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Abstract

In this paper, we study the macroscopic limit of a new model of collec-
tive displacement. The model, called PTWA, is a combination of the Vicsek
alignment model [41] and the Persistent Turning Walker (PTW) model of
motion by curvature control [21, 24]. The PTW model was designed to fit
measured trajectories of individual fish [24]. The PTWA model (Persistent
Turning Walker with Alignment) describes the displacements of agents which
modify their curvature in order to align with their neighbors. The derivation
of its macroscopic limit uses the non-classical notion of generalized collisional
invariant introduced in [20]. The macroscopic limit of the PTWA model
involves two physical quantities, the density and the mean velocity of indi-
viduals. It is a system of hyperbolic type but is non-conservative due to a
geometric constraint on the velocity. This system has the same form as the
macroscopic limit of the Vicsek model [20] (the ’Vicsek hydrodynamics’) but
for the expression of the model coefficients. The numerical computations
show that the numerical values of the coefficients are very close. The ’Vicsek
Hydrodynamic model’ appears in this way as a more generic macroscopic
model of swarming behavior as originally anticipated.
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1 Introduction

Modeling swarming behavior has attracted a lot of attention in the recent years.
To model a flock of birds [2], a school of fish [16, 29, 36, 42] or the displacement
of ants [14, 30, 40], a key question is to understand how to relate the collective
behavior of large groups of agents to simple individual mechanisms [7, 15]. From
a mathematical point of view, this question takes the form of the derivation of
macroscopic equations from individual based models [3, 4, 13, 20, 23]. This paper
is devoted to the derivation of a macroscopic model for a new type of model of
collective behavior where agents control their motion by changing the curvature
of their trajectory. This model has been shown to provide the best fit of fish
trajectories [24].

Among models of collective displacements, the so-called Vicsek model has re-
ceived a particular attention [18,41]. This model describes the tendency of individ-
uals to align with their congeners. Many features of this model have been studied
such as the existence of a critical point [12, 41], the long time behavior [12, 34] or
the derivation of a continuum model [4, 20]. Due to its simplicity, several exten-
sions or modifications of this model have been proposed, such as the Cucker-Smale
model [8, 9, 17, 27, 28]. There is also a variety of models which add an attraction
and a repulsion rule to the Vicsek model [12, 22]. However, the Vicsek model has
been proposed on phenomenological bases. By contrast, the experiments of [24]
have shown that the Persistent Turning Walker (PTW) model provides the best
fit to individual fish trajectories. In the PTW model, the individual controls its
motion by acting on the curvature of its trajectory instead of acting on its velocity.
However, in its version of [21, 24], the PTW model only describes the evolution of
a single individual. The model does not take into account the interactions between
congeners.

In the present work, interactions between individuals are introduced in the PTW
model by means of an alignment rule, like in the Vicsek model. The resulting
model, called PTWA (Persistent Turning Walker with Alignment) describe how
each individual is influenced by the average velocity of its surrounding neighbors. In
the framework of the PTW model where individuals control their motion by acting
of the curvature of their trajectory, this influence must lead to a modification of
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this curvature. This contrasts with the Vicsek model, where particles are directly
modifying their velocity as a result of the interaction.

The PTWA model is based on the assumption that the subjects use the time
derivative of their trajectory curvature (or of their acceleration) as a control variable
for planning their movement. Such models are not commonplace in the literature.
Their first occurrence is, to the best or our knowledge, in [21,24]. The present work
is the first one in which interaction among the agents is taken into account within
this kind of models (see also [25]). We note that [38] introduces the acceleration
of neighbors in the rule updating the subjects’ velocities in a variant of the Vicsek
Individual-Based model [41] but motion planning is eventually made by updating
the velocity and not the acceleration.

Once the PTWA model is set up, the main task of the present paper is to derive
the macroscopic limit of this new model. This macroscopic limit is intended to
provide a simplified description of the system at large scales. The major problem
for this derivation is that there is nothing like momentum or energy conservation
in the PTWA model. Such conservation laws are the corner stone of the classical
theory of macroscopic limits in kinetic theory [11, 19]. Indeed, as a consequence of
this absence of conservation, the dimension of the manifold of local equilibria in
the PTWA model is larger than the dimension of the space of collisional invariants.
Conservation laws are therefore missing for providing a closed set of equations for
the macroscopic evolution of the parameters of the local equilibria. To overcome this
problem, we use the notion of generalized collisional invariant introduced in [20].
Thanks to this new notion, a closed set of macroscopic equations for the PTWA
model can be derived.

The macroscopic model consists of a conservation equation for the local particle
density and an evolution equation for the average velocity. The latter is constrained
to be of unit norm. The resulting system is a non-conservative hyperbolic which
shows similarities but also striking differences to the Euler system of gas dynam-
ics. It has also the same form as the previously derived macroscopic limit of the
Vicsek model (also referred to as the ’Vicsek Hydrodynamic model’) in [20], but
for the expression of the model coefficients. At the end of the paper, we propose
a numerical method to compute the generalized collisional invariant out of which
the coefficients of the macroscopic model are derived. The similarity between the
’Vicsek hydrodynamics’ and the ’PTWA hydrodynamics’ can be better understood
by considering the relations between the microscopic models. Indeed, the Vicsek
model can be seen as a special limit of the PTWA model in a well-suited asymptotic
limit. Work is in progress to establish this connexion firmly.

The inclusion of the alignment rule in the PTW model changes drastically the
large scale dynamics of the system. Without this alignment rule, the PTW model
exhibits a diffusive behavior at large scales [10, 21]. By contrast, when the align-
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ment rule is included, the model becomes of hyperbolic type. Therefore, the local
alignment rule added to the PTW model generates convection at the macroscopic
scale.

Since the addition of the alignment rule modifies drastically the dynamics of the
PTW model, it is also interesting to study the large scale effects of other types of
local rules such as attraction-repulsion. The goal is to find a common framework for
the large scale dynamics of a large class of swarming models. Currently, there exists
a profusion of individual based models, especially for fish behavior (see [36] for a
short review). In a macroscopic model, only the gross features of the microscopic
model remain. Therefore, the derivation of macroscopic models may be a tool to
better capture the common features and differences between these different types
of swarming models.

The outline of the paper is as follows: in section 2, we introduce the PTWA
model and the main result is stated. Section 3 is devoted to the proof of the
derivation of the macroscopic limit of the PTWA model. In section 4, we study
some properties of the so-obtained macroscopic model and we numerically estimate
the involved coefficients. Finally, in section 5, we draw a conclusion of this work.

2 Presentation of the model and main result

2.1 The individual based model

The starting point is a model in which alignment interaction between agents is in-
troduced inside the Persistent Turning Walker model (PTW) [21, 24]. The PTW
model is a model for individual displacements which has been derived to fit exper-
imentally observed trajectories of fish. It supposes that individuals control their
motion by acting of the curvature of their trajectory. To make it a realistic model
for collective displacements, the PTW model must be enriched by introducing inter-
individual interactions. Indeed, one of the main features of collective motion such
as those observed in animal populations (fish schools, mammalian herds, etc.) is
the ability of individuals to coordinate with each other. Observations suggest that
trend to alignment is an important component of this interaction and leads to a
powerful coordination-building mechanism by synchronizing the agent’s velocities
one to each other. One of the simplest models of alignment interaction is the Vicsek
model [41]. This time-discrete model supposes that individuals move at constant
speed and align to the average velocity of their neighbors (up to a certain stochas-
tic uncertainty) at each time step. A time-continuous version of this dynamics has
been derived in [20].

