
Small fluctuations in epitaxial growth via

conservative noise

Paul N Patrone1,2,3, Rongrong Wang4, Dionisios Margetis4,5,6

1Institute for Research in Electronics and Applied Physics, University of Maryland,

College Park, Maryland 20742-3511, USA
2Center for Nanoscale Science and Technology, National Institute of Standards and

Technology, Gaithersburg, Maryland 20899-6200, USA
3Department of Physics, University of Maryland, College Park, Maryland

20742-4111, USA
4Department of Mathematics, University of Maryland, College Park, Maryland

20742-4111, USA
5Institute for Physical Science and Technology, University of Maryland, College Park,

Maryland 20742-4111, USA
6Center for Scientific Computation and Mathematical Modeling, University of

Maryland, College Park, Maryland 20742-4111, USA

E-mail: ppatrone@umd.edu, rongwang@math.umd.edu and dio@math.umd.edu

Abstract. We study the combined effect of growth (material deposition from

above) and nearest-neighbor entropic and force-dipole interactions in a stochastically

perturbed system of N line defects (steps) on a vicinal crystal surface in 1+1

dimensions. First, we formulate a general model of conservative white noise, and

we derive simplified formulas for the terrace width distribution (TWD) and pair

correlations, particularly the covariance matrix of terrace widths, in the limit N → ∞
for small step fluctuations. Second, we apply our formalism to two specific noise models

which stem, respectively, from: (i) the fluctuation-dissipation theorem for diffusion

of adsorbed atoms; and (ii) the phenomenological consideration of deposition-flux-

induced asymmetric attachment and detachment of atoms at step edges. We discuss

implications of our analysis, particularly the narrowing of the TWD with the deposition

flux, connection of noise structure to terrace width correlations, behavior of these

correlations in the macroscopic limit, and comparison of our perturbation results to a

known mean field approach.
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1. Introduction

A central question in nonequilibrium statistical mechanics is: how do large-scale evo-

lution laws emerge from the deterministic or stochastic dynamics of many-particle sys-

tems [1]? Descriptions of linkages of particle models to full continuum theories lie at

the heart of computational physics [2]. Related themes of modeling and analysis date

back to classic works for the Boltzmann equation; see, e.g., [3–6].

Epitaxial growth consists of out-of-equilibrium processes that occur on crystal

surfaces, usually in the presence of material deposition from above. Such processes

accompany the fabrication of nanoscale structures, e.g., quantum wires and dots [7]. In

particular, vicinal surfaces are characterized by nanoscale terraces oriented in the high-

symmetry direction; the terraces are separated by line defects (steps) of atomic size. For

macroscale surface regions at not-too-high temperatures, the steps can be considered as

monotone (of the same ‘sign’), with their number fixed by the miscut angle set by the

experiment [8].

In this article, we address the question: how do terraces fluctuate on a macroscopic

vicinal surface in 1+1 dimensions? Our goal is to study the joint effect on the

macroscopic behavior of noise and (microscopic) interactions of N steps in the presence

of growth. The noise is white and conservative, and is subject to geometric-type

constraints: the total length of the sample does not fluctuate and the covariance

of terrace widths is finite. Although our formalism is reasonably general for 1+1

dimensions, we restrict attention to two specific models consistent with our constraints.

One noise model comes from an application of the fluctuation-dissipation theorem

to the density of adsorbed atoms (adatoms) [9]. Another model phenomenologically

accounts for deposition-flux-induced fluctuations in the number of atoms that stick to

steps [10]. For small fluctuations, the resulting stochastic differential equations (SDEs)

are linearized around the average terrace width. We solve these equations, and describe

the terrace width distribution or density (TWD) and terrace width pair correlations as

N → ∞.

By the Burton-Cabrera-Frank (BCF) theory [11], the major kinetic processes

incorporated into the deterministic model are: (a) diffusion of adatoms on terraces;

(b) attachment and detachment of atoms at step edges; and (c) external deposition

with (given) flux, F . To simplify the analysis, we consider straight (kink free) steps and

impose diffusion-limited (DL) kinetics, in which the diffusion of adatoms on terraces

is the slowest process. In this case, the adatom density at each step edge attains an

equilibrium value [8]. In addition, the steps are allowed to interact entropically and as

force dipoles [12, 13].

Our analysis forms part of a relatively long sequence of works in stochastic step

dynamics. The setting was motivated by the experimental issue how to control the

TWD by material deposition [14, 15]. Elements of our analysis were inspired by [9, 16].

In particular, [16] predicted the narrowing of the TWD during growth via ad hoc white

noise, neglect of step interactions, and application of a mean field approximation in 1+1
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dimensions. This prediction compared favorably with kinetic Monte Carlo simulations

in two space dimensions (2D) [16].

