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Abstract. Multiscale image registration techniques are presented for the registration of med-

ical images using deformable registration models. The techniques are particularly effective for
registration problems in which one or both of the images to be registered contains significant
levels of noise. A brief overview of existing deformable registration techniques is presented, and
experiments using B-spline free form deformation registration models demonstrate that ordinary
deformable registration techniques fail to produce accurate results in the presence of significant
levels of noise. The hierarchical multiscale image decomposition of E. Tadmor, S. Nezzar, and L.
Vese, A multiscale image representation using hierarchical (BV, L2) decompositions, Multiscale
Modeling and Simulations, vol. 2, no.4, pp. 554–579, 2004, is reviewed, and multiscale image reg-
istration algorithms are developed based on the multiscale decomposition. Accurate registration
of noisy images is achieved by obtaining a hierarchical multiscale decomposition of the images and
iteratively registering the resulting components. This approach enables a successful registration
of images that contain noise levels well beyond the level at which ordinary deformable registration
fails. Numerous image registration experiments demonstrate the accuracy and efficiency of the
multiscale registration techniques.

1. Introduction. Image registration is the process of determining the optimal spatial transforma-
tion that maps one image to another. Image registration is necessary, for example, when images
of the same object are taken at different times, from different imaging devices, or from different
perspectives. The two images to be registered, called the fixed and moving images, are the input
to the registration algorithm, and the output is the optimal transformation that maps the moving
image to the fixed image. Ideally, the transformed moving image should be identical to the fixed
image after registration. Applications of image registration include radiation therapy, image-guided
surgery, functional MRI analysis, and tumor detection, as well as many non-medical applications,
such as computer vision, pattern recognition, and remotely sensed data processing (see [4], [11] and
the references therein).

Image registration models are classified into two main categories according to the transformation
type: rigid and deformable. Rigid image registration models assume that the transformation that
maps the moving image to the fixed image consists only of translations and rotations. While such

2000 Mathematics Subject Classification. Primary: 68U10; Secondary: 92C55, 62P10, 94A08.
Key words and phrases. deformable image registration, multiscale analysis, CT, noise.

1



2 D. PAQUIN, D. LEVY, AND L. XING

models are sufficient for many applications, it is clear that many registration problems, particularly
in medical imaging, are non-rigid. For example, respiratory motion causes non-rigid, or deformable,
distortion of the lungs, which in turn results in a distortion of other organs. As another example, in
neurosurgery brain tumors are typically identified and diagnosed using magnetic resonance images
(MRI), but stereotaxy technology (the use of surgical instruments to reach specified points) generally
uses computed tomography (CT) images. Registration of these modalities allows the transfer of
coordinates of tumors from the MRI images to the CT images. However, if the tumor changes its
shape, size, or position, the surrounding brain matter will deform in a non-rigid way. Additionally,
during surgery the spatial coordinates of brain structures deform significantly due to leakage of
cerebrospinal fluid, administration of anesthetic agents, hemmorhage, and retraction and resection
of tissue. Image-guided neurosurgery procedures thus require registration of pre- and intra-operative
images of the brain. See [15] and [19] for a discussion of the use of deformable registration in
neurosurgery.

This paper is an extension of [13], in which we presented a multiscale approach to rigid regis-
tration of medical images. In this paper, we apply the multiscale registration algorithm of [13] to
deformable registration problems. While our method can be used in conjunction with any registra-
tion model, we choose to focus on B-spline free form deformation (FFD) models.

The structure of this paper is as follows. In Section 2, we provide a brief overview of the image
registration problem and discuss deformable registration techniques. In Section 3, we present the
problem of deformable image registration in the presence of noise, and illustrate the failure of
standard FFD techniques when one or both of the images to be registered contains significant levels
of noise. In Section 4, we review the hierarchical multiscale image decomposition of [18], and we
present two multiscale image registration algorithms based on the decomposition. In Section 5,
we demonstrate the accuracy and efficiency of our multiscale registration techniques with several
image registration experiments. Concluding remarks are given in Section 6.

Acknowledgment: The work of D. Levy was supported in part by the National Science Founda-
tion under Career Grant No. DMS-0133511. The work of L. Xing was supported in part by the
Department of Defense under Grant No. PC040282 and the National Cancer Institute under Grant
No. 5R01 CA98523-01.