In order to combine the PTW displacement model and the Vicsek alignment
interaction model (in the time-continuous framework of [20]), we propose the fol-
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lowing model further referred to ad the PTWA model (PTW model with alignment):
among a population of N agents, the motion of the ith individual is given by

dxi

dt
= c~τ (θi), (2.1)

dθi

dt
= cκi, (2.2)

dκi = a(νκi − κi) dt+ b dBi
t, (2.3)

with
κi = ~τ(θi) × Ωi (2.4)

and
Ωi =

Ji

|Ji|
, Ji = c

∑

|xi−xj |<R

~τ(θj), (2.5)

where x = (x1, x2) ∈ R
2 is the position of the individual, ~τ(θi) = (cos θi , sin θi)

is the direction of its velocity vector, with the angle θi ∈ (−π, π] measured from
the x1 direction, κi ∈ R is the curvature of its trajectory and Bi

t is a standard
Brownian motion (with Bi

t independent of Bj
t for i 6= j). The magnitude of the

velocity is constant and denoted by c > 0. The constant a is a relaxation frequency
and b quantifies the intensity of the random perturbation of the curvature. The
vector Ωi is the mean direction of the neighbors of the ith individual (defined as
the individuals j which are at a distance less than R from xi, R > 0 being the
perception distance of the individuals, supposed given).

The trend to alignment is modeled by the relaxation term of (2.3) (in factor of a).
It describes the relaxation of the trajectory curvature to the target curvature κi. κi

is computed by taking the cross product1 of the direction of the individual ~τ (θi) and
the mean direction of its neighbors Ωi. νκi is the trajectory curvature the individual
must achieve in order to align to its neighbors. It increases with increasing difference
between the individual’s velocity and the target velocity. ν is the typical value of
the individuals’ trajectory curvature and can be seen as the ’comfort’ curvature.
The larger ν is, the faster alignment occurs. The second term of (2.3) (in factor of
b) is a random term which describes the tendency of individuals to desynchronize to
their neighbors in order for instance, to explore their environment. At equilibrium,
these two antagonist effects lead to a stationary distribution of curvatures which is
the building block of the construction of the macroscopic model.

We illustrate this model in figure 1. In the left figure, a fish is represented
turning to the left. However, its neighbors are moving towards the other direction
(Ω is pointing to the right). Then the fish is going to adjust its curvature in

1For two-dimensional vectors ~a = (a1, a2), ~b = (b1, b2), the cross product ~a × ~b is the scalar
a1b2 − a2b1.
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order to move towards the same direction as Ω (right figure). The adjustment of its
curvature requires a certain time of order 1/a, after which the curvature κ is close to
νκ. Therefore, in this model, there is a time delay between the current acceleration
of the fish (κ) and its desired acceleration (νκ). In most models describing animal
behavior, the dynamics is inspired by Newton’s second law: the acceleration of an
individual is equal to a force term which incorporates all information about the
environment. In the present model, individuals need a certain time to adjust their
acceleration. This rule can be seen as a modification of Newton’s second law saying
that the force is proportional to the time derivative of the acceleration rather than
to the acceleration itself.

κ ≈ νκ

Ω

κ

~τ

Ω

Figure 1: Illustration of the model (2.1)-(2.3). On the left figure, a fish is turning
to the left, while its neighbors are moving to the right (Ω). After a certain time of
order 1/a, the fish adjusts its curvature in order to align its velocity with Ω (right
figure).

Our goal is the study of model (2.1)-(2.3) at large time and space scales. For
this purpose, it is convenient to introduce scaled variables. We use x0 = ν−1 as
space unit, t0 = (cν)−1 as time unit, κ0 = x−1

0 = ν as curvature unit. We introduce
the dimensionless time, space and curvature as t′ = t/t0, x′ = x/x0 and κ′ = κ/κ0

and for simplicity we omit the primes in the discussion below. In scaled variables,
the PTWA model is given by (for the ith individual) :

dxi

dt
= ~τ(θi), (2.6)

dθi

dt
= κi, (2.7)

dκi = λ(κi − κi) dt+
√

2α dBi
t, (2.8)
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with κi defined by equation (2.4),(2.5) (c being replaced by 1) and λ, α given by:

λ =
a

cν
, α2 =

b2

2cν3
.

2.2 Main result

A first step consists in providing a mean-field description of the PTWA dynam-
ics. Introducing the probability density function of fish f(t,x, θ, κ), we will prove
formally that the PTWA model (2.6)-(2.8) leads to the following equation for f :

∂tf + ~τ(θ) · ∇xf + κ∂θf + λ∂κ

[

(κ− κ)f
]

= α2∂2
κf, (2.9)

with
κ = ~τ(θ) × Ω(x) (2.10)

and

Ω(x) =
J(x)

|J(x)| , J(x) =
∫

|x−y|<R, θ,κ
~τ(θ)f(y, θ, κ) dydθdκ. (2.11)

The main concern of this paper is the study of the so-called hydrodynamic limit
of the mean-field model (2.9). With this aim, we perform a new rescaling and
introduce the macroscopic variables t̃ and x̃:

t̃ = εt , x̃ = εx, (2.12)

with ε > 0 a small number representing the ratio between the microscopic and the
macroscopic time and space scales. In this paper, we give a formal proof that the
density distribution of individuals in these new variables f ε(t̃, x̃, θ, κ) converges in
the limit ε → 0 to the solutions of a hydrodynamic like model. More precisely, the
theorem reads (dropping the tildes for simplicity):

Theorem 1 In the limit ε → 0, the distribution f ε converges to an equilibrium:

f ε ε→0
⇀ ρMΩ(θ)N (κ)

with MΩ and N (resp.) a Von Mises distribution and a Gaussian distribution
defined at (3.12) and (3.10). The density ρ = ρ(x, t) and the direction of the flux
Ω = Ω(x, t) satisfy the following system:

∂tρ+ c1∇x · (ρΩ) = 0,
ρ
(

∂tΩ + c2(Ω · ∇x)Ω
)

+ α2

λ2 (Id − Ω ⊗ Ω)∇xρ = 0,
(2.13)

where c1 and c2 are two positive constants defined later on at (3.29) (3.38).
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The so-obtained macroscopic model (2.13) has the same form as that derived
from the Vicsek model [20]. Indeed, the two models only differ by the values of
their coefficients. This model is a hyperbolic system which bears some similarities
with the Euler system of isothermal compressible gases. There are however some
striking differences. First, the convection speed of the density ρ is different from the
convection speed of the velocity Ω (c1 6= c2 in general). Moreover, the velocity Ω is
a unit vector and therefore it satisfies the constraint |Ω| = 1. This explains why the
pressure term is premultiplied by the matrix (Id − Ω ⊗ Ω). This projection matrix
guarantees that the resulting vector is orthogonal to Ω. Consequently, the constraint
|Ω| = 1 is preserved by the dynamics. However, the projection matrix leads to a
non-conservative model which cannot be put in conservative form. This intrinsic
non-conservation feature is the macroscopic counterpart of the lack of momentum
conservation at the microscopic level (see below).

The modification of the PTW model leading to the PTWA model has drastically
changed the nature of the macroscopic model. Indeed, the macroscopic limit of the
PTW model without the incorporation of the interactions is of diffusive nature
[10, 21]. By contrast, that of the PTWA model is of hyperbolic type. Indeed, the
scaling (2.12) is of hydrodynamic type, the macroscopic time and space scales being
of the same order of magnitude. By contrast, a diffusive scaling would have required
t̃ = ε2t instead (see [10, 21]).

The similarity with the ’Vicsek Hydrodynamics’ also confirms that the chosen
interaction rule generates alignment since the PTWA model has the same macro-
scopic limit as the Vicsek model. At the microscopic scale, the PTWA and Vicsek
models look rather different, whereas, at the macroscopic scale, they are similar.
This is an example of how the derivation of macroscopic model can be used as a
tool to reduce and unify different types of swarming models in classes leading to
similar macroscopic models.