Earlier systematic theories, e.g., [9, 17, 18], make use of the fluctuation-dissipation

theorem for the adatom density and flux in order to determine the noise, invoke richer

step energetics and kinetics, and focus on effects of step meandering in 2+1 dimensions.

In particular, in [9] the authors point out that sufficient increase of the deposition flux

causes a morphological step instability driven by adatom diffusion, which is distinct from

effects of statistical fluctuations. Other studies include the phenomenological approaches

of [10,19] (see also [20]), where the noise models appear to have an empirical character.

Here, we aim to enrich the analysis of [16] in three ways. First, we include step

interactions jointly with material deposition from above. Second, we use different

models of noise. For instance, we account for a conservative noise consistent with the

fluctuation-dissipation theorem in the spirit of [9]. As an alternative, we entertain the

scenario of an F -dependent conservative white noise, following [10]. We show how these

choices may tone down the F -dependence of the TWD predicted in [16]. Third, we

describe terrace width pair correlations, thus not limiting our attention to the TWD.

However, we leave out step meandering at this stage, in contrast to the more realistic

(yet much more elaborate) treatment of [9, 17, 18]. One of our purposes is to quantify

the connection of noise structure to terrace width correlations at both the microscale

and the macroscale in a setting sufficiently simple, i.e., in one space dimension (1D), to

enable tractable computations.

Despite its 1D character, our linearized stochastic model with interactions can be

viewed as prototypical for a class of asymmetric discrete processes in the limit of largeN .

The kinetic process for the motion of terraces is asymmetric because of a drift (average

lateral step velocity) proportional to F (see section 2.2) [16, 21, 22]. This convective

effect, although negligibly small in many material systems, is retained here for the sake

of a more general treatment (in 1D). As a result, on every terrace the flux of deposited

atoms to an upstep is different from the flux at a downstep. Similar kinetic effects

arise from the Ehrlich-Schwoebel barrier [9, 23–27], electromigration currents [28–30],

differences of atomistic origin in attachment rates [26,31], and impurities [32, 33].

From a kinetic theory view, our work forms an extension of the treatment in [34–36]

where the mean field approach of [16] is placed on the grounds of Bogoliubov-Born-

Green-Kirkwood-Yvon (BBGKY) hierachies for joint probability densities of terrace

widths. In [34], the steps are energetically non-interacting, and the white noise is non-

conservative. In [35], the steps are interacting, albeit in the absence of deposition (with

F = 0). Both step interactions and nonzero flux F are discussed briefly in [36], which

only reports (without derivations) the TWD from an ad hoc second-order conservative

noise. Here, we consider different, physically-inspired and more transparent models of

noise and, in addition, describe terrace width pair correlations. Moreover, we discuss

discrepancies of some of our results from a mean field outcome.

Assuming small fluctuations of each terrace, induced by “small” noise terms, we

linearize the SDEs. The ensuing terrace width stochastic process is Gaussian. The
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average terrace width is fixed at its initial value (consistent with the misorientation

of the vicinal surface). We compute the terrace width covariance matrix analytically

by allowing N → ∞ while keeping the time t independent of N (see section 3). In

particular, we derive relatively simple formulas for the terrace width covariance matrix

in the steady state. By comparing our result for the terrace width variance to the mean

field approach introduced in [16] and further discussed in [34], we indicate the role of

the noise structure in terrace width pair correlations in the steady state; see sections

4.1 and 4.2. Plausible implications of our predictions are discussed in section 4.3.

Our model is limited in its applicability. One limitation is due to the assumed 1D

geometry. Because steps are straight, meandering is suppressed, and the noise for terrace

widths has a relatively simple form. This setting contrasts the 2D geometry invoked

e.g., in [9,17,18]. For instance, in [9,18] Langevin forces are added to both the adatom

diffusion equation and the boundary conditions for atom attachment-detachment at

curved steps. In [17], the noise is white in both time and the space coordinate along the

step edge. Here, we resort to a tradeoff. On one hand, we analyze a tractable geometry.

On the other hand, we exclude some realistic effects such as step meandering.

Another limitation, which is a consequence of linearizing step interactions for small

fluctuations, is that steps can cross. This feature is, of course, unphysical. However, it

has a negligibly small likelihood provided the TWD variance is small (see section 4.4).

Throughout this paper, we assume familiarity of the reader with basic concepts of

epitaxial systems. For reviews on the subject, the reader may consult, e.g., [7,8,37–39].