2. The registration problem. Given a fixed and a moving image, the registration problem is the
process of finding an optimal transformation that brings the moving image into spatial alignment
with the fixed image. While this problem is easy to state, it is difficult to solve. The main source
of difficulty is that the problem is ill-posed, which means, for example, that the problem may not
have a unique solution. Additionally, the notion of optimality may vary for each application: for
example, some applications may require consideration only of rigid transformations, while other
applications require non-rigid transformations, while still other applications may require structural
correspondence of anatomical structures. Finally, computation time and data storage constraints
place limitations on the complexity of models that can be used for describing the problem. For a
detailed overview of the image registration problem and various image registration techniques, see
[12].

To formulate the registration problem mathematically, a two-dimensional gray-scale image f is a
mapping which assigns to every point x ∈ Ω ⊂ R

2 a gray value f(x) (called the intensity value of the
image at the point x). We will consider images as elements of the space L2(R2). Any registration
algorithm has three main components:

1. The transformation model which specifies the way in which the moving image can be trans-
formed to correspond to the fixed image.

2. The distance measure, or metric, used to compare the fixed and moving images.
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3. The optimization process that varies the parameters of the transformation model in such a
way that the transformation produced by the registration process is optimal.

Given a distance measure D : (L2(R2))2 → R and two images f(x),m(x) ∈ L2(R2), the solution φ
of the registration problem is given by the following minimization problem:

φ = argmin
ψ:R2→R2

D(f(x),m(ψ(x))), (1)

where ψ is in the specified space of transformation models. Examples of commonly used distance
measures are mean squares, normalized correlation, and mutual information. Examples of typical
transformation models are rigid, affine, polynomial, and spline transformations [12]. To minimize
D(f,m(ψ)), we must choose an optimizer which controls the minimization. The most commonly
used optimization techniques in image registration are gradient descent and regular step gradient
descent methods. The implementation of the registration algorithm works in the following way: at
each iteration, the distance D between the two images is computed. The specified transformation is
then applied to the moving image, and the distance between the images is recomputed. In theory,
this process continues until the distance is minimized (or maximized in certain cases), though in
practice a stopping criterion is applied.

Historically, image registration problems have been classified as either rigid or non-rigid. In
rigid registration problems, the moving image is assumed to differ from the fixed image by transla-
tion and/or rotation. Thus rigid registration techniques involve the determination of only a small
number of parameters. In non-rigid, or deformable rigid registration problems, the correspondence
between the two images involves a localized stretching of the images. As most of the organs in the
human body are not confined to rigid motion only, much of the current work in medical image reg-
istration is focused on the deformable case. Although deformable image registration clearly allows
for more flexibility in the types of images and applications in which it can be used, deformable reg-
istration techniques require significantly more computation time than rigid registration techniques,
and involve the determination of a very large number of parameters. In this paper, we shall focus
on the problem of deformable registration in the presence of noise. This is an extension of our work
on rigid registration in the presence of noise, [13].

2.1. Deformable registration techniques. Spline-based FFD transformation models are among
the most common and important transformation models used in non-rigid registration problems [6],
[17]. Spline-based registration algorithms use control points in the fixed image and a spline function
to define transformations away from these points. The two main spline models used in registration
are thin-plate splines and B-splines. Thin-plate splines have the property that each control point has
a global influence on the transformation. That is, if the position of one control point is perturbed,
then all other points in the image are perturbed as well. This can be a disadvantage because it
limits the ability of the transformation model to model localized deformations. In addition, the
computation time required for a thin-plate spline-based registration algorithm increases significantly
as the number of control points increases. See [3] for an overview of thin-plate splines.

In contrast, B-splines are only defined in the neighborhood of each control point. Thus perturbing
the position of one control point affects the transformation only in a neighborhood of that point. As
a result, B-spline-based registration techniques are more computationally efficient than thin-plate
splines, especially for a large number of control points. See [9] and [10] for a detailed description of
FFD transformation models. In this paper, we shall use deformable registration algorithms based
on B-spline FFD models. To define the spline-based deformation model, let Ω = {(x, y) | 0 ≤ x ≤
X, 0 ≤ y ≤ Y } denote the domain of the image volume. Let α denote a nx × ny mesh of control
points αi,j with uniform spacing δ. Then the B-spline deformation model can be written as the
2-D tensor product of 1-D cubic B-splines:
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φ(x, y) =

3
∑

l=0

3
∑

m=0

Bl(u)Bm(v)αi+l,j+m, (2)

where i = ⌊x/nx⌋ − 1 , j = ⌊y/ny⌋ − 1, and Bl represents the l-th basis of the B-spline:

