velocity law (2.9) under expansion (4.6), we readily
verify the following statement.

Remark 4.2. The adatom flux J 0(x, ·) is continuous across step edges.
By enforcing the continuity of J 0(x, y) at each boundary y = yi we get

Di(x)[Ci(x) + ∂xB(x)] = Di+1(x)[Ci+1(x) + ∂xB(x)]

⇒ Ci(x) =
Di∗(x)

Di(x)
[Ci∗(x) + ∂xB]− ∂xB (i, i+ 1 ∈ Ij) .(4.16)

We turn attention to boundary conditions (4.4). These are recast to the form

[Ci+1(x) − Ci(x)](y
0
i + εy1i ) + Fi+1(x) − Fi(x) +O(ε)

=

(

Di

kd,iε
+

Di

ku,iε

)

[Ci(x) + ∂xB(x)] +O(ε) (i, i+ 1 ∈ Ij) .(4.17)
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Thus, by Remark 2.10, the boundary correction terms εy1i do not contribute to this
order. By using (4.16) and adding up (4.17) via a telescopic sum, we obtain

(4.18) Fi(x) = Fi∗(x)+Di∗(x)[Ci∗ (x)+∂xB]

[

i−1
∑

p=i∗

(

∑

`=u,d

1

k`,pε
+
yp+1 − yp
Dp+1

)

−
yi
Di

]

.

The substitution of (4.16) and (4.18) into (4.14) yields

%1(x, y) =

(

Di∗(x)

Di(x)
[Ci∗(x) + ∂xB(x)] − ∂xB

)

(y − y0i ) + Fi∗(x) + y0i

{

−∂xB

+Di∗(x)[Ci∗ (x) + ∂xB](y0i )
−1

i−1
∑

p=i∗

(

y0p+1 − y0p
Dp+1(x)

+
∑

`=u,d

2

k`,pε

)}

,(4.19)

where y0i−1 + εy1i−1 < y < y0i + εy1i and i > i∗. By requiring that %1 be bounded as
i increases, we impose the necessary condition that the coefficient of y0i (enclosed by
the curly brackets) vanish when i− i∗ = O(nj) → ∞ in (4.19). By i = i◦(j) we obtain
the solvability condition

(4.20) Di∗(x)[Ci∗ (x) + ∂xB] lim
nj→∞

njε↓0

[

1

y0i◦

∑

p∈Ij

(

∑

`=u,d

2

k`,pε
+

y0p+1 − y0p
Dp+1

)]

= ∂xB .

By definitions (3.3) and (3.4), this relation is recast to the form

Di∗(x)[Ci∗ (x) + ∂xB]

[

1 + q0(x) lim
nj→∞

njε↓0

njε

xi◦ − xi∗

]

= D0(x)∂xB ,

where the requisite limit is the surface slope (see Remark 2.10); thus,

(4.21) Di∗(x)[Ci∗ (x) + ∂xB(x)] =
D0(x)

1 + q0(x)m(x)
∂xB .

Equation (4.21) entails the desired Fick’s law. By (4.15) and (4.16), the flux is

J 0(x, y) = −Di∗(x)[Ci∗ (x) + ∂xB(x)] ,

which is independent of the fast spatial variable, y; cf. [19].
Proposition 4.3. The macroscopic limit of the adatom flux reads

(4.22) J 0(x) = −
D0(x)

1 + q0(x)m(x)
∂xB ,

where D0 and q0 are defined in (3.3) and (3.4); B(x) is discussed in section 4.1.3.

4.1.3. Equilibrium concentration. Next, we show that the B(x) in (4.22)
can be identified with the continuum-scale version, %eq,0, of ρeqi , which is affine in the
large-scale chemical potential, µ. For this purpose, we revisit kinetic conditions (2.4).
By adding up these equations, we obtain the relation

(4.23) ε

(

J −

kd,iε
−

J +

ku,iε

)

+ εvi

(

%+

ku,iε
−

%−

kd,iε

)

= (%+ + %−)
∣

∣

yi
− 2ρeqi .
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Let us first comment on the left-hand side of (4.23). By the hypothesis k`,iε = O(1)
(Remark 2.10), the first term is O(ε). In view of Remark 2.13, the second term is
O(ε3). Thus, by formally writing

(4.24) ρeqi = %eq,0(x, y) + o(1) ,

we apply the usual dominant-balance argument to order O(ε0) to infer

(4.25) 2B(x) = %0,+ + %0,− = 2%eq,0 ⇒ %eq,0(x) = B(x) .