The remainder of our paper is organized as follows. In section 2, we formulate

generally the SDEs for 1D step motion in the presence of growth, step interactions and

conservative noise. We solve the linearized SDEs and give general formulas for the TWD

and terrace width covariance matrix. In section 3, we compute the TWD and terrace

width covariance matrix under two specific choices for the noise. In section 4, we discuss

implications of our results: relation of noise structure to correlations, comparison to a

mean field approach, validity of our model, and plausible connections to experiment.

The appendices provide technical details needed in the main text.

Notation and terminology. We apply the Einstein summation convention, in which

summation is implied by repeated indices, unless we state otherwise. The symbol B(t)
denotes Brownian motion, while η(t) = dB/dt is white noise (where the time derivative

is interpreted in the sense of distributions). The symbol E[X] denotes the average

of the random variable X; the terms “mean” and “expectation” are also used for E
interchangeably. Matrices and vectors are boldface. The matrix C is represented by

Ck,l, indicating the entry at the kth row and lth column. The norm squared of the

N × N circulant matrix C is |C|2 =
∑N−1

l=0 |C0,l|2 =
∑N−1

k=0 |Ck,0|2. By f = O(g) we

imply that f/g is bounded as a parameter or variable approaches an extreme value. The

term “deposition flux” refers to F , i.e. material deposition from above; and “adatom

flux” refers to the current due to diffusion of adatoms on terraces.



Small fluctuations in epitaxial growth via conservative noise 5

Figure 1. Schematic (cross section) of step geometry: x = xi(t) is the ith step

position, a is the step height, and h is the surface height.

2. Formulation and general results in 1+1 dimensions

In this section, we formulate SDEs for terrace widths in 1+1 dimensions. Adatom

diffusion is the main process driving the motion of steps by mass conservation. Atoms

that migrate to the terrace boundaries attach to or detach from step edges; as a result,

steps advance or retreat. Force-dipole and entropic step interactions (between nearest-

neighbor steps) determine the equilibrium adatom density at each step edge, which in

turn influences the net mass flux toward a step.

Because we consider continuous adatom densities, we also introduce Gaussian noise

to account for microscopic deviations from continuum motion [40]. For a sufficiently

weak noise term, we linearize the SDEs and derive general formulas for the TWD and

terrace width covariance matrix.

2.1. Deterministic model

Let us begin with elements of the deterministic motion of terraces and steps. The

geometry consists of straight steps of height a at x = xi(t) (see figure 1). The ith terrace

is the region xi < x < xi+1, where wi(t) := xi+1(t) − xi(t) > 0 and i = 0, . . . , N − 1.

Apply screw periodic boundary conditions so that steps are mapped onto point particles

on a ring. We set wi(0) = $, where $ is a constant.

The formulation of equations for xi(t) is outlined in [34], and summarized here with

a more precise description of step interactions. In the presence of material deposition

from above, steps have a typical (drift) velocity v = Fa$, where F is the deposition rate.

By a Galilean transformation to the comoving frame [16,22], the adatom concentration

%i(x, t) on the ith terrace satisfies (D∂2
x̃ + v∂x̃)%i + F = ∂t̃%i, where D is the terrace

diffusion constant and (x̃, t̃) = (x − vt, t). By the quasi-steady approximation we set

∂t̃%i ≈ 0, which holds if deviations of the actual step velocity from v are much smaller

than the diffusive speed D/$. Now remove the tildes for ease of notation (x̃ → x).

By linear kinetics, the atom attachment-detachment at the steps bounding the ith

terrace is expressed by [8] −Ji(xi) = κ [%i(xi) − %eqi ] and Ji(xi+1) = κ [%i(xi+1) − %eqi+1],

where Ji(x) = −D∂x%i − v%i is adatom flux on the ith terrace, %eqi is the equilibrium

adatom concentration at the ith step edge, and κ is a constant rate. The quantity
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%eqi encapsulates energetics, e.g., force dipole step interactions [8, 12, 13]. Distinct rates

κu, κd for up- and down-step edges (Ehrlich-Schwoebel effect [23]) can also be included.

We enforce the conditions v/κ � 1 and D/κ � $, which amount to DL kinetics.1

This means that we formally let κ → ∞ in the attachment-detachment conditions at

step edges, so that %i(xi) → %eqi since the flux is finite [16].