B0(u) =
1

6
(1− u)3 ,

B1(u) =
1

6
(3u3 − 6u2 + 4) ,

B2(u) =
1

6
(−3u3 + 3u2 + 3u+ 1) ,

B3(u) =
1

6
u3 ,

0 ≤ u ≤ 1. Changing the control point αi,j affects the transformation only in a local neighborhood
of αi,j . The control points α act as parameters of the B-spline deformation model, and the degree
of non-rigid deformation which can be modeled depends on the resolution of the mesh of control
points α. A large spacing of control points allows modeling of global non-rigid deformation, while
a small spacing of control points allows modeling of local non-rigid deformations. Additionally, the
number of control points determines the number of degrees of freedom of the transformation model,
and hence, the computational complexity. For example, a B-spline deformation model defined by
a 10× 10 grid of control points yields a transformation with 2× 10× 10 = 200 degrees of freedom.
Thus there is a tradeoff between the model flexibility and its computational complexity.

We note in passing that there are additional deformable registration techniques such as elastic
models [2], viscous fluid models [5], and finite element models [7].

Example:Registration of a deformed image
Consider the mid-sagittal brain slice I and the deformed image S, shown in Figure 1. The

mid-sagittal brain slice I is taken from the Insight Segmentation and Registration Toolkit (ITK)
data repository [8]. The deformed image S is obtained by applying a known B-spline deformation
to the original image I. Since the deformation transformation that maps the deformed image S to
the original image I and corresponding deformation field are known, we can effectively evaluate the
accuracy of various deformable registration methods by comparing the output deformation fields
with the known deformation field. For all registration simulations presented in this paper, we use
a B-spline FFD registration technique with a mean squares image metric and a conjugate gradient
descent algorithm. However, the multiscale registration algorithms developed in this paper are
independent of the particular registration technique used to register the images.
Using an FFD registration model, the image S is successfully registered with the image I. In Figure
2, we compare the result of the registration process, namely the image obtained upon applying
the optimal deformable transformation determined by the algorithm to the deformed image, with
the original image I. Ideally, both figures should be identical. Indeed, the images in Figure 2
demonstrate that the deformable registration algorithm recovers the deformation transformation.
To quantitatively evaluate the accuracy of the registration algorithm, we compare the correlation

coefficients between the images before and after registration. The correlation coefficient ρ(A,B)
between two images A and B is given by:
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Original Image Deformed Image

Figure 1. The mid-sagittal brain slice I (shown on the left) and the deformed
image S (shown on the right).

ρ(A,B) =

∑

m

∑

n

(Amn − Ā)(Bmn − B̄)

√

∑

m

∑

n

(Amn − Ā)2(Bmn − B̄)2
,

where A and B are m × n two-dimensional images and Ā and B̄ represent the mean value of the
elements of A andB, respectively. A correlation coefficient of zero indicates a low degree of matching
between the images, and a correlation coefficient of 1 indicates exact similarity between the images.
Correlation coefficients are a commonly-used representation of similarity between images for the
evaluation of deformable registration techniques [14]. Before registration, the correlation coefficient
between the original and deformed images is 0.74. After registration, the correlation coefficient
between the transformed moving and fixed images is 0.96.

Original Image Registration Result

Figure 2. The result (shown on the right) upon registering the deformed image
S with the original image I (shown on the left).

In Figure 3, we display the exact deformation field corresponding to the deformation transfor-
mation between the images I and S (on the left) and the deformation field determined by the
deformable registration algorithm, and note that visually the two deformation fields are almost
identical. The deformation field is a two-dimensional vector field that represents graphically the
magnitude of the deformation at each pixel in the image.
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Exact Deformation Field Computed Deformation Field

Figure 3. The exact deformation field corresponding to the deformation transfor-
mation between I and S (shown on the left) and the deformation field produced by
the registration algorithm upon registering the deformed image S with the original
image I (shown on the right).

3. Deformation registration in the presence of noise. In this section, we study the effect
of noise on deformable registration. Again, we will consider the brain mid-sagittal slice I and the
deformed image S from Figure 1. Initially, we will consider the registration problem in which only
one of the two images (here, the moving image) is noisy. In imaging, the term noise refers to random
fluctuations in intensity values that occur during image capture, transmission, or processing, and
that may distort the information given by the image. Image noise is not part of the ideal signal and
may be caused by a wide range of sources, such as detector sensitivity, environmental radiation,
transmission errors, discretization effects, etc. In this paper, we will study the problem of image
registration in the presence of high levels of speckle noise (though we have conducted experiments
demonstrating that we obtain similar results for other types of noise). See, for example, our results
for rigid registration [13].