Relation (4.25) is consistent with defining the induced average %̄ eq
j ,

(4.26) φ̄j %̄
eq
j = n−1

j

∑

i∈Ij

ρeqi φi ,

and subsequently taking %̄ eq
j → %eq,0(x) and φ̄j → φ(x) as ε ↓ 0. Indeed, multiply

(4.23) by φi, sum over i ∈ Ij , and then expand in ε. Accordingly, (4.25) is interpreted
in the weak sense, where {φi} is an appropriate test sequence. Equation (4.26) is used
for φi = ui in conjunction with the continuum-scale chemical potential (section 4.3).

Proposition 4.3 and relation (4.25) yield formulas (3.1)–(3.5). By µi = µ(x)+o(1)
and (2.5) we express %eq,0 in terms of µ, winding up with (3.6). Alternatively, define
µ via φ̄j µ̄j := n−1

j

∑

i∈Ij
φiµi, invoke the linear relation between µi and ρeqi , and take

µ̄j → µ.

4.2. Mass conservation law and level set motion. In this subsection, we
derive (3.7) and (3.8) with recourse to step velocity law (2.9). This law involves a
jump of the flux, J (x, ·), at each step edge (y = yi). Recall that the flux is continuous
to the first two orders in ε. In fact, the jump is revealed to the next higher order.
We follow two alternate routes. One method is to apply a solvability condition in the
spirit of section 4.1. Another route is a weak formulation [21].

Further, we employ a weak formulation in order to derive the level set motion law
(3.9), which introduces the time derivative ∂τh. This law emerges in connection to
the continuum-scale chemical potential; see (4.42).

4.2.1. Perturbation expansion. We continue the homogenization argument
of section 4.1. We resort to (4.3c), solve for %2(x, y) and the flux coefficient J 1, and
thereby determine the discontinuity of J at each step edge to orderO(ε). A solvability
condition for J 1 then yields the desired formula.

Equation (4.3c) along with Proposition 4.3 and Definition (3.2) yield

∂y[Di(x)∂y%
2(x, y)] = −∂x{Di∗(x)[Ci∗(x) + ∂xB]} −Di(x)∂xCi

⇒ %2(x, y) = yGi(x) +Hi(x)−
{

∂xCi +Di(x)
−1∂x[De(x)∂xB]

}y2

2
.(4.27)

The adatom concentration on the ith terrace up to O(ε2) reads

%(x, y) = %0(x, y) + ε%1(x, y) + ε2%2(x, y) + o(ε2)

= B(x) + ε[Ci(x)y + Fi(x)] + ε2{yGi(x) +Hi(x)

− [∂xCi +Di(x)
−1∂x(De(x)∂xB)]y2/2}+ o(ε2) .(4.28)

The respective surface flux on the ith terrace is

J (x, y) = −Di(x)[(∂y%
1 + ∂x%

0) + ε(∂y%
2 + ∂x%

1)] + o(ε)

= −Di(x)[Ci(x) + ∂xB]− ε{Di(x)[Gi(x) + ∂xFi]− y∂x(De(x)∂xB)} + o(ε) .(4.29)
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The O(ε0) term is of course continuous at each yi. At y = yi this flux has the jump

ε(J 1,+ − J 1,−) = −ε[Di+1(x)(Gi+1(x) + ∂xFi+1)−Di(x)(Gi(x) + ∂xFi)] .

The next task is to determine the coefficient Gi(x). By virtue of (4.6), step
velocity law (2.9) with Ω = ε2 is recast to the form

ui + o(1) = −[J 1,+ − J 1,− + o(1)] + ε2ui [%
1,+ − %1,− + o(1)] y = yi .

Note that the convective term in the right-hand side of this equation does not con-
tribute to the lowest order. Thus, we obtain the distinguished limit

(4.30) ui = −(J 1,+ − J 1,−)
∣

∣

y0

i

⇒ ui = Di+1(Gi+1 + ∂xFi+1)−Di(Gi + ∂xFi) .

This result amounts to adatom mass conservation: the discontinuity in the flux is
balanced by the step velocity. The convective terms do not contribute because of the
slow time scale. Equation (4.30) leads to a telescopic sum for Gi. Thus, we get

(4.31) Gi(x) =
Di∗(x)

Di(x)
[Gi∗(x) + ∂xFi∗(x)] − ∂xFi∗ +Di(x)

−1
i−1
∑

p=i∗

up .