3 Derivation of a macroscopic model

3.1 Mean field equation

In this section, we briefly summarize the first step of the derivation of the macro-
scopic model, namely the derivation of the intermediate mean-field equation (2.9)
from the particle dynamics (2.6)-(2.8). In order to derive this mean field equation,
we start by looking at the system without the white noise dBt

i for a large (but fixed)
number of individuals N . In this case, the system reduces to a coupled system of
ordinary differential equations. We denote by {Xi(t),Θi(t), Ki(t)}i=1...N the solu-
tion of this system on a given time interval. Following the standard methodology
(see e.g. the text book [37]), we introduce the so-called empirical distribution fN
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given by:

fN =
1
N

N
∑

i=1

δXi(t) ⊗ δΘi(t) ⊗ δKi(t). (3.1)

We can easily check that this density distribution satisfies the following equation
(weakly):

∂tf
N + ~τ (θ) · ∇xf

N + κ∂θf
N + λ∂κ

[

(κN − κ)fN
]

= 0,

with
κN = ~τ(θ) × Ω

N
(x)

and

Ω
N

(x) =
JN(x)

|JN(x)| , JN(x) =
∑

j, |x−xj |<R

~τ (θj).

The term JN can be expressed using the empirical distribution fN :

JN(x) = N
∫

|x−y|<R, θ,κ
~τ(θ)fN(y, θ, κ) dydθdκ.

Then it is clear that the formal limit N → ∞ of fN satisfies the following equation:

∂tf + ~τ(θ) · ∇xf + κ∂θf + λ∂κ

[

(κ− κ)f
]

= 0,

with κ given by (2.10),(2.11).
When the white noise is added, the situation is more complicated. At the particle

level (2.6)-(2.8), the system becomes a coupled system of stochastic differential
equations. This implies that the empirical distribution fN given by (3.1) becomes
a stochastic measure. In this case, formal considerations suggest that, in the limit
N → ∞, the distribution function f satisfies the following Fokker-Planck equation
(2.9) with κ given by (2.10),(2.11). For related questions, we refer the reader to
[5, 8, 39].

3.2 Hydrodynamic scaling

In order to derive a macroscopic equation from the mean-field equation (2.9)-(2.11),
we use the hydrodynamic scaling. With this aim, we introduce the macroscopic
variables t̃ and x̃ defined by (2.12). In the rescaled variables, the distribution
function (denoted by f ε) is given by f ε(t̃, x̃, θ, κ) = 1

ε2 f(t,x, θ, κ). After omitting
the tildes, it satisfies the following equation:

ε(∂tf
ε + ~τ (θ) · ∇xf

ε) + κ∂θf
ε + λ∂κ

[

(κε −κ)f ε
]

= α2∂2
κf

ε, (3.2)

with
κε = ~τ(θ) × Ω

ε
(x)
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and

Ω
ε
(x) =

Jε(x)
|Jε(x)| , Jε(x) =

∫

|x−y|<εR, θ,κ
~τ (θ)f ε(y, θ, κ) dydθdκ. (3.3)

We note that the expression (3.3) of Jε supposes that the radius of interaction be-
tween the individuals is tied to the microscopic scale. This assumption translates
the fact that in most biological system, each individual has only access to infor-
mation about its close neighborhood. Thanks to this assumption, we can replace
the expression of Ω

ε
by a local expression. This is precisely stated in the following

lemma, the proof of which is obvious and omitted.

Lemma 3.1 We have the expansion:

Ω
ε

= Ωfε +O(ε2),

where

Ωfε(x) =
jε(x)
|jε(x)| and jε(x) =

∫

θ,κ
~τ (θ)f ε(x, θ, κ) dθdκ.

Finally, we can simplify (3.2) using the equality:

~τ (θ) × Ω = sin(θ − θ)

with θ such that:
~τ (θ) = Ωfε .

With these notations, equation (3.2) can be written as:

ε
(

∂tf
ε + ~τ (θ) · ∇xf

ε
)

= Q(f ε) +O(ε2) (3.4)

with the operator Q (below referred to as the ’collision operator’) defined by:

Q(f) = −κ∂θf − λ sin(θ − θ) ∂κf + λ∂κ(κf) + α2∂2
κf, (3.5)

where ~τ(θ) = Ωf(x) defined as:

Ωf(x) =
j(x)
|j(x)| , j(x) =

∫

θ,κ
~τ (θ)f(x, θ, κ) dθdκ. (3.6)

In the sequel, we will drop the O(ε2) remainder which has no influence in the final
result.
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3.3 Study of the collision operator

3.3.1 Equilibria

In order to study the limit ε → 0 of the solution f ε of (3.4), we first have to
determine the equilibria of the operator Q defined by (3.5). With this aim, we
notice that Q can be decomposed as a sum of a formally skew-adjoint operator
and of a formally self-adjoint operator. For the skew-adjoint part, we introduce the
function:

H(θ, κ) = −λ cos θ +
κ2

2
and we adopt the convention that for any function h(θ, κ):

hΩ(θ, κ) = hθ(θ, κ) = h(θ − θ, κ), (3.7)

with ~τ (θ) = Ω. Using these notations, for any smooth function f , the skew-adjoint
part of Q can be written as:

− κ∂θf − λ sin(θ − θ) ∂κf = ∂θHθ ∂κf − ∂κHθ ∂θf = {Hθ, f}(θ,κ), (3.8)

using the Poisson Bracket formalism {·, ·}(θ,κ) in the (θ, κ) space. Therefore, any
function of the form g(Hθ) satisfies {Hθ, g(Hθ)} = 0. On the other hand, the
self-adjoint part of Q satisfies:

λ∂κ(κf) + α2∂2
κf = α2∂κ

(

N∂κ

(

f

N

))

, (3.9)

with N the Gaussian distribution with zero mean and variance α2/λ:

N (κ) =

√

λ

2πα2
exp

(

−λκ2

2α2

)

. (3.10)

In particular, the Gaussian N is in the kernel of the self-adjoint part of Q. We
combine our two previous observations to define the function:

µ(θ, κ) = C exp

(

− λ

α2
H

)

= C exp

(

− λ

α2

(

κ2

2
− λ cos θ

))

, (3.11)

where C is the normalization constant such that
∫

(θ,κ) µ(θ, κ) dθ dκ = 1. This nor-
malization constant is explicitly given below. The translates µθ of µ in the sense
of definition (3.7) are of the form g(Hθ) and are Gaussian distributions in κ with
variance α/

√
λ. It follows from a simple computation that µθ is an equilibrium for

Q (i.e. Q(µθ) = 0), for all real values of θ.
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To simplify the analysis, we introduce the Von Mises distribution M:

M(θ) = C0 exp

(

λ2

α2
cos θ

)

, (3.12)

where C0 = (2πI0( λ2

α2 ))−1 is the normalization constant such that
∫

θ M(θ) dθ = 1
(with I0 the modified Bessel function of order 0). Therefore, µ can be written as
the product of M given by (3.12) and N given by (3.10):

µ(θ, κ) = M(θ)N (κ), (3.13)

and the normalization constant C is given by C = C0

√

λ/(2πα2). We summarize
our analysis of Q in the following proposition.

Proposition 3.2 i) The operator Q satisfies:

∫

θ,κ
Q(f)

f

µθ

dθdκ = −α2
∫

θ,κ

N
Mθ

∣

∣

∣

∣

∣

∂κ

(

f

N

)∣

∣

∣

∣

∣

2

dθdκ ≤ 0, (3.14)

with µ defined by (3.13) and θ such that ~τ (θ) = Ωf with Ωf defined in (3.6).

ii) The equilibria of Q (i.e. the functions f(θ, κ) ≥ 0 such that Q(f) = 0) form
a two-dimensional manifold E given by:

E = {ρ µθ | ρ ∈ R
+ , θ ∈ (−π, π]}, (3.15)

where ρ is the total mass and θ the direction of the flux of ρ µθ.

Proof. (i) Combining (3.8) and (3.9), we find:

Q(f) = {Hθ, f} + α2∂κ

(

N∂κ

(

f

N

))

. (3.16)

Using (3.11), the fact that the Poisson bracket with f is a derivation and is a
skew-adjoint operator, we find:

∫

θ,κ
{Hθ, f} f

µ
dθdκ =

∫

θ,κ

α2

λ
e− λ

α2
H

θ{e
λ

α2
H

θ , f}f
µ
dθdκ

=
α2

λ

1
C

∫

θ,κ
{e

λ

α2
H

θ , f}f dθdκ = 0.