Speckle noise, or multiplicative noise, is a type of noise that occurs commonly in medical imaging.
In particular, speckle noise is often found in ultrasound images [1]. It is defined by the following
model. We let s(x) denote the actual image, and f(x) the observed image. Then

f(x) = s(x) + η(0, δ) · s(x), (3)

where η(0, δ) is uniformly distributed random noise of mean 0 and variance δ. We add speckle noise
of increasing variance to the image S, as illustrated in Figure 4. For a given noise variance δ, we
denote the noisy image Sδ.
In Figure 5, we illustrate the deformation fields produced by the standard FFD registration algo-
rithm upon registering the noisy deformed images Sδ with the original image I. Recall that the
actual deformation is shown in Figure 3.

A visual comparison of the deformation fields presented in Figure 5 with the exact deformation
field in Figure 3 indicates that the deformation registration technique fails to produce physically
meaningful results for noise variance δ greater than 0.2. To quantitatively evaluate the accuracy
of the deformable registration algorithm for registration of the noisy images, we compute the cor-
relation coefficients between the transformed moving and fixed images after registration for each
speckle noise variance δ. In Table 1, we present the correlation coefficients ρ for each noise variance
δ. For reference, we also include in the first line of Table 1 the correlation coefficients between the
images after registration when the deformed image contains no noise. Recall that the maximum
possible correlation coefficient is 1 and the minimum possible correlation coefficient is 0.

The results presented in Figure 5 and Table 1 indicate that ordinary deformable registration
techniques fail to produce an accurate registration result when one of the images to be registered
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0.80.70.60.5

0.40.30.20.1

Figure 4. The noisy images Sδ, for increasing values of δ.

0.80.70.60.5

0.40.30.20.1

Figure 5. The deformation fields produced by the standard FFD registration
algorithm upon registering the noisy deformed images Sδ with the original image
I, for increasing values of δ.

δ 0 0.1 0.2 0.3 0.4
ρ 0.96 0.90 0.85 0.75 0.69

δ 0.5 0.6 0.7 0.8 0.9
ρ 0.65 0.62 0.61 0.60 0.60

Table 1. The correlation coefficient ρ between the transformed moving and fixed
images after standard FFD registration for each speckle noise variance δ.

contains significant levels of noise. As expected, the level of failure increases as the speckle noise
variance δ increases. For variances greater than or equal to 0.2 the algorithm fails to produce any
meaningful results.
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4. Multiscale registration algorithms.

4.1. The multiscale decomposition. The multiscale registration techniques to be discussed in
this paper are based on the multiscale image representation using the hierarchical (BV,L2) decom-
positions of [18]. This multiscale decomposition will provide a hierarchical expansion of an image
that separates the essential features of the image (such as large shapes and edges) from the fine
scales of the image (such as details and noise). The decomposition is hierarchical in the sense that
it will produce a series of expansions of the image that resolve increasingly finer scales, and hence
include increasing levels of detail. We will eventually apply the multiscale decomposition algorithm
to the problem of image registration in the presence of noise, and will demonstrate the accuracy of
the multiscale registration technique for noisy images such as those that were considered in Section
3.

We will use the following mathematical spaces in the decomposition algorithm. The space of
functions of bounded variation, BV , is defined by:

BV =

{

f

∣

∣

∣

∣

||f ||BV := sup
h 6=0
|h|−1||f(·+ h)− f(·)||L1 <∞

}

.

We will also use the Sobolev space W−1,∞ with norm given by:

||f ||W−1,∞ := sup
g

[
∫

f(x)g(x)

||g||W 1,1

dx

]

,

where ||g||W 1,1 := ||∇g||L1 .
Define the J-functional J(f, λ) as follows:

J(f, λ) := inf
u+v=f

λ||v||2L2 + ||u||BV , (4)

where λ > 0 is a scaling parameter that separates the L2 and BV terms. This functional J(f, λ)
was introduced in the context of image processing by Rudin, Osher, and Fatemi [16]. Let [uλ, vλ]
denote the minimizer of J(f, λ). The BV component, uλ, captures the coarse features of the image
f , while the L2 component, vλ, captures the finer features of f such as noise. This model is effective
in denoising images while preserving edges, though it requires prior knowledge on the noise scaling
λ.

Tadmor, et al. proposed in [18] an alternative point of view in which the minimization of J(f, λ)
is interpreted as a decomposition f = uλ+ vλ, where uλ extracts the edges of f and vλ extracts the
textures of f . This interpretation depends on the scale λ, since texture at scale λ consists of edges
when viewed under a refined scale. We refer to vλ = f − uλ as the residual of the decomposition.
Upon decomposing f = uλ + vλ, we proceed to decompose vλ as follows:

vλ = u2λ + v2λ,

where

[u2λ, v2λ] = arginf
u+v=vλ

J(vλ, 2λ).