By (4.29) and (4.31), the coefficient of the O(ε) term for the flux reads

J 1(x, y) = −Di∗(x)[Gi∗(x) + ∂xFi∗(x)] + (y − y0i )∂x
(

De(x)∂xB
)

+ y0i

[

∂x
(

De∂xB
)

− (y0i )
−1

i−1
∑

p=i∗

up

]

.(4.32)

Now let i ∈ Ij approach i◦(j) = i∗(j) + nj − 1. By requiring that J 1 does not grow
as nj → ∞, we assert that

∂x
(

De(x)∂xB
)

= lim
nj→∞

njε→0

[(

nj

y0i◦(j)

)(

n−1
j

i◦
∑

p=i∗

up

)]

⇒ −∂xJ
0(x) = m(x) ū(x) ,

with recourse to (2.17) and (3.8).
Proposition 4.4. The macroscopic limit, J 0, of the surface flux obeys (3.7),

where the continuum-scale step velocity is the (mesoscale) arithmetic mean (3.8).

4.2.2. Weak formulation for mass conservation. The step velocity law (2.9)
is written in the form

(4.33) ε2ui = −ε [J +O(ε2)]i ; [Q]i := Q(y+i )−Q(y−i ) .

Following [21], we multiply both sides of (4.33) by φi and sum over i to obtain

ε
N−1
∑

i=0

φiui = −
N−1
∑

i=0

[J ]iφi +O(ε)

⇒
∑

j

(njε)φi∗(j)

(

n−1
j

∑

i∈Ij

ui

)

= −
∑

j

φi∗(j)

∑

i∈Ij

[J ]i + o(1)

⇒

∫

φ(x) ū(x)m(x) dx = −

∫

φ(x) dJ 0(x) as ε ↓ 0 , njε ↓ 0 ∀φ ,(4.34)

which implies (3.7) in the weak sense. Note that we employ a discretized version
φi = O(1) of smooth φ(x) such that φi◦(j) − φi∗(j) = o(φi∗) for all j; i.e., φi varies
slowly (in i) within each Ij . This detail becomes immaterial in the continuum limit.
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4.2.3. Level set motion law. Next, we derive geometric law (3.9) with recourse
to a weak formulation. For this purpose, define

(4.35) IN := ε

∫ T0

0

∑

i

uiφi dτ ; ui = dxi/dτ ,

where the sequence {φi} consists of smooth, compactly supported functions φi :
(0, T0] → R. We will show that, in the continuum limit,

(4.36)

∫ T0

0

∫

φhτ dxdτ =

∫ T0

0

∫

φu0 m dxdτ ,

for any test function φ : U × (0, T0] → R. Note that u0 denotes the macroscopic limit
of ū = n−1

j

∑

i∈Ij
ui, and hτ := ∂τh.

First, consider the case with homogeneous steps and terraces, i.e., when the ma-
terial parameters remain unchanged across terraces. By (4.35), we have

(4.37) IN →

∫ T0

0

∫

u0 φdh =

∫ T0

0

∫

u0mφdxdτ as N → ∞, Nε = O(1) ,

where u0 is the continuum limit of {ui}.
On the other hand, by integration by parts, we assert that

(4.38) IN = −ε

∫ T0

0

∑

i

xi
dφi

dτ
dτ →

∫ T0

0

∫

x (φτ |h)hx dxdτ ,

where hx = −|hx| and φτ |h denotes the partial derivative of φ with respect to τ with
fixed h. By changing variables (from Lagrangian to Eulerian coordinates), we write

φτ |h = φτ |x − φx
hτ

hx
.

Thus, after an integration by parts in τ and another one in x, (4.38) yields

IN → −

∫ T0

0

∫

xhxτφdxdτ −

∫ T0

0

∫

xφxhτ dxdτ

=

∫ T0

0

∫

[(xφ)x − xφx]hτ dxdτ .(4.39)

The comparison of (4.37) and (4.39) implies (4.36).
Alternatively, for the above case of a non-composite stepped surface, write h(xi(t), t) =

const. for each terrace (level set of h). The differentiation of this equation with re-
spect to t yields the desired law in the continuum limit [21]. However, this argument
becomes questionable for a composite surface.