By mass conservation, each step advances or retreats in response to the net mass

flux incident on it. Thus, the step velocity reads ẋi = dxi/dt = (Ω/a)[Ji−1(xi)− Ji(xi)]

where Ω is the atomic area, Ω ≈ a2. By solving the diffusion equation for %i (treating

the positions xi and densities %eqi as fixed), and thus determining Ji(x), we obtain a

system of ordinary differential equations (ODEs) for xi(t), and in turn for wi(t) [34]:

ẇi =
dwi

dt
=

aF

2

{
wi+1e

vwi+1
2D

sinh(vwi+1

2D
)
−

2wi cosh(
vwi

2D
)

sinh(vwi

2D
)

+
wi−1e

−vwi−1
2D

sinh(vwi−1

2D
)

+ a$

[
%eqi+2

e
vwi+1
2D

sinh(vwi+1

2D
)
− %eqi+1

(
e−

vwi+1
2D

sinh(vwi+1

2D
)
+

2e
vwi
2D

sinh(vwi

2D
)

)
+ %eqi

(
2e−

vwi
2D

sinh(vwi

2D
)
+

e
vwi−1

2D

sinh(vwi−1

2D
)

)
− %eqi−1

e−
vwi−1

2D

sinh(vwi−1

2D
)

]}
, (1)

where i = 0, 1, . . . , N − 1. It remains to express each %eqi in terms of positions xi.

The step interactions are introduced explicitly in the ith-step chemical potential,

µi, through the relation %eqi = ρ0(1 + µi/T ) where ρ0 is the equilibrium adatom density

on a terrace, and T is the Boltzmann energy [8]. If EN({xi}) is the total energy per

unit length of the step train, we have µi = Ω(∂EN/∂xi). For entropic and force-dipole

interactions of strength ğ, this EN reads [8, 12, 13]

EN = ğ
∑
i

(
a

wi

)2

⇒ µi = ğa

[(
a

wi

)3

−
(

a

wi−1

)3]
(ğ > 0) . (2)

Equation (1) is rewritten accordingly by eliminating all of the %eqi in favor of wi. We

leave this task to the interested reader. If wi(0) = $, then wi(t) ≡ $ is a stable

(equilibrium) solution for all t > 0.

2.2. Stochastically perturbed system and linearization

Next, we add noise to ODEs (1) by writing

ẇi(t) = Ãi(wi−2, wi−1, wi, wi+1, wi+2) +$Q̃i,j η̃j, wi(0) = $ , (3)

where Ãi(wi−2, wi−1, wi, wi+1, wi+2) is the right hand side of (1) in view of (2); the

matrix Q̃ is circulant and has units of time raised to the power −1/2; and η̃ is a vector

Gaussian white noise, i.e., η̃i = dBi/dt. The matrix Q̃ in principle depends on {wi}
and {η̃i}, but here we consider only constant Q̃. The factor $ multiplying Q̃ has

been extracted for later algebraic convenience. The components η̃j obey the relation

1For v = O(1) > 0 a more precise condition on v reads v/κ � tanh[v$/(2D)].
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E[η̃i(t) η̃j(t′)] = δi,j δ(t− t′), so that the matrix Q̃ controls the covariance structure2 of

the noise. In this section, we leave the noise matrix Q̃ otherwise unspecified in order

to derive general results. In section 3, we consider two special cases of noise and their

implications for the TWD and terrace width pair correlations.

In the limit of a sufficiently small $2|Q̃|2, we treat the noise as a perturbation

of (1). Because stable solutions of (1) respond linearly to small perturbations, we set

wi(t) = $[1 + ξi(t)], |ξi| � 1. By (1) and (2), the linearized version of (3) is

ξ̇i = aF{(1− p)(ξi+1 − ξi) + p(ξi − ξi−1) + g[−(1 + ß)(ξi+2 − 3ξi+1

+ 3ξi − ξi−1) + ß(ξi+1 − 3ξi + 3ξi−1 − ξi−2)]}+ Q̃i,j η̃j , (4)

where (abusing notation) we use the same symbol (ξi) for the approximation of ξi, i.e.,

the solution of the linearized equations. The parameters p, ß and g are defined by

p =
1

2

(
ν

sinh2 ν
− e−ν

sinh ν

)
, ß =

1

2

e−ν

sinh ν
, g = 3

ğa2

T
m̃3

0ρ0 , (5)

with ν = v$/(2D), m̃0 = a/$ and 0 < p < 1/2; cf. (34) in [34] where g = 0. Note

that ξi = (wi −$)/$ is a stochastic process. We assume that fluctuations are small in

probability: 1− Pr[supt>0 |ξi(t)| � 1] � 1 for all i (Pr denotes the probability).

Let us pause for a moment and take a closer look at (4). For g = 0 (no step

interaction), this equation reduces to ẇi ≈ Fa[(1 − p)(wi+1 − wi) + p(wi − wi−1)]. We

can consider p as the fraction of deposited atoms that attach to the downstep of terrace

i, in the setting of figure 1; 1 − p is the fraction of atoms that move to an upstep.

Hence, the number of atoms per unit time that cause an increase of the ith terrace size

is pF (wi − wi−1) by competition with the upper terrace, and (1− p)F (wi+1 − wi) from

the lower terrace. Here we ignore the possibility of nucleation. For a similar model,

see [19] in regard to step motion in a diffusion bias (and [20] for an effect of impurities).