Then, using the formulation of Q in (3.16), we easily deduce the equality (3.14) by
applying Green’s formula.
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(ii) If f is an equilibrium for Q (i.e. Q(f) = 0) using the equality (3.14) we have:

∫

θ,κ

N (κ)
Mθ(θ)

∣

∣

∣

∣

∣

∂κ

(

f

N

)∣

∣

∣

∣

∣

2

dθdκ = 0,

which means that f is proportional to N as a function of κ. Therefore, we can
write:

f(θ, κ) = ϕ(θ)N (κ).

Using again that f is an equilibrium, we have:

−κϕ′(θ) + λ sin(θ − θ)
λκ

α2
ϕ(θ) = 0, for all κ.

Solving this differential equation leads to ϕ(θ) = CMθ(θ) with M given by (3.12).
This yields f = KMθ N with K ≥ 0 a constant which proves that f is of the form
f = ρµθ0

, with ρ ≥ 0 and θ0 ∈ (−π, π].

Reciprocally, we show that a function of the form f = ρµθ0
with ρ ≥ 0 and θ0 ∈

(−π, π] is an equilibrium. For this purpose, the only thing to show is that the
associated Ωf = τ(θ) is such that θ = θ0. We compute

jf =
∫

(θ,κ)
ρ µθ0

τ(θ) dθ dκ

= ρ
∫

(θ,κ)
N (κ)C0 exp

(

λ2

α2
cos(θ − θ0)

) (

cos θ
sin θ

)

dθ dκ.

Then, by the change of variables φ = θ − θ0 and using oddness considerations, we
obtain

jf = ρC0

∫

κ
exp

(

λ2

α2
cosφ

)

cosφ dφ τ(θ0) = ρ
I1( λ2

α2 )

I0( λ2

α2 )
τ(θ0),

where I1 is the modified Bessel function of order 1. Remembering that Ωf = jf/|jf |,
we deduce that θ = ±θ0, with the sign being that of I1( λ2

α2 )/I0( λ2

α2 ). A simple
inspection of the integral giving I1 shows that this sign is positive and that θ = θ0,
which ends the proof. �

3.3.2 Generalized collisional invariant

The next step to determine the hydrodynamic limit of f ε (3.4) is to look at the
collision invariants of the operator Q, i.e. the functions ψ which satisfy:

∫

θ,κ
Q(f)ψ dθdκ = 0, for all f.
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Clearly, ψ = 1 is collisional invariant. But there is no other obvious collisional
invariant. However, since the equilibria of Q (3.15) form a two dimensional space,
we need two conserved quantities to derive a macroscopic model. To overcome this
problem, we use the notion of generalized collisional invariant developed in [20].

In this paper, we use a slightly different definition from [20]. Indeed, the result
of [20] was slightly incorrect and the present definition is designed to make the
statement correct. We first introduce the following definition:

Definition 1 For a given Ω ∈ S
1 and a given distribution function f(θ, κ), we

define the ’extended’ collision operator QΩ(f) by:

QΩ(f) = {HΩ, f} + α2∂κ

(

N∂κ

(

f

N

))

,

where we recall the notation (3.7).

Obviously, we have
Q(f) = QΩf

(f), (3.17)

recalling the definition (3.6) of Ωf . For fixed Ω, the operator QΩ(f) is linear. We
now define a Generalized Collision Invariant.

Definition 2 For a given unit vector Ω ∈ S
1, a function ψΩ is called a Generalized

Collisional Invariant (GCI) if it satisfies:

∫

θ,κ
QΩ(f)ψΩ dθ dκ = 0, for all f such that Ωf = ±Ω, (3.18)

Using definition (3.18) with Ωf = Ω and (3.17), we note that if ψΩ is a GCI, it
satisfies ∫

θ,κ
Q(f)ψΩf

dθ dκ = 0.

This property is crucial for the establishment of the hydrodynamic limit.

For a given Ω ∈ S
1, the adjoint operator to QΩ is given by:

Q∗
Ω(ψ) = κ∂θψ + λ sin(θ − θ) ∂κψ − λκ∂κψ + α2∂2

κψ,

with θ such that Ω = ~τ(θ). This operator Q∗
Ω enables us to find an explicit equation

for the GCI ψΩ as stated in the following lemma.

Lemma 3.3 For a given unit vector Ω ∈ S
1, a function ψΩ is a generalized colli-

sional invariant if and only if it there exists a constant β ∈ R such that:

Q∗
Ω(ψΩ) = β ~τ(θ) × Ω. (3.19)



3.3 Study of the collision operator 15

Proof. Let f(θ, κ) be such that Ωf = ±Ω. This is equivalent to saying that there
exists a constant C ∈ R such that jf = CΩ (see (3.6) for the definition of jf), or
in other words, that jf × Ω = 0. Now, if ψ satisfies (3.19), we have, for such a
function f :

∫

θ,κ
QΩ(f)ψ dθdκ =

∫

θ,κ
f Q∗

Ω(ψ) dθdκ

= β
∫

θ,κ
f~τ(θ) × Ω dθdκ = β jf × Ω = 0,

and ψ is a GCI associated to Ω.
Reciprocally, if ψΩ is a GCI associated to Ω, we have:

∫

θ,κ
QΩ(f)ψΩ dθ dκ = 0 =

∫

θ,κ
fQ∗

Ω(ψΩ) dθdκ

for all f(θ, κ) such that jf × Ω = 0. We deduce that, for all f ,

jf × Ω = 0 =⇒
∫

θ,κ
fQ∗

Ω(ψΩ) dθdκ = 0. (3.20)

The two expressions appearing in (3.20) are linear forms acting on f . By an el-
ementary lemma [6], the one appearing in the right-hand side is proportional to
the one appearing in the left-hand side, with a proportionality coefficient β ∈ R.
Expressing this proportionality gives:

∫

θ,κ
f(Q∗

Ω(ψΩ) − ~τ (θ) × Ω) dθdκ = 0, (3.21)

for all f without any restriction. (3.21) yields (3.19), which concludes the proof. �

It remains to prove the existence of GCI’s, or, in other words, to prove the
existence of solutions to equation (3.19). With this aim, we use the Hilbert space
L2

µ equipped with the scalar product 〈., .〉µ defined by:

L2
µ = {f(θ, κ) /

∫

θ,κ
|f |2 µ dθdκ < +∞},

〈f, g〉µ =
∫

θ,κ
fg µ dθdκ. (3.22)

Below, we will also use the notation:

〈g〉µ =
∫

θ,κ
g(θ, κ)µ(θ, κ) dθdκ. (3.23)

We define the hyperplane E:

E = {f ∈ L2
µ(θ, κ) /

∫

θ,κ
f µ dθdκ = 0}
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and the linear operator L:

Lψ = κ∂θψ − λ sin θ∂κψ − λκ∂κψ + α2∂2
κψ (3.24)

with domain D(L) given by:

D(L) = {f ∈ L2
µ / Lf ∈ L2

µ}.

We have the following lemma:

Lemma 3.4 (i) Let χ ∈ L2
µ. A necessary condition for the existence of a solution

ψ ∈ D(L) of problem
Lψ = χ, (3.25)

is that χ ∈ E or in other words, that χ satisfies the solvability condition
∫

θ,κ χµ dθdκ
= 0.
(ii) For all χ ∈ E, the problem (3.25) has a unique solution ψ in E. Then, all
solutions to problem (3.25) are of the form ψ +K, with an arbitrary K ∈ R.

In Appendices A1 and A2, we give two different proofs of the fact that (3.25) is
uniquely solvable in E. The proof in appendix A1 uses tools from functional analysis
(see also [21]). The proof in appendix A2 uses probabilistic tools to analyze the
stochastic equation associated to (3.25) (see also [10]). Here we only prove (i) and
the last statement of (ii).