In the case of a composite stepped surface, we need to slightly modify the manip-
ulation of (discrete) sum IN in (4.37) and (4.38). In particular, for appropriate test
sequences, we have

(4.40) IN =

∫ T0

0

M
∑

j=1

(njε)φj

(

n−1
j

∑

i∈Ij

ui

)

dτ →

∫ T0

0

∫

φu0 dhdτ .
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On the other hand, IN equals

IN =

∫ T0

0

M
∑

j=1

(njε)φj

(

n−1
j

∑

i∈Ij

dxi

dτ

)

dτ = −

∫ T0

0

M
∑

j=1

(njε)
dφj

dτ

(

n−1
j

∑

i∈Ij

xi

)

dτ

→ −

∫ T0

0

∫

(φτ |h)xdhdt .(4.41)

The remainder of the derivation leading to (4.36) follows directly from (4.39).

4.3. Step chemical potential and free energy. Next, we focus on the deriva-
tion of (3.10)–(3.13). To obtain the continuum-scale chemical potential, µ, in terms
of E = limε→0(εEN ), we use (2.8). By τ = ε2t and ui = ε−2vi + o(1), we have

ε
dEN

dτ
= ε

N−1
∑

i=0

uiµi =

M
∑

j=1

(njε)

(

n−1
j

∑

i∈Ij

uiµi

)

⇒ Ė(τ) =

∫

u0(x, τ)µ(x, τ) dh as nj → ∞, njε ↓ 0 .(4.42)

Formula (3.11) follows by
∫

· dh =
∫

·m dx and u0m = ∂τh.
Recall that the microscale free energy EN is described by (2.7). To make a con-

nection to the known continuum-scale surface free energy of a non-composite stepped
surface [10,14], we have recourse to an induced average of {ği}. By Definition 2.8, we
obtain the formal expression

εEN (t) =
ε

2

M
∑

j=1

∑

i∈Ij

ğim
2
i =

1

3

M
∑

j=1

(njε)ḡj m̄
2
j

→
1

3

∫

g0(x, τ)m(x, τ)2 dh =: E(τ) as ε ↓ 0 ,(4.43)

assuming that the average ḡj varies slowly across mesoscale regions.

5. Extension: Radial setting. In this section we discuss the radial case, indi-
cating that the homogenization procedure follows directly from the (1+1)-dimensional
case described above. Our main assumption is the existence of a mesoscale (in the
spirit of section 2.2) linking the microstructure of terraces to the macroscale.

The surface consists of concentric, circular steps of radii ri(t) with ri+1 > ri,
i = 0, . . . , N − 1. The ith terrace is Tit = {r

∣

∣ ri−1(t) < r < ri(t)}, characterized by
diffusivity Di(r), while the kinetic rates at step i are kd,i and ku,i. Suppose that the
polar coordinate r does not lie close to the top step (at r0). The adatom diffusion
equation (in polar coordinates) now reads

(5.1)
1

r

∂

∂r

[

rDi(r)
∂%ε

∂r

]

=
∂%ε

∂t
r ∈ Tit .

By ς = (r − ri∗)/ε and τ = ε2t, the multiscale expansion for %ε is

(5.2) %ε(r, t) = %0(r, ς, τ, t) + ε%1(r, ς, τ, t) + ε2%2(r, ς, τ, t) + . . . ; %l = O(1)

as ε ↓ 0. The corresponding expansion for the mass flux stems from J ε = −Di(r)(∂r+
ε−1∂ς)%

ε, r ∈ Tit. By ∂t ⇒ ∂t+ε2∂τ and τ = O(1), we hypothesize that the dependent
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variables are stationary in the fast time scale, t, and thus set ∂t = 0. In the remainder
of this section, we suppress the τ -dependence.

The perturbation scheme can be pursued order by order in ε along the lines of
section 4.1. To zeroth order, (5.1) yields r−1∂ς [rDi(r)∂ς%

0] = 0 in ς0i−1 < ς < ς0i , by
which %0(r, ς) = Ai(r)ς +Bi(r). Note that the form of the zeroth-order concentration
is preserved in passing from 1+1 dimensions to the radial geometry. The integration
constants Ai and Bi are determined by the atom attachment-detachment conditions
at ς = ς0i−1, ς

0
i : the mass flux is continuous (in view of the step velocity law) but

the concentration has a jump proportional to J (−1) at each step edge. By requiring
that %0 does not grow in the limit nj → ∞, we find %0(r, ς) = B(r); cf. (4.13). To
the next higher order in ε, we have r−1∂ς [rDi(r)∂ς%

1] = 0 which entails %1(r, ς) =
Ci(r)ς + Fi(r), as in the (1+1)-dimensional case (section 4.1.2). The enforcement of
kinetic conditions at the bounding steps (ς = ς0i−1 + ες1i−1, ς

0
i + ες1i ) yields Ci and Fi.