2.3. TWD and pair correlations: general formulas

In this section, we solve SDEs (4) with particular emphasis on the pair correlation

for terrace widths. Equation (4) is fully non-dimensionalized via t 7→ τ = tFa and

η̃i(t) 7→ ηi(τ) = (1/
√
Fa)η̃i(t), Q̃ 7→ Q = (1/

√
Fa)Q̃. SDEs (4) are then recast to the

matrix form

dξ

dτ
= −A · ξ +Q · η , (6)

where ξ = (ξ0, . . . , ξN−1), η = (η0, . . . , ηN−1), and A is a sparse circulant matrix with

first-row entries [1−2p+3g(1+2ß),−1+p−g(3+4ß), g(1+ß), 0, . . . , 0, gß, p−g(1+4ß)].

The (non-dimensional) matrix Q is only required to be circulant and constant.

2For a vector random variable, X, the phrase “covariance structure” is used to mean the structure

of the matrix E[XiXj ] (Xi: ith component of X). We consider whether this matrix: (i) is conservative

(i.e., the sum of elements in any row or column is zero); (ii) is sparse; and/or (iii) has positive or

negative off-diagonal elements. In this article, we consider Xi = $Q̃i,j η̃j and Xi = (wi − $)/$; cf.

(4).
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By integrating (6), we obtain

ξ(t) =

∫ τ

0

e−A(τ−s)Q · η(s) ds , τ = tFa . (7)

Evidently, for every t > 0, (7) describes a vector Gaussian random variable with zero

expectation. The joint probability density of any number of terrace widths is Gaussian.

In light of the initial condition ξ(0) = 0, the covariance matrix is circulant, given by the

expression (see Appendix A)

Cm(t(τ);N) := N−1E[ξj(t) ξj+m(t)] =

1

N

∫ τ

0

ds

∫ τ

0

ds′ E
{
ηj(s

′)

[
e−AT (τ−s′)

]
j,k

QT
k,lQl,n

[
e−A(τ−s)

]
n,p

[η(s)cm]p

}
, (8)

where [η(s)cm] is themth cyclic permutation of the vector η,3 and the symbolAT denotes

the transpose of A. Recall that E[ηj(s) ηk(s′)] = δj,k δ(s− s′). In the case with m = 0,

(8) reduces to a formula for the terrace width variance, viz.,

C0(t;N) = E[ξ2j (t)] = N−1E[ξ(t)2] =
∫ tFa

0

∣∣∣e−AsQ
∣∣∣2 ds . (9)

The probability density for a single (scaled) terrace width, ξi, is
4

P (ξ, t;N)=
1√

2π C0(t;N)
exp

[
− ξ2

2C0(t;N)

]
, −∞ < ξ < ∞ , (10)

by which the TWD (for the dimensional terrace width, wi) is obtained via ξ =

(w − $)/$, −∞ < w < ∞. Within this approximation, Pr[wi < 0] > 0: there

exists a nonzero probability of step crossing. This likelihood can be controlled by the

step interaction strength, deposition rate and initial terrace width (see section 4.4). We

henceforth consider Pr[wi < 0] as negligibly small.

2.4. Covariance matrix: large-N limit

Next, we compute Cm by (8). First, we derive an equivalent expression valid for finite N

and t. Second, we enforce the limit N → ∞ and thereby extract a single-integral formula

for Cm(t) := Cm(t;∞). We then simplify this formula by taking O(N) > tFa � 1: tFa

is treated as large yet independent of N .

By a property of circulant matrices (see Appendix A), we write (8) as

Cm(t;N) =

∫ τ

0

N−1

N−1∑
k=0

ϑk e
−λk s cos

(
2πkm

N

)
ds

= N−1

N−1∑
k=0

ϑkλ
−1
k (1− e−λkτ ) cos

(
2πkm

N

)
, (11)

3 Note that ODEs (4) under the initial condition ξ(0) = 0 yield j-independent covariances, Cm.
4By abusing notation, we use the same symbol, ξ, to denote both the independent real variable of

the TWD and the stochastic process associated with each terrace width.
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where λk and ϑk are the eigenvalues ofA+AT andQQT , respectively. The eigenvalues of

(square) circulant matrices can be evaluated directly via the discrete Fourier transform

[41]. Since both A and Q are circulant, A + AT and QQT are both circulant and

symmetric. A simple calculation reveals that λk and ϑk share the same general form:

they are given by 5

λk = r0 + 2
M∑
j=1

rj cos

(
2πjk

N

)
, ϑk = s0 + 2

M∑
j=1

sj cos

(
2πjk

N

)
. (12)

The coefficients rj and sj depend on the precise forms of A and Q, respectively. We

specify these coefficients later. In (12), we define M = (N − 1)/2 for odd N , and

M = (N − 2)/2 for even N .