Thus we obtain a two-scale representation of f given by f ∼= uλ+u2λ, where now v2λ = f−(uλ+u2λ)
is the residual. Repeating this process results in the following hierarchical multiscale decomposition
of f . Starting with an initial scale λ = λ0, we obtain an initial decomposition of the image f :

f = u0 + v0, [u0, v0] = arginf
u+v=f

J(f, λ0).

We then refine this decomposition to obtain
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vj = uj+1 + vj+1, [uj+1, vj+1] = arginf
u+v=vj

J(vj , λ02
j+1), j = 0, 1, . . .

After k steps of this process, we have:

f = u0 + v0 = u0 + u1 + v1 = u0 + u1 + u2 + v2 = . . . = u0 + u1 + . . .+ uk + vk, (5)

which is a multiscale image decomposition f ∼ u0 +u1+ . . .+uk, with a residual vk. As k increases,
the uk components resolve edges with increasing scales λk = λ02

k.

4.1.1. Implementation of the multi-scale decomposition. As described in [18], the initial scale λ0

should capture the smallest oscillatory scale in f , given by

1

2λ0
≤ ||f ||W−1,∞ ≤

1

λ0
. (6)

However, in practice, we may not be able to determine the size of ||f ||W−1,∞ , so we determine the
initial choice of λ0 experimentally. Following [18], for the applications presented in this paper, we
will use λ0 = 0.01 and λj = λ02

j .
We follow the numerical algorithm of [18] for the construction of our hierarchical decomposition.

In each step, we use finite-difference discretization of the Euler-Lagrange equations associated with
the J(vj , λj+1) to obtain the next term, uj+1, in the decomposition of the image f . Due to the
singularity when |∇uλ| = 0, we replace J(f, λ) by the regularized functional

Jǫ(f, λ) := inf
u+v=f

{

λ||v||2L2 +

∫

Ω

√

ǫ2 + |∇u|2 dx dy

}

, (7)

and at each step, we find the minimizer uλ of Jǫ. The Euler-Lagrange equation for Jǫ(f, λ) is

uλ −
1

2λ
div

(

∇uλ
√

ǫ2 + |∇uλ|2

)

= f in Ω ,

with the Neumann boundary conditions:

∂uλ
∂n

∣

∣

∣

∣

∂Ω

= 0, (8)

where ∂Ω is the boundary of the domain Ω and n is the unit outward normal. We thus obtain

an expansion f ∼
k
∑

j=0

uj , where the uj are constructed as approximate solutions of the recursive

relation given by the following elliptic PDE:

uj+1 −
1

2λj+1
div

(

∇uj+1
√

ǫ2 + |∇uj+1|2

)

= −
1

2λj
div

(

∇uj
√

ǫ2 + |∇uj |2

)

. (9)

To numerically implement the method, we cover the domain Ω with a grid (xi := ih, yj := jh),
and discretize the elliptic PDE of Eq. (9) as follows:.

ui,j = fi,j +
1

2λh2

[

ui+1,j − ui,j
√

ǫ2 + (D+xui,j)2 + (D0yui,j)2
−

ui,j − ui−1,j
√

ǫ2 + (D−xui,j)2 + (D0yui−1,j)2

]

+
1

2λh2

[

ui,j+1 − ui,j
√

ǫ2 + (D0xui,j)2 + (D+yui,j)2
−

ui,j − ui,j−1
√

ǫ2 + (D0xui,j−1)2 + (D−yui,j)2

]

, (10)
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whereD+, D−, andD0 denote the forward, backward, and centered divided differences, respectively.
To solve the discrete regularized Euler-Lagrange equations (10), we use the Gauss-Siedel iterative
method to obtain:

un+1
i,j = fi,j +

1

2λh2





uni+1,j − u
n+1
i,j

√

ǫ2 + (D+xuni,j)
2 + (D0yuni,j)

2
−

un+1
i,j − u

n
i−1,j

√

ǫ2 + (D−xuni,j)
2 + (D0yuni−1,j)

2





+
1

2λh2





uni,j+1 − u
n+1
i,j

√

ǫ2 + (D0xuni,j)
2 + (D+yuni,j)

2
−

un+1
i,j − u

n
i,j−1

√

ǫ2 + (D0xuni,j−1)
2 + (D−yuni,j)

2



 . (11)

To satisfy the Neumann boundary conditions (8), we first reflect f outside Ω by adding grid lines
on all sides of Ω. As the initial condition, we set u0

i,j = fi,j . We iterate this numerical scheme for

n = 0, 1, . . .N until ||un∞ − un∞−1|| is less than some preassigned value so that un∞

i,j is an accurate
approximation of the fixed point steady solution uλ.