Proof. (i) The formal adjoint L∗ of L is given by the expression (3.5) of Q in which
θ = 0. Therefore, from section 3.3.1, we have that L∗(µ) = 0. Integrating (3.25)
against µ and using Green’s formula leads to the necessary condition

∫

θ,κ χµ dθdκ =
0, i.e. to the fact that χ must belong to E.

The second part of (ii) amounts to showing that the null space of L reduces to the
constant functions. Indeed, it is straightforward to see that L(1) = 0. To prove
that the constant functions are the only elements of the null space of L, we suppose
that ψ ∈ D(L) such that Lψ = 0. Using that 〈Lψ, ψ〉µ = 0, we find, using Green’s
formula: ∫

θ,κ
|∂κψ|2 µ dθdκ = 0.

Therefore, ψ is independent of κ. So we can write: ψ(θ, κ) = Φ(θ). Using again
that LΦ = 0, we find that Φ is a constant.

We refer to appendices A1 or A2 for the existence part of point (ii). �

The following proposition completely determines the set of GCI’s associated to a
vector Ω.
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Proposition 3.5 For a given Ω ∈ S
1, the set CΩ of the GCI’s associated to Ω is a

two dimensional vector space CΩ = Span{1, ψΩ} where ψΩ is given by:

ψΩ(θ, κ) = ψ(θ − θ, κ), (3.26)

with θ such that ~τ (θ) = Ω and ψ is the unique solution of:

Lψ = − sin θ, (3.27)

belonging to the hyperplane E. Moreover, the function ψ satisfies the property:

ψ(−θ,−κ) = −ψ(θ, κ). (3.28)

Proof. We first note that (3.19) is a linear problem and that it is enough to solve
it for β = 1. Simple calculations show that ψΩ is a solution to (3.19) if and only if
there exists a function ψ such that ψΩ(θ) = ψ(θ − θ) with ψ a solution of (3.27).
This shows (3.26).

To show the existence and uniqueness of a solution ψ to (3.27) in E, it is enough
to check that the right-hand side of (3.27) belongs to E i.e. satisfies the compat-
ibility condition

∫

θ,κ χµ dθdκ = 0. But this follows readily by oddness considera-
tions. Moreover, noting that the operator L is invariant under the transformation
(θ, κ) → (−θ,−κ), (3.28) follows from the uniqueness of the solution.

Again, by the uniqueness in E and by the second part of Lemma 3.4 (ii), all
solutions to (3.27) consist of linear combinations of ψ and of a constant function.
It follows that the set of GCI’s associated to Ω is the two-dimensional vector space
spanned CΩ = Span{1, ψΩ}. This ends the proof. �

3.4 Limit ε → 0

Since we know the equilibria and GCI’s of the operator Q, we can give a formal
proof of theorem 1.
Proof of Theorem 1. If we suppose that f ε converges (weakly) to f 0 as ε → 0
we first have:

Q(f 0) = 0,

which means that f 0 is an equilibrium. Thanks to section 3.3.1, f 0 can be written
as:

f 0 = ρ0MΩ0(θ)N (κ),

with M and N defined in (3.12) (3.10). The mass ρ0(t,x) and the direction of the
flux Ω0(t,x) are the two remaining unknowns.



3.4 Limit ε → 0 18

In order to find the system of equations which determines the evolution of ρ0

and Ω0, we first integrate (3.4) with respect to (θ, κ). We find the mass conservation
equation:

∂tρ
ε + ∇x · jε = 0,

with
jε =

∫

θ,κ
~τ(θ)f ε dθdκ.

In the limit ε → 0, this gives:

jε ε→0−→ j0 = c1ρ
0Ω0,

with the constant c1 given by:

c1 =
∫

θ
cos θM(θ) dθ =

I1( λ2

α2 )

I0( λ2

α2 )
. (3.29)

Therefore we deduce that ρ0 and Ω0 obey the following mass conservation equation:

∂tρ
0 + c1∇x · (ρ0Ω0) = 0.

In order to fully determine the evolution of ρ0 and Ω0, we need to find a second
equation. For this purpose, we integrate (3.4) against the generalized collisional
invariant ψΩε (3.26), with Ωε = Ωfε . This leads to:

∫

θ,κ
(∂tf

ε + ~τ (θ) · ∇xf
ε)ψΩε dθdκ = 0.

In the limit ε → 0, we find :
∫

θ,κ
∂t(ρ0MΩ0N )ψΩ0 dθdκ+

∫

θ,κ
~τ(θ) · ∇x(ρ0MΩ0N )ψΩ0 dθdκ = 0. (3.30)

For clarity, we drop the exponent ’0’ and write (ρ,Ω) for (ρ0,Ω0) in the discussion
below. Using polar coordinates for Ω = ~τ(θ) = (cos θ, sin θ), elementary computa-
tions show that:

∂t(ρMθ) + ~τ(θ) · ∇x(ρMθ) = ∂tρMθ + ρMθ

λ2

α2
sin(θ − θ)∂tθ

+~τ(θ) ·
(

∇xρMθ + ρMθ

λ2

α2
sin(θ − θ)∇xθ

)

.
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Therefore, equation (3.30) leads to:
∫

θ,κ
∂tρMθN ψθ dθdκ

+
λ2

α2

∫

θ,κ
ρMθN sin(θ − θ) ∂tθ ψθ dθdκ

+
∫

θ,κ
~τ(θ) ·

(

∇xρMθN ψθ

)

dθdκ

+
λ2

α2

∫

θ,κ
~τ (θ) ·

(

ρMθN sin(θ − θ) ∇xθ ψθ

)

dθdκ = 0.

This equation can be simplified using the symmetry satisfied by ψ (3.28). We treat
each term separately. First, we have:

X1 =
∫

θ,κ
∂tρMθN ψθ dθdκ

= ∂tρ
∫

θ,κ
M(θ − θ)N (κ)ψ(θ − θ, κ) dθdκ = 0, (3.31)

because M(θ)N (κ) is an even function of the pair (θ, κ) and ψ(θ, κ) is odd. For
the second term, we use the change of unknowns θ′ = θ − θ and get:

X2 =
λ2

α2
ρ ∂tθ

∫

θ′,κ
M(θ′)N (κ) sin θ′ ψ(θ′, κ) dθ′dκ

=
λ2

α2
ρ ∂tθ γ1, (3.32)

with
γ1 = 〈sin θ ψ〉µ (3.33)

using the notation (3.23). For the third term, we find:

X3 = ∇xρ ·
∫

θ,κ
~τ (θ) MθN ψθ dθdκ

= ∇xρ ·
∫

θ,κ
~τ (θ + θ) M(θ)N (κ)ψ(θ, κ) dθdκ

= ∇xρ ·
∫

θ,κ

(

cos θ cos θ − sin θ sin θ
sin θ cos θ + cos θ sin θ

)

M(θ)N (κ)ψ(θ, κ) dθdκ.

Once again, using the symmetry satisfied by ψ, we find:

X3 = γ1∇xρ ·
(

− sin θ
cos θ

)

,
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with γ1 defined in (3.33). If we denote by ~τ(θ)⊥ = Ω⊥ the orthogonal vector to
~τ (θ):

~τ(θ)⊥ = Ω⊥ =

(

− sin θ
cos θ

)

,

we finally get:
X3 = γ1∇xρ · ~τ (θ)⊥. (3.34)

For the last term, we have:

X4 =
λ2

α2
ρ∇xθ ·

∫

θ,κ
~τ(θ)Mθ(θ)N (κ) sin(θ − θ)ψθ(θ, κ) dθdκ

=
λ2

α2
ρ∇xθ ·

∫

θ,κ
~τ(θ + θ)M0(θ)N (κ) sin θ ψ(θ, κ) dθdκ

=
λ2

α2
γ2 ρ∇xθ · ~τ (θ), (3.35)

with
γ2 = 〈cos θ sin θ ψ〉µ.