The solvability (non-growth) condition on %1 entails a relation between ∂rB, Di∗(r)
and Ci∗(r) analogous to (4.20). Hence, the macroscopic Fick law reads

(5.3) J 0(r, ς) = −
D0(r)

1 + q0(r)m(r)
∂rB(r) ,

where m(r) is the continuum-scale surface slope, D0(r) and q0(r) are given by (3.3)
and (3.4) with y replaced by ς ; and B(r) is identified with the continuum limit of
%eqi , i.e., the variable %eq(r) ∼ ρ∗[1+µ(r)/ϑ] where µ is the continuum-scale chemical
potential.

The remaining continuum laws can be determined along the lines of sections 4.2
and 4.3. Accordingly, the mass conservation law for adatoms reads m(r)u0(r) +
∂rJ

0(r) = 0, which is found by detailed balance as in the (1+1)-dimensional case
(section 4.2). The (geometric) level set motion law again reads mu0 = ∂τh where
h is the large-scale height, m = |∂rh|. The continuum-scale chemical potential is
µ = δE [h]/δh; E is the continuum limit of the mean energy εEN where [13, 21]

(5.4) EN [~r] =

N−1
∑

i=0

[

ğ1,i + ğ3,i
2ri+1

ri + ri+1

(

ε

ri+1 − ri

)2
]

corresponds to the total step free energy. In (5.4), ~r = (r0, . . . , rN−1), and {ğ1,i} and
{ğ3,i} are O(1) parameters expressing the step line tension and elastic-dipole (and
entropic) step-step interaction, respectively.

6. Conclusion. We examined the consistency of macroscopic laws for crystal
surface relaxation with the discrete, BCF-type step flow when terraces and steps are
characterized by sequences of distinct material parameters. The main assumption is
the existence of an intermediate scale, the mesoscale, which helps express the slow
spatial variation of microscale averages and the property that the crystal surface
appears homogeneous at the macroscale.

Our methodology relies on classical homogenization, by which the adatom con-
centration and mass flux are globally expressed in terms of appropriate multiscale
expansions. Two features of these expansions are: (i) the inclusion of step boundaries
through enforcement of boundary conditions at the fast spatial variable, in the spirit
of [12]; and (ii) the use of a macroscopic time scale consistent with the quasi-steady
approach, under the hypothesis that the variables are stationary in the fast time scale.

The form of macroscopic laws is the same as in the case of a non-composite
stepped surface [29, 34]. These laws comprise Fick’s law of surface diffusion (with
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an appropriate mobility), the mass conservation statement for surface height, and a
variational formula for the chemical potential. The homogenization approach shows
how the large-scale surface mobility turns out to be a function of the slope, with
the effective diffusivity and kinetic rate given as appropriate harmonic averages. The
precise dependence of the mobility on the slope, emerging from a solvability condition
for the adatom concentration, is viewed as a result conceptually distinct from the
electric-circuit analog of a stepped surface [28].

Regarding the large-scale chemical potential, µ, we assumed that the discrete step
free energy has a well-defined continuum limit; and expressed this limit in terms of
the induced average of microscale parameters for step-step interactions. The only
justification for the choice of this average is the need to provide a continuum formula
consistent with the known formula in the case of a non-composite stepped surface.

Our formulation is restricted to one spatial coordinate. In 2+1 dimensions, the
adatom concentration can be expressed conveniently in a local coordinate system
with axes normal and parallel to step edges [21]. It can be conjectured that the
one-dimensional result found for Fick’s law can be generalized to include the (2+1)-
dimensional-flux component normal to step edges. The tangential flux component
would have to be treated differently. We expect that the form of macroscopic laws
in 2+1 dimensions would not be different from the one derived in [21] for a non-
composite stepped surface. The details of the averaging, however, would require a
more elaborate application of homogenization. This problem is left for future work.