Finally, we denote the final solution uλ := {un∞

i,j }i,j . To obtain the hierarchical multiscale
decomposition, we reiterate this process, each time updating f and λ in the following way:

fnew ← fcurrent − uλ,
λnew ← 2λcurrent.

(12)

That is, at each step, we apply the J(fcurrent−uλ, 2λ) minimization to the residual fcurrent−uλ of
the previous step. Taking λj = λ02

j , we obtain after k steps a hierarchical multiscale decomposition
f = uλ0

+ uλ1
+ . . . + uλk

+ vλk
, where we write uλj

= uj . We call the uj, j = 1, 2, . . . , k the

components of f , and the vk the residuals. For ease of notation, given an image f , we let Ck(f)
denote the kth scale of the image f , k = 1, . . . ,m:

Ck(f) =
k−1
∑

i=0

uk(f). (13)

Thus Ck(A) will denote the kth scale of the image A, and Ck(B) will denote the kth scale of image
B.

4.2. Multiscale registration algorithms. In this section, we present two multiscale image reg-
istration algorithms that are based on the hierarchical multiscale decomposition of [18] reviewed
in Section 4.1. For the general setup, consider two images A (the fixed image) and B (the moving
image), and suppose that we want to register image B with image A. Suppose that one or both
of the images contains a significant amount of noise. If only one of the images is noisy, we assume
that it is image B. For both of the algorithms described in this section, we first apply the multi-
scale decomposition to both images, and let m denote the number of hierarchical steps used in the
decomposition, as illustrated in Figure 6.

4.2.1. Algorithm I: Iterated single-node multiscale registration algorithm. In our single-node mul-
tiscale registration algorithm, Algorithm I, we iteratively register the kth scale Ck(B) of image B
with the image A, for k = 1, . . . ,m. That is, we first register the first coarse scale C1(B) of the
moving image with the fixed image A. The output of this registration process is the set of defor-
mation parameters that represent the optimal deformation transformation between C1(B) and A.
We then register the second scale C2(B) of the moving image with the fixed image A, using the

output deformation parameters from the first registration as the starting parameters for the second

registration. We repeat this procedure until the last scale (or desired stopping scale) is reached.
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.

.

.

Coarsest Scale of

(Fixed Image)

Original Image B

(Moving Image)

Original Image A

C1(A) Image A

Coarsest Scale of

C2(A)

Finest Scale of

Image A

C1(B) Image B

C2(B)

Image B

Cm(A)

Cm(B)
Finest Scale of

Figure 6. Decomposition of the fixed and moving images into a hierarchical ex-
pansion of coarse and fine scales.

That is, at each stage, we use the output deformation parameters from the previous registration
as the initial parameters for the current registration. See Figure 7 for a schematic visualization of
Algorithm I.

We refer to this algorithm as a one-node multiscale registration algorithm because we use only
the multiscale components of the moving image B. Since this algorithm considers scales only of
the noisy image, we expect that it will be particularly successful when only one of the images to be
registered is noisy.

4.2.2. Algorithm II: Iterated multi-node multiscale registration algorithm. In our multi-node multi-
scale registration algorithm, Algorithm II, we iteratively register the kth scale of image B with the
kth scale of image A, for k = 1, 2, . . .m. See Figure 8 for a schematic visualization of Algorithm II.

We refer to this algorithm as a multi-node multiscale registration algorithm because in each of
the m registrations prescribed by the algorithm, we consider both the scales of the fixed image A
and the scales of the moving image B. Since this algorithm considers scales of both the fixed and
moving images, we expect that it will be particularly successful when both of the images to be
registered are noisy.

5. Results and discussion. In Section 3, we demonstrated that ordinary FFD registration fails
to produce an acceptable result when the moving image contains a significant level of noise. In this
section, we demonstrate that the multiscale methods presented in Section 4.2 enable an accurate
registration of images for which ordinary deformable registration fails.

5.1. Registration of a noisy deformed image. Initially, we consider the case in which only one
of the images to be registered (in this case, the moving image) is noisy. Consider again the original
image I and the noisy deformed image S0.6, and recall that the exact deformation transformation
between the images is given by the deformation field in Figure 3.
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Moving Image Transformation Fixed Image

B

Image A

Scale 2 of 

Image A

Scale 3 of 

Image A

Scale 4 of

Image A

Scale m of 

Image A

Scale 1 of

Figure 7. Schematic visualization of Algorithm I.