Combining (3.31), (3.32), (3.34) and (3.35) yields:

γ1
λ2

α2
ρ ∂tθ + γ1∇xρ · ~τ (θ)⊥ + γ2

λ2

α2
ρ∇xθ · ~τ(θ) = 0. (3.36)

Using again the unit vector Ω = ~τ(θ), elementary computations show that:

∂tΩ = ∂tθΩ⊥ and (Ω · ∇x)Ω = (Ω⊥ ⊗ Ω)∇xθ.

Therefore, multiplying equation (3.36) by Ω⊥ leads to:

ρ ∂tΩ +
α2

λ2
(∇xρ · Ω⊥)Ω⊥ +

γ2

γ1
ρ (Ω · ∇x)Ω = 0.

This finally leads to:

ρ ∂tΩ + c2 ρ (Ω · ∇x)Ω +
α2

λ2
(Id − Ω ⊗ Ω)∇xρ = 0, (3.37)

with

c2 =
γ2

γ1
=

〈sin θ cos θ ψ〉µ

〈sin θ ψ〉µ
, (3.38)

which ends the proof. �
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4 Properties of the macroscopic system

4.1 Hyperbolicity

The macroscopic system (2.13) arising from the PTWA dynamics has the same form
as the system found in [20] for the macroscopic limit of the Vicsek model. Indeed,
if we define the diffusion coefficient d as:

d =
α2

λ2
,

then the coefficient c1 given by (3.29) and the coefficient α2

λ2 in front of the pressure
term in (3.37) are exactly the same in the two systems. Only the coefficient c2 given
by (3.38) differs from that of [20]. Thus, the study of the hyperbolicity of system
(2.13) is completely similar to the one conducted for the Vicsek model in [20, 33].
We briefly summarize the analysis here. Using the geometric constraint |Ω| = 1, we
can parametrize the direction of the flux Ω in polar coordinates: Ω = (cos θ, sin θ)
with θ ∈] − π, π]. In order to look at the wave propagating in the x-direction, we
suppose that ρ and Ω are independent of y. Therefore, under this assumption, the
system (2.13) reduces to:

∂tρ+ c1∂x (ρ cos θ) = 0,

∂tθ + c2 cos θ∂xθ − α2

λ2

sin θ
ρ

∂xρ = 0.

The characteristic velocities of this system are given by:

γ =
1
2



(c1 + c2) cos θ ±
√

(c1 − c2)2 cos2 θ + 4c1
α2

λ2
sin2 θ



 .

The system is therefore hyperbolic since the characteristic velocities are real.

4.2 Numerical computations of ψ

In order to compute the macroscopic coefficient c2 (3.38), we first need to calculate
the generalized collisional invariant ψ (3.26). With this aim, we introduce a weak
formulation of the equation satisfied by ψ. In the Hilbert space L2

µ(S1 × R), the
function ψ satisfies:

〈Lψ, ϕ〉µ = −〈sin θ, ϕ〉µ , ∀ϕ ∈ L2
µ, (4.1)

where the scalar product 〈., .〉µ is defined in (3.22) and the operator L in (3.24). To
approximate the solution ψ numerically, we use a Galerkin method. It consists in
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solving the weak formulation (4.1) for all the functions ϕ in a subspace V of L2
µ of

finite dimension. To construct such a subspace V , we use a Hilbert basis of L2
µ. For

this purpose, we consider the following functions:

ϕm(θ) =
eimθ

√

2πM(θ)
, Pn(κ) =

Hn

(√
λ

α
κ
)

√
n!

,

where M is defined in (3.12) and Hn is the nth Hermite polynomial. We can easily
prove that the family {ϕmPn}m, n≥0 is a Hilbert basis of L2

µ. Then, for any odd
positive integers m and any positive integer n, we define the vector space Vm,n:

Vm,n = Span{ϕjPk / |j| ≤ m , 0 ≤ k ≤ n}.
The Galerkin method consists in finding ψm,n ∈ Vm,n such that equation (4.1) is
satisfied for every ϕ ∈ Vm,n:

〈Lψm,n, ϕ〉µ = −〈sin θ, ϕ〉µ , ∀ϕ ∈ Vm,n. (4.2)

We can decompose ψ as:

ψm,n(θ, κ) =
∑

|j|<m,0≤k≤n

Ck
j ϕm(θ)Pn(κ), (4.3)

where Ck
j are complex coefficients given by:

Ck
j = 〈ψm,n, ϕj Pk〉µ.

We store the coefficients {Ck
j }|j|≤m,0≤k≤n in a matrix X such that:

X(j, k) = Ck
j . (4.4)

We call the matrix X the matrix representation of ψm,n in Vm,n. We want to
transform the problem satisfied by ψm,n (4.1) into a matrix equation for X. With
this aim, we define several matrices.

Definition 3 We define the matrices L−1 and L+1 by:

L−1 =













0
1 0

. . .
. . .

1 0













, L+1 =













0 1
. . .

. . .

0 1
0













(4.5)

and the diagonal matrices:

D1 = diag(−m, . . . ,−1, 0, 1, . . . , m)

D2 = diag(0, 1, 2, . . . n).
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Using the matrices defined above, we can convert the equation satisfied by ψm,n

(4.2) into a matrix equation for X.

Proposition 4.1 Let ψm,n ∈ Vm,n the solution of (4.1) in Vm,n. Its matrix repre-
sentation X = {Ck

j }|j|≤m,0≤k≤n in the Hilbert basis {ϕmPn} satisfies:

β1M1XN1 + β2M2XN2 − λXD2 = B (4.6)

with
β1 = iα√

λ
, β2 = iλ

√
λ

4α
,

M1 = D1 , N1 =
√
D2L−1 + L+1

√
D2,

M2 = L−1 − L+1 , N2 =
√
D2L−1 − L+1

√
D2.

(4.7)

and B the matrix representation of − sin θ in Vm,n given by:

B(j, k) =











i

2

√

Io( λ2

α2
)

(

I|j−1|
(

λ2

2α2

)

− I|j+1|
(

λ2

2α2

))

if k = 0,

0 otherwise,

where Ij is the modified Bessel function of order j.

Since the demonstration of proposition 4.1 is only a matter of computations, we
postpone the proof to appendix B. To solve (4.6), we transform the linear equation
(4.6) into a linear system that we invert numerically. This eventually allows us to
construct ψm,n using (4.3).

On figure 2 (left), we display an example of an approximate solution ψm,n of the
GCI ψ for λ = 1 and α = 1. We also estimate Lψm,n numerically using a finite
difference method (figure 2, right). The figure clearly suggests that Lψm,n is close
to − sin θ, providing a qualitative check of the accuracy of the computation. To
make this assessment more quantitative, we compute the residual |Lψm,n + sin θ|∞
for different values of (λ, α) on figure 3. As we can see, the residual gets larger
when α increases and gets smaller when λ increases.

4.3 Computation of the coefficient c2

Once we have computed the generalized collisional invariant ψ, we can calculate the
coefficient c2 using (3.38). On figure 4, we fix the parameter λ = 1 and we compute
the value of c2 for different values of α (we still use m = 30 and n = 61 to get a
numerical approximation of ψm,n). In the same graph, we add show the coefficient
c2 of the Vicsek model [20,33] for d = α2

λ2 . The relative error between the two curves
is very small (around 5%). This similarity between the two curves shows a strong
connexion between the PTWA model and the Vicsek model. Work is in progress to
study the link between the two models more deeply.
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The generalized ollisionnal invariant ψm,n
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Figure 2: Left figure: the generalized collisional invariant ψm,n for λ = 1 and α = 1
computed using m = 30 and n = 61. Right figure: we compute Lψm,n using a
finite difference method with ∆θ = .2 and ∆κ = .2. We clearly recover the function
− sin θ (see figure 3 for a more detailed comparison).