Acknowledgments. The author has benefited from discussions with Professors
Robert V. Kohn, Athanasios E. Tzavaras and John D. Weeks.

Appendix A. On slowly varying averages. In this appendix, we discuss the
notion of slow variation of section 2.2. First, we formulate an example of a condition on
{ζεi } (material parameters or variables) such that respective averages, ζ̄εj , are slowly
varying (see Definition 2.2). Further, we study implications for a class of induced
averages ξ̄εj (Definition 2.8). The dependence on the small scale, ε, is suppressed.

Without loss of generality, we take nj = n = o(N) � 1 for j = 1, . . . ,M ,
i.e., equal number of steps in each Ij . (Recall: N = Mn, M,N → ∞). Prescribe
a sequence {ζi}

N−1
i=0 such that its subsequences within numerous adjacent Ij ’s are

close in the l1-sense. Specifically, for any 0 < σ � 1 there exist positive integers
j∗(M) = o(M) and j◦(M) with M − j◦ = o(M) such that, for each j∗ ≤ j ≤ j◦,

(A.1)
∑

i∈Ij

|ζi+k − ζi| < σ
∑

i∈Ij

|ζi| for all |k| < k◦(σ) if M > M◦(σ) ,

where k◦ = p◦n = o(N) and p◦ = o(M); in particular, σ ↓ 0 as M◦, np◦ → ∞. We will
refer to such a sequence {ζi} as ‘admissible’. This construction (trivially) includes
bi-phasic surface reconstructions of Si(001), where {ζi} may contain, e.g., alternating
diffusivities [38]. We henceforth restrict attention to admissible {ζi}.

In light of the above prescription, we state and prove two propositions regarding
slow variation of averages. The function f invoked below is ε-independent.

Proposition A.1. Suppose f : R → R is Lipschitz continuous with f(ζ) > 0 for
ζ 6= 0; and {ζi}

N−1
i=0 is bounded and admissible as N → ∞. In particular, assume that

0 < α ≤ |ζi| ≤ β for each i. For j = 1, . . . , M , define

(A.2) ζ̄j := n−1
∑

i∈Ij

f(ζi) .
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Then, ζ̄j are slowly varying.
Proof. The proof follows directly from Definition 2.2. First, we note that ζ̄j have

a fixed, positive greatest lower bound. Let ᾱ = minj{ζ̄j}. Accordingly, we obtain an
estimate for the quotient δpζ̄j :

|δpζ̄j | ≤ (pn)−1
∑

i∈Ij

|f(ζi+k(p))− f(ζi)| ≤ Lip[f ] (pn)−1
∑

i∈Ij

|ζi+k(p) − ζi|

≤ Cσ

(

n−1
∑

i∈Ij

|ζi|

)

≤ Cσ , k = np ,(A.3)

by virtue of the boundedness of |ζi|, provided j∗ ≤ j ≤ j◦ and −p◦ < p < p◦, by the
prescription of {ζi}. Thus, for sufficiently large M , the σ can be made small enough
so that |pδpζ̄j | � ᾱ for appropriate j and p.

Proposition A.2. Suppose f : R → R is Lipschitz continuous with f(ζ) > 0 for
ζ 6= 0; and {ζi}

N−1
i=0 and {ξi}

N−1
i=0 are bounded and admissible. In particular, assume

that 0 < α ≤ |ζi| ≤ β for each i. Then, the averages ξ̄j of {ξi} induced by {ζi} via f
are slowly varying.

Proof. Consider Definition 2.8 for induced averages. Without further ado, we
estimate δp[f(ζ̄j)ξ̄j ] for p 6= 0:

|δp[f(ζ̄j)ξ̄j ]| ≤ (np)−1
∑

i∈Ij

(

|f(ζi+np)||ξi+np − ξi|+ |f(ζi+np)− f(ζi)||ξi|
)

≤ Cn−1
∑

i∈Ij

(

|ξi+np − ξi|+ |ζi+np − ζi|
)

≤ Cσ n−1
∑

i∈Ij

(

|ξi|+ |ζi|
)

≤ Cσ ,(A.4)

where we used the Lipschitz continuity of f ; σ = max(σξ, σζ) and σ` is the constant
entering the admissibility definition of {`} for ` = ξ, ζ. By Proposition A.1, f(ζ̄j) is
also slowly varying.
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