Iteration 1 2 3 4
ρ 0.82 0.86 0.90 0.92

Iteration 5 6 7 8
ρ 0.95 0.95 0.95 0.95

Table 2. The correlation coefficients between the transformed moving and fixed
images after each iteration of iterated single-node multiscale registration (Algo-
rithm I). The deformed image has added noise of variance 0.6.

We register the noisy deformed image S0.6 with the original image I using Algorithm I, the
iterated single-node multiscale registration algorithm. We use m = 8 hierarchical steps in the
multiscale decomposition of the noisy deformed image S0.6. In Table 2, we compute the correlation
coefficients between the transformed moving and fixed images after iterated single-node multiscale
registration, and in Figure 9, we illustrate the deformation field produced by the final iteration.

The results presented in Table 2 and Figure 9 demonstrate that the iterated multi-scale regis-
tration algorithm is a significant improvement over ordinary deformable registration techniques.

5.1.1. Increasing the noise variance. Finally, we demonstrate that the iterated single-node mul-
tiscale registration algorithm produces accurate results for noise variances δ significantly greater
than those at which ordinary deformable registration fails. In Figure 10, we illustrate the noisy
deformed images Sδ for very large values of the noise variance δ, and in Figure 11, we illustrate
the deformation fields computed using the single-node iterated multiscale registration algorithm
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φ2

φ2

φ3

φ3

φ4

φm
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Figure 8. Schematic visualization of Algorithm II.

Figure 9. The deformation field obtained upon registering the noisy deformed
image S0.6 with the original image using the iterated single-node multiscale regis-
tration method (Algorithm I).

(Algorithm III) to register the noisy deformed images Sδ with the original image I for each δ illus-
trated in Figure 10. In Table 3, we illustrate the correlation coefficients between the images after
iterated single-node multiscale registration. These results demonstrate that the iterated multiscale
registration algorithm accurately registers the noisy deformed image with the original image for
noise variances that are significantly greater than those at which ordinary registration fails. Recall
from Section 3 that ordinary deformable registration of a noisy deformed image with a non-noisy
fixed image fails for noise variances δ greater than 0.2. In Figure 11 and Table 3, we demonstrate
that the iterated multiscale registration algorithm produces accurate results for noise variances δ
as large as 6.
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δ=0 δ=0.4 δ=1δ=0.8

δ=2 δ=3 δ=4 δ=6

Figure 10. The noisy deformed images Sδ for increasing noise variances δ.

δ=6δ=4δ=3δ=2

δ=1δ=0.8δ=0.4δ=0

Figure 11. The deformation fields obtained upon registering the noisy deformed
image Sδ with the original image I using Algorithm I for increasing noise variances
δ.
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δ 0 0.4 0.8 1
ρ 0.96 0.95 0.95 0.95

δ 2 3 4 6
ρ 0.93 0.92 0.92 0.90

Table 3. The correlation coefficients between the transformed moving and fixed
images after iterated single-node multiscale registration (Algorithm I) for increasing
values of the noise variance δ.

5.2. Registration of a noisy deformed image with a noisy fixed image. In this section,
we consider the case in which both images to be registered contain significant levels of noise. We
add speckle noise of variance 0.6 to the original image I, and denote this noisy image I0.6. Our
goal is to register the noisy deformed image S0.6 with the noisy fixed image I0.6. In Figure 12, we
illustrate both of the noisy images, as well as the deformation field produced upon registering the
noisy deformed image S0.6 with the noisy original image I0.6 using an ordinary FFD registration
technique.

Noisy Original Image Noisy Deformed Image Deformation Field

Figure 12. The noisy mid-sagittal brain slice I0.6 (shown on the left), the noisy
deformed image S0.6 (shown in the center), and the deformation field (shown on
the right) produced upon registering S0.6 with I0.6 using ordinary deformable reg-
istration techniques.

A visual comparison of the computed deformation field in Figure 12 with the exact deformation
field in Figure 3 indicates that ordinary deformable registration of the noisy images fails. The
correlation coefficient ρ between the images after ordinary deformable registration is 0.64.

5.2.1. Multi-node registration. Since ordinary deformable registration of the noisy images fails, we
register the images using our iterated multi-node multiscale algorithm (Algorithm II). We use
m = 8 hierarchical steps in the multiscale decomposition of the images. In Table 4, we compute
the correlation coefficients between the transformed moving and fixed images after each iteration of
the iterated multi-node multiscale algorithm, and in Figure 13, we illustrate the deformation field
produced by the final iteration.

The results presented in Table 4 and Figure 13 demonstrate that the iterated multi-scale regis-
tration algorithm is a significant improvement over ordinary FFD registration techniques.