The residue |Lψm,n + sin θ|∞
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Figure 3: The residual |Lψm,n + sin θ|∞ estimated on the interval (θ, κ) ∈ [−π, π] ×
[−5, 5] for different values of (λ, α). ψm,n is computed as in figure 2 (left) and Lψm,n

is computed using a finite difference scheme (with ∆θ = ∆κ = .2). The residual
increases with α and decreases with λ.
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Figure 4: The coefficient c2 in the PTWA model (3.38) computed for λ = 1 and
different values of α (blue) and the coefficient c2 in the Vicsek model (green). The
relative error between the two curves is around 5%.
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5 Conclusion

In this work, we have introduced a new Individual-Based Model describing the dis-
placement of individuals which tend to align with theirs neighbors. This model,
called ’Persistent Turning Walker model with Alignment’ (PTWA), is a combina-
tion of the phenomenological Vicsek alignment model [41] with the experimentally
derived PTW model of fish displacement [24]. We have established the macroscopic
limit of this model within a hydrodynamic scaling where the radius of interaction
of the agents is tied to the microscopic scale. The derivation uses a new notion of
’Generalized Collisional Invariant’ developed earlier in [20]. The numerical compu-
tations of the coefficients involved in this macroscopic model have shown that there
are important similarities between the PTWA model and the Vicsek model at large
scale.

The present work proves that the addition of a local alignment rule in the PTW
model changes drastically the large-scale dynamics as compared to the PTW model
without alignment interaction. Indeed, while the PTW model without alignment
is diffusive at large scales, the PTWA model becomes hyperbolic, of hydrodynamic
type. As a summary, local alignment generates macroscopic convection.

In future work, the relation between the PTWA and Vicsek dynamics will be
further explored, both at the microscopic and macroscopic levels. This ensemble
of models forms a complex hierarchy. Numerical simulations and comparisons over
a wide range of parameters will be performed to better understand the relations
between these models.

Many questions concerning the derivation of macroscopic models remain open
in this context. One possible route is to explore what the macroscopic limit of the
PTWA model becomes when an attraction-repulsion rule is added. More generally,
it may be possible to classify the different types of Individual-Based Models by
looking at their corresponding macroscopic limits. Another direction is to quan-
tify how close the macroscopic model is to the corresponding microscopic model.
In particular, the question of determining what minimal number of individuals is
required for the macroscopic description to be valid is of crucial importance. All
these questions call for deeper numerical studies which will permit to understand
when the microscopic and macroscopic descriptions are similar and when they are
not.
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Appendix A1: Proof of lemma 3.4 (ii) (functional

analytic proof)

Proof. First, we prove the uniqueness of the solution of (3.25) in E. Indeed, we
have shown in section 3.3.2 that the null space ker(L) of L consists of the constant
functions. Therefore, ker(L)∩E = {0}, which shows the uniqueness of the solutions
of (3.25) in E.

To prove the existence of a solution of (3.25), we first consider a slightly modified
version of equation (3.25): for a given ε > 0, we want to solve

− εψ + Lψ = χ. (A.1)

Thanks to this modification, we have the inequality:

〈εψ − Lψ, ψ〉µ = ε|ψ|2µ + α2|∂κψ|2µ ≥ ε|ψ|2µ.

Therefore the operator εId − L is coercive, so we can apply the theorem of J. L.
Lions in [31] which gives a weak solution ψε in E of the problem (A.1).

To find a solution of Lψ = χ, we need to extract a convergent subsequence of
{ψε}ε>0 when ε goes to zero. The limit will satisfy (3.25). Since E is an Hilbert
space, it remains to prove that the family {ψε}ε>0 is bounded in E. For that, we
proceed by contradiction. If the family {ψε}ε is not bounded in E as ε tends to 0,
there exists a subsequence εn such that:

|ψεn
|µ n→∞−→ +∞ , εn

n→∞−→ 0.

To simplify the notations, we use the subscript ε for εn in the following. Defining
the functions:

Uε =
ψε

Nε
(A.2)

with Nε = |ψε|µ, we have that:

−εUε + LUε =
χ

Nε
.

Since the sequence {Uε}ε is bounded (|Uε|µ = 1), we can extract a weakly convergent
subsequence (denoted by ε once again) such that:

Uε
ε→0
⇀ U0 weakly in L2

µ.

In particular, since Nε
ε→0−→ +∞, we have that LU0 = 0 and therefore by uniqueness

U0 = 0. This means that Uε converges weakly to zero. We will obtain a contradiction
with the fact |Uε|µ = 1 if we prove that Uε converges strongly to zero.
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To prove the strong convergence of Uε, we decompose the functions Uε in two
parts. For that, we introduce the vector space L:

L = {Φ ∈ L2(S1) /
∫

θ
Φ(θ) M(θ) dθ = 0}.

It is easy to see that L ⊂ E. We denote by L⊥ the orthogonal space of L such that:

E = L
⊥⊕ L⊥.

We can decompose the sequence Uε as Uε = Φε + vε with Φε ∈ L and vε ∈ L⊥.
First, we are going to prove that vε converges to zero using that L is coercive on
L⊥. Taking the scalar product of the equation (A.2) against Uε, we find:

−ε|Uε|2µ + 〈LUε, Uε〉µ =
1
Nε

〈χ, Uε〉.

Therefore, at the limit ε → 0, we have:

〈LUε, Uε〉µ
ε→0−→ 0.

Since we have the equality 〈LUε, Uε〉µ = −α2|∂κUε|2µ (3.14) and ∂κUε = ∂κvε, we
obtain that:

|∂κvε|2µ ε→0−→ 0. (A.3)

Then we use the Poincaré inequality for Gaussian measures [26]:
∫

κ
|f − f |2 N dκ ≤ C

∫

κ
|∂κf |2 N dκ, (A.4)

with C a positive constant and f the mean of f defined as:

f =
∫

κ
f(κ) N dκ.

Applying the Poincaré inequality (A.4) to vε leads to:

|∂κvε|2µ =
∫

θ

∫

κ
|∂κvε|2N M dκdθ

≥
∫

θ
C−1

∫

κ
|vε − vε|2N dκM dθ

≥ C−1|vε − vε|2µ. (A.5)

Since vε ∈ L⊥, for all Φ(θ) ∈ L, we have:
∫

θ,κ
vε(θ, κ)Φ(θ)M(θ)N (κ) dθdκ =

∫

θ
vε(θ)Φ(θ)M dθ = 0.
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Therefore vε(θ) = 0. Combining the inequality (A.5) with (A.3) yields:

|vε|2µ
ε→0−→ 0.

It remains to prove that Φε converges to zero. With this aim, we take the scalar
product of the equation (A.2) against the function κ. Once we take the limit ε → 0,
we find:

〈LUε, κ〉µ
ε→0−→ 0.

Using that |∂κvε|2µ also converges to zero, we deduce that:
∫

θ,κ
κ2∂θUε µ dθdκ

ε→0−→ 0. (A.6)

We would like to use once again a Poincaré inequality. With this aim, we define
the function hε(θ) as:

hε(θ) =
∫

κ
κ2Uε(θ, κ) N (κ) dκ

and we use the notation:

|h(θ)|2M =
∫

θ
|h(θ)|2 M dθ.

So equation (A.6) can be read as |∂θhε|2M
ε→0−→ 0. The usual Poincaré inequality

gives:
|hε − hε|2M ≤ C|∂θhε|2M, (A.7)

with hε =
∫

θ hε(θ)M(θ) dθ. But since we already know that Uε converges weakly to
zero, we have:

hε = 〈Uε, κ
2〉µ

ε→0−→ 0.

Therefore the Poincaré inequality (A.7) yields hε
ε→0−→ 0, or in other words:

∫

θ,κ
κ2Uε µ dθdκ

ε→0−→ 0. (A.8)

Since vε converges to zero, equation (A.8) leads to:
∫

θ,κ
Φε(θ)κ2M(θ)N (κ) dθdκ ε→0−→ 0,

which finally gives that Φε also converges strongly to zero in L2
µ.