By taking the limit N → ∞, the sum in (11) becomes an integral:

Cm(t) = Cm(t;∞) =

∫ 1

0

dy ϑ(y)λ(y)−1[1−e−λ(y)τ ] cos (2πmy) , (13)

where ϑ(y) and λ(y) are the limits of ϑk and λk as N → ∞, and y is the continuous

variable replacing k/N ; 0 < y < 1. The variance of the TWD is found by setting m = 0

in (13), which readily produces the result given in [35].

We comment on the interpretation of λ(y) and ϑ(y). When N is finite, the

sequences {λk} and {ϑk} contain information about nearest-neighbor interactions and

noise correlations, respectively. In particular, each nonzero coefficient rj (sj) in (12)

arises from the existence of interactions (noise correlations) between a given terrace

and its jth nearest neighbor on each side. In the limit N → ∞, formulas (12) become

continuous Fourier decompositions and k/N → y measures the surface height difference

between two terraces. The continuous functions λ(y) and ϑ(y) can yield information

about the range of interactions and noise correlations as measured by the continuous

variable y. If the largest index j′ of the nonzero coefficients rj (or sj) becomes j′ = O(N),

the interactions (or noise correlations) extend to finite, O(1) values of y as N → ∞.6

In section 3, we consider two cases in which the maximum index j′ appearing in

(12) is fixed and O(1) in the limit of large N ; interactions and noise correlations are

thus restricted to a few nearest neighbors for a given terrace site. This assumption

leads to terrace width pair correlations that decay exponentially with respect to the

nearest-neighbor index m: Cm ∝ c|m|, 0 < c < 1 (where c is defined in section 3).

5 This property follows directly from the method of calculating the eigenvalues of a circulant matrix.

Specifically, if C is circulant, its eigenvalues ck are given by ck = Fk,lCl,0, where F is the discrete

Fourier transform. Note that Fj,k = exp(−2πijk/N), where i2 = −1. If, in addition, C is symmetric,

the formula for ck (where ck is λk or ϑk) reduces to (12).
6 In the discrete setting (with finite N), the jth nearest neighbor is identified with the terrace that

is j atomic heights below (or above) a given terrace. Consequently, the jth nearest neighbor amounts

to a height difference given by the limiting value ja as a ↓ 0, with Na kept fixed. If j = O(N), the

limiting value of ja corresponds to a nonzero, finite height difference along the step train. If j = O(1),

the limiting value of ja corresponds to a practically zero height difference.
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3. Particular cases of noise

In this section, we find the terrace width covariance matrix for two different forms of

the noise matrix Q. This procedure is motivated by the observation that the origins of

noise should in principle depend on whether or not there is significant deposition.

In section 3.1, we introduce noise at the level of adatom diffusion, assuming that

the system is sufficiently close to equilibrium. The noise coefficients are determined by

the fluctuation-dissipation theorem [9]. By solving the free-boundary problem for step

motion, we then obtain a second-order conservative noise for the motion of terraces. In

section 3.2, we consider an asymmetric, first-order conservative noise whose amplitude

depends on the deposition flux (F ), based on a proposal in [10]: the noise coefficient

is chosen to reflect (phenomenologically) the asymmetric attachment of atoms at step

edges in correspondence to the drift velocity, v = Fa$. Loosely speaking, this latter

noise should apply to a system far enough from equilibrium so that near-equilibrium

statistics do not hold for adatoms.

3.1. Adatom noise under fluctuation-dissipation theorem

In this section, we derive Q by adding noise to the adatom equations of motion and

solving the free boundary problem for terraces. Let us begin with a modified diffusion

equation for adatoms in the step comoving frame, (D∂2
x + v∂x)%i(x) +F − ∂xq(x, t) = 0

for terrace i, where we applied ∂t%i ≈ 0 (quasistatic approximation). The noise source

q(x, t) is delta-correlated in time and space, and contributes to a random adatom flux [9].

Since we consider a (continuous) adatom density in the BCF model [11], q is intended to

capture the effect of microscopic motions, which are usually left out of a deterministic

continuum picture for terraces. The x-derivative acting on q ensures that the resulting

noise is conservative (consistent with Fick’s law for adatom diffusion).

The diffusion equation is supplemented with corresponding, modified boundary

conditions: −Ji(xi) = κ [%i(xi)−%eqi + ς+i ] and Ji(xi+1) = κ [%i(xi+1)−%eqi+1+ ς−i+1], where

Ji(x) = −D∂x%i − v%i + q(x) is the modified adatom flux on the ith terrace. The terms

ς±i are Langevin forces accounting for random attachment and detachment events on the

right (+) and left (−) sides of the ith step edge [9]. The terms %eqi and κ are discussed

in section 2.1.