5.2.2. Increasing the noise variance. Finally, we demonstrate as in Section 5.1.1 that the iterated
multi-node multiscale registration algorithm produces accurate results when both of the images
contain speckle noise of variance significantly greater than the level at which ordinary deformable
registration fails. In Figure 15, we illustrate the deformation fields computed using the iterated
multiscale registration algorithm to register the noisy deformed image Sδ with the noisy original
image Iδ for increasing noise variances δ, and in Table 5, we present the correlation coefficients be-
tween the noisy images after iterated multi-node multiscale registration. These results demonstrate
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Figure 13. The deformation field obtained upon registering the noisy deformed
image S0.6 with the noisy original image I0.6 using the multi-node iterated multi-
scale registration method (Algorithm III).

Iteration 1 2 3 4
ρ 0.93 0.93 0.94 0.94

Iteration 5 6 7 8
ρ 0.94 0.95 0.95 0.95

Table 4. The correlation coefficients between the transformed moving and fixed
images after each iteration of iterated multi-node multiscale registration (Algorithm
III).

that the iterated multiscale registration algorithm accurately registers the noisy deformed image
with the noisy original image for noise variances significantly greater than those at which ordinary
techniques fail; recall that ordinary deformable registration failed when only one of the images to be
registered contain noise of variance 0.2. In Figure 14, we illustrate the noisy original and deformed
images I2 and S2. These images contain speckle noise with variance δ = 2. As demonstrated by the
deformation field in Figure 15, the iterated multi-node multiscale registration algorithm (Algorithm
II) accurately registers these very noisy images.

Noisy Original Image (δ=2) Noisy Deformed Image (δ=2)

Figure 14. The noisy original and deformed images I2 and S2.

6. Conclusions. While there are many existing deformable registration techniques, common ap-
proaches are shown to fail when one or more of the images to be registered contains even moderate
levels of noise. We have presented deformable image registration techniques based on the hierar-
chical multiscale image decomposition of [18] that are particularly effective for registration of noisy
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δ=0 δ=0.4 δ=0.8

δ=1 δ=1.5 δ=2

Figure 15. The deformation fields obtained upon registering the noisy deformed
image Sδ with the noisy original image Iδ using the multi-node iterated multiscale
algorithm (Algorithm II) for increasing noise variances δ.

δ 0 0.4 0.8 1 1.5 2
ρ 0.96 0.95 0.94 0.93 0.93 0.90

Table 5. The correlation coefficients between the transformed moving and fixed
images after iterated multi-node multiscale registration (Algorithm II) for increas-
ing values of the noise variance δ.

images. This paper extends the multiscale registration techniques of [13], in which we presented
algorithms for rigid image registration in the presence of noise. The multiscale decomposition of an
image results in a hierarchical representation that separates the coarse and fine scales of the image.
We presented two multiscale registration algorithms based on this decomposition. In the first, we
follow an iterated single-node multiscale registration strategy in which we register the scales of the
moving image with the fixed image, at each stage using the deformation parameters produced by the
previous scale registration as the starting point for the current scale registration. In the second, we
use a multi-node multiscale registration method in which we register the scales of the moving image
with the scales of the fixed image, at each stage using the deformation parameters produced by the
previous scale registration as the starting point for the current scale registration. Using images in
which the precise deformation between the fixed and moving images is known, we have shown that
the multiscale registration algorithms are indeed accurate for levels of noise much higher than the
noise levels at which ordinary deformable registration techniques fail. Although we have presented
our algorithm in a way that is, in principle, independent of the specific multiscale decomposition
used for the expansion of the images to be registered, we have found that the hierarchical (BV,L2)
multiscale decomposition of [18] contains unique features that are not necessarily evident in other
decomposition techniques. For example, information about small geometrical details is contained
in both the coarse and fine scales of the image decomposition. For further details, we refer to [18].
Although the relative merits of different scale decompositions when applied to image registration is
still open to debate and left for further research, we believe that the hierarchical (BV,L2) decompo-
sition is particularly well-suited for image registration problems. Another area for future research
is combination of our multiscale registration algorithms with multi-level B-splines registration, as
presented in [17]. Finally, we would like to emphasize that using the multiscale decomposition is
independent of the registration method used and of the noise model. The multiscale decomposition
can be used in conjunction with any registration method and can be applied to registration of
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images containing any type of noise, without any assumption about the particular type of noise
contained in the images. In the future, we would like to work on studying convergence of registra-
tion techniques based on the hierarchical multiscale image decomposition, as well as applications
of multiscale registration to other (non-medical) problems in image registration.
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