Since both vε and Φε convergence strongly to zero, Uε converges strongly to zero
as well. This contradicts that |Uε|µ = 1 for all ε. Therefore, the sequence ψε is
bounded in L2

µ, so we can extract a subsequence which converges weakly to ψ0 in
L2

µ. This function ψ0 has to satisfy:

Lψ0 = χ

which ends the proof of the lemma.
�
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Appendix A2: Proof of lemma 3.4 (ii) (probabilis-

tic proof)

Proof. The operator L is the infinitesimal generator of the following stochastic
differential equation:

dθ = κdt, (A.9)

dκ = −λ(sin θ + κ) dt+
√

2α dBt, (A.10)

For any function ϕ regular enough, we can define the semi-group:

Pt(ϕ)(θ, κ) = E[ϕ(Xt)|X0 = (θ, κ)],

with Xt the stochastic process solution of (A.9)-(A.10). This defines a solution of
the following equation (see [35]):

{

∂tu = Lu
ut=0 = ϕ.

In particular, if we define u(t) = Pt(χ), a simple integration by part leads to:

u(t) − χ =
∫ t

0
Lu(s) ds. (A.11)

Therefore, we will find a solution to (3.25) if we are able to prove that u(t) t→∞−→ 0.
For that, we first notice that the equilibrium measure associated with L is given by
µ (3.13) and its adjoint operator in L2

µ is given by:

L∗ψ = −κ∂θψ + λ sin θ∂κψ − λκ∂κψ + α2∂2
κψ.

Moreover, we can find a Lyapunov function associated with L. The function
V (θ, κ) = 1 + κ2 satisfies:

L∗V = 2λ sin θ κ− 2λκ2 + 2α2

≤ 2λκ− λ(1 + κ2) − λκ2 + λ+ 2α2

≤ −λV + 2(α2 + λ)1{|κ|≤2+
√

1+(2α/λ+1)2}.

Therefore V is a Lyapunov function in the sense of [1, Def. 1.1]. Since B =
S

1 ×{|κ| ≤ 2+
√

1 + (2α/λ+ 1)2} is compact, B is a “petite set” in the terminology
[1, Def. 1.1] of Meyn & Tweedie [32]. So we can apply [1, Th. 2.1] and conclude
that there exists a constant K2 > 0 such that for all bounded function ϕ satisfying
∫

θ,κ ϕµ dθdκ = 0, we have:

|Pt(ϕ)|µ ≤ K2|ϕ|∞ e−λt.
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Therefore, we can pass to the limit t → ∞ in (A.11) to find that:

−χ =
∫ ∞

0
Lu(s) ds,

Defining the function ψ = − ∫∞
0 u(s) ds, we get a solution to:

Lψ = χ.

For the uniqueness of the solution, we proceed as in appendix A1.
�

Appendix B: Proof of proposition 4.1.

Proof. We first prove the following lemma.

Lemma A.1 For every integer m and every positive integer n ≥ 0, we have:

L(ϕmPn) =
∑

−1≤j≤1
−1≤k≤1

Dm,n(j, k)ϕm+jPn+k

with Dm,n a 3 × 3 matrix given by:

Dm,n =

















−β2

√
n 0 β2

√
n+1

β1 m
√
n −λn β1 m

√
n+1

β2

√
n 0 −β2

√
n+1

















(A.12)

with:

β1 =
iα√
λ

, β2 =
iλ

√
λ

4α
.

Proof. First, using the properties of the Hermite polynomials2, we can find several
properties of Pn:

P ′
n =

√
λ

α

√
nPn−1,

κPn =
α√
λ

(√
n + 1Pn+1 +

√
nPn−1

)

. (A.13)

2Indeed H ′
n

= nHn−1 and xHn = Hn+1 + nHn−1
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In particular, the polynomials Pn are eigenfunctions of the self-adjoint part of L:

− λκ∂κPn + α2∂2
kPn = −λnPn. (A.14)

Then, we compute:

L(ϕmPn) = κPn∂θϕm − λ sin θ ϕm ∂κPn + ϕm(−λκ∂κPn + α2∂2
kPn).

The derivative of ϕm with respect to θ is given by:

∂θϕm = ∂θ

(

eimθ

√
2πM

)

= im

(

eimθ

√
2πM

)

+
eimθ

√
2π



−1
2

−λ2

α2 sin θM
M3/2





= imϕm +
λ2

2α2

eimθ

√
2π

(

eiθ − e−iθ

2i
1√
M

)

= imϕm − iλ2

4α2
(ϕm+1 − ϕm−1).

Using (A.13), we also have:

κPn∂θϕm =
α√
λ

(√
n+1Pn+1+

√
nPn−1

)

(

imϕm − iλ2

4α2
(ϕm+1 − ϕm−1)

)

.

=
iα√
λ

(

m
√
n+1Pn+1ϕm +m

√
nPn−1ϕm

)

(A.15)

−iλ
√
λ

4α

(√
n+1Pn+1ϕm+1 +

√
nPn−1ϕm+1

)

(A.16)

+
iλ

√
λ

4α

(√
n+1Pn+1ϕm−1 +

√
nPn−1ϕm−1

)

. (A.17)

Thus, we have:

− λ sin θ ϕm ∂κPn = −λeiθ − e−iθ

2i
ϕm

√
λ

α

√
nPn−1

=
iλ

√
λ

2α

√
n(ϕm+1 − ϕm−1)Pn−1. (A.18)

Finally, since Pn satisfies (A.14), we get:

ϕm(−λκ∂κPn + α2∂2
kPn) = −λnϕmPn. (A.19)

Combining (A.15) (A.16) (A.17) (A.18) (A.19), we find the expression (A.12) of
Dm,n. �
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To find the matrix representation of the operator L in Vm,n, we introduce the vectors
u and v defined by:

u = (ϕ−m, . . . , ϕ0, . . . , ϕm)T

v = (P0, . . . , Pn)T .

With these notations, a function ψ ∈ Vm,n with a matrix representation X (4.4)
can be written as:

ψm,n =
∑

|j|≤m, 0≤k≤n

Ck
j ϕjPk = uT X v.

Moreover, thanks to the matrices defined in (4.5), we can write for example

uT XL−1 v =
∑

|j|≤m, 1≤k≤n

Ck
j ϕjPk−1

(D1u)T X v =
∑

|j|≤m, 1≤k≤n

jCk
j ϕjPk.

For a function ψ ∈ L2
µ, using the lemma A.1, we can write:

Lψ =
∑

m,n

Cn
m









∑

−1≤j≤1
−1≤k≤1

Dm,n(j, k)ϕm+jPn+k









=
∑

m,n

Cn
m

(

β1mϕm(
√
nPn−1 +

√
n + 1Pn+1)

+β2(−ϕm−1 + ϕm+1)
√
nPn−1

+β2(ϕm−1 − ϕm+1)
√
n + 1Pn+1 − λϕm nPn

)

.

Therefore, for every ϕ ∈ Vm,n, we have:

〈Lψ, ϕ〉µ = 〈 β1(D1u)TX(
√

D2L−1v) + β1(D1u)TX(L+1

√

D2v)

−β2(L−1u)TX(
√

D2L−1v) + β2(L+1u)TX(
√

D2L−1v)

+β2(L−1u)TX(L+1

√

D2v) − β2(L+1u)TX(L+1

√

D2v)

−λuTX(D2v) , ϕ〉µ.

We can simplify this expression:

〈Lψ, ϕ〉µ = 〈 uT β1D1X(
√

D2L−1 + L+1

√

D2) v

+uT β2(−L−1 + L+1)TX(
√

D2L−1) v

+uT β2(L−1 − L+1)TX(L+1

√

D2) v

−λuTX(D2v) , ϕ〉µ,
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which finally gives

〈Lψ, ϕ〉µ = 〈 β1M1XN1 + β2M2XN2 − λXD2 , ϕ〉µ,

with M1, M2, N1 and N2 defined in (4.7). Therefore, using ϕ = − sin θ, we find
that X has to satisfy equation (4.6).

�
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