In order to determine the covariance structure of ς±i and q, we follow [9] in applying

the fluctuation-dissipation theorem. First, suppose the system is in equilibrium (i.e.,

with F = 0, since we neglect desorption), where

E[q(x, t)q(x′, t′)] = 2Dρ0δ(x− x′)δ(t− t′) , (14)

E[ςαi (t)ς
β
j (t

′)] = (2ρ0/κ) δi,jδ(t− t′)δα,β, α, β = ±. (15)

If the system is sufficiently close to equilibrium, one may replace ρ0 by the average of

%i(x). To simplify the analysis, we assume that corrections arising from this substitution

are negligible, and henceforth consider only the noise defined by (14) and (15).



Small fluctuations in epitaxial growth via conservative noise 11

By solving the diffusion equation in the limit of DL kinetics, one can find linearized

SDEs for terrace motion that have the same form as (4), with the exception of the noise

term. This term is now modified according to the replacement

Q̃i,j η̃j → 2Mi(wi)−Mi−1(wi−1)−Mi+1(wi+1), (16)

where

Mi(wi, t) =
m̃0v e

vwi/2D

2D sinh(vwi/2D)

∫ xi+1

xi

dz e−v(xi+1−z)/Dq(z, t). (17)

In the DL case, contributions from ς± do not appear in (17) since the DL limit, where

κ → ∞, implies E[ς±i ς
±
j ] → 0 (cf. (15)).

In the small fluctuation limit, we approximate wi ≈ $ in the definition ofMi(wi, t).
7

Thus, theMi(wi, t) ≈ Mi($, t) can be treated as independent Gaussian random variables

whose variances depend on the average terrace width. The noise is reduced to the form

given in (4):

Q̃i,j η̃j = 2Mi −Mi−1 −Mi+1 , (18)

where these Mi are independent Gaussian random variables satisfying

E[MiMj] =
m̃2

0vρ0 sinh(2ν)

2(sinh ν)2
δi,jδ(t− t′) . (19)

After some algebra, we obtain formulas for the eigenvalues of the matrices A+AT

and QQT (defined in sections 2.2 and 2.3):

λk = 2
[
1− 2p+ 2g(1 + 2ß)

(
1− cos

2πk

N

)](
1− cos

2πk

N

)
, (20)

ϑk =
2m̃2

0$ρ0 sinh(2ν)

(sinh ν)2

(
1− cos

2πk

N

)2

. (21)

With these definitions of ϑk and λk, we apply (13) to calculate the covariance matrix

(for |m| = 0, 1, . . .):

Cm(t) =
m̃2

0$ρ0 sinh(2ν)

(sinh ν)2

∫ 1

0

dy
[1− cos(2πy)] cos(2πmy)

(1−2p)+2g(1+2ß)(1−cos(2πy))

×
{
1− e−τ [2(1−2p)+4g(1+2ß)(1−cos(2πy))(1−cos(2πy))]

}
. (22)

We have not been able to compute this Cm(t) in simple closed form for finite t. In the

limit t → ∞, the exponential term in the integrand of (22) can be dropped (see Appendix

B); thus, we obtain the steady-state formulas

C0,st =
m̃2

0$ρ0 sinh(2ν)/(sinh ν)
2

[(1− 2p) + 2g(1 + 2ß)]

α +
√
1− α2 − 1

α
√
1− α2

, (23)

Cm,st = −m̃2
0$ρ0 sinh(2ν)/(sinh ν)

2

(1− 2p) + 2g(1 + 2ß)

1− α

α
√
1− α2

[
1−

√
1− α2

α

]|m|

, (24)

7A formal argument for this approximation can be made by adding to ODEs (1) the “small”

noise ε[2Mi(wi) − Mi−1(wi−1) − Mi+1(wi+1)] where 0 < ε � 1. Then, use the expansion wi(t) =

$[1 + εξi(t) + . . .]. Making the substitution wi, wi±1 → $ amounts to keeping only the leading-order

terms in the resulting ε-expansion of the SDEs.
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Figure 2. Steady-state, scaled covariance matrix, Cm,st/m̃
2
0, as function of p form = 0

(variance) and m = 1, 2 (covariance for first and second nearest neighbor). We employ

$%o = g = 1.

where |m| ≥ 1 and α = 2g(1 + 2ß)/[(1 − 2p) + 2g(1 + 2ß)] (0 < α < 1). Evidently,

covariances decay exponentially with m.

Remark 1. The terrace width correlations given by (24) are all negative. This means

that sgn(ξi) = − sgn(ξi±1) with probability greater than 1/2, where sgn(x) = x/|x| for
x 6= 0. Thus, short terraces are more likely to be surrounded by long terraces, and vice

versa. Hence, the noise of (18) disfavors the formation of step bunches.

Remark 2. If F ↓ 0 (i.e., ν = Fa$2/(2D) ↓ 0, or p ↑ 1/2) and g = O(1) > 0,

by (23) the steady-state variance approaches a nonzero value: C0,st → m̃2
0$ρ0/g; see

figure 2 recalling that, by (5), ß = ß(p) through ν. By (24), off-diagonal elements of the

steady-state covariance (circulant) matrix approach zero; that is, Cm,st → 0 as F ↓ 0 for

m 6= 0. The above result for C0,st is in agreement with the long-time limit of the TWD

found in [35], where a similar model is invoked without deposition flux (for F = 0). In

the limit F → ∞, by (23) and (24) we compute

C0,st|F→∞ =
2m̃2

0$ρ0
1 + 2g

[
α∗ +

√
1− α2

∗ − 1

α∗
√

1− α2
∗

]
, (25)

Cm,st|F→∞ =
−2m̃2

0$ρ0
1 + 2g

[
1− α∗

α∗
√
1− α2

∗

][
1−

√
1− α2

∗

α∗

]|m|

, |m| ≥ 1, (26)

where α∗ = limF→∞ α(F ) = 2g/(1 + 2g); cf. figure 2.
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3.2. Deposition-flux-induced noise at steps

In this section, we consider a phenomenological noise that arises solely as a result of

deposition, by choosing not to apply the fluctuation-dissipation theorem. Our approach

is partly motivated by the fact that deposition is a non-equilibrium process. We propose

a noise motivated by inspection of the linearized deterministic equations for g = 0,

following the phenomenological model of [10]. The idea is to consider the number of

atoms arriving at each step edge as fluctuating in accord with the p-induced asymmetry,

i.e., allow lateral fluxes that cause random noise to distinguish downsteps from upsteps.

Let N±
i (t) be the (random) number of atoms attaching to an upstep (+) or a

downstep (−) of the ith terrace. For macroscopic times and each i, we posit that the

increments N±
i (tn+1) − N±

i (tn) are independent, normally distributed and stationary

random variables, with mean zero and variance proportional to 1−p (+) or p (−) times

(tn+1 − tn)Fwi, where 0 < tn < tn+1.

Accordingly, we perturb (4), or (1), for the ith terrace motion by: (i) the noise√
(1− p)Fwi+1Ω η̃i+1 (which has the dimension of speed) for fluctuations in the number

of atoms attaching to the upstep bounding the (i + 1)-th terrace; (ii)
√
pFwi−1Ω η̃i−1

regarding the downstep of the (i−1)th terrace; and (iii) [
√
pFwiΩ−

√
(1− p)FwiΩ] η̃i for

mass conservation purposes. See also the discussion following (4) and (5) for additional

motivation. (Recall that (η̃0, . . . , η̃N−1) is a vector white noise, having independent,

identically distributed components η̃i = dBi/dt). We now propose the noise model8

Q̃i,j η̃j =
a

$

√
F$

[√
1− p (η̃i+1 − η̃i) +

√
p (η̃i − η̃i−1)

]
. (27)

.

With this choice, the eigenvalues of the noise matrix Q̃Q̃T = (1/Fa)QQT are

ϑk = 2m̃0

[
1 + 2

√
p(1− p) cos

2πk

N

](
1− cos

2πk

N

)
.

Accordingly, using (13), we derive the formula (for m = 0, ±1, ±2, . . .)

Cm(t) =

∫ 1

0

dy
m̃0 cos(2πmy)[1 + 2

√
p(1− p) cos(2πy)]

(1− 2p) + 2g(1 + 2ß)[1− cos(2πy)]

×
{
1− e−τ [2(1−2p)+4g(1+2ß)(1−cos(2πy))(1−cos(2πy))]

}
. (28)

As tFa → ∞ with g, ν = O(1) > 0, the exponential term can be dropped; thus, the

steady-state covariance matrix is comprised of the elements (see Appendix B)

C0,st =
m̃0

2g(1 + 2ß)
√
1− α2

[
α + 2

√
p(1− p)(1−

√
1− α2)

]
, (29)

Cm,st=
m̃0

2g(1 + 2ß)
√
1− α2

[
α + 2

√
p(1− p)

][1−√
1− α2

α

]|m|

, (30)

8In (27), notice the replacement of wi and wi±1 by the initial terrace width, $, in the noise diffusion

coefficients. A formal argument for this approximation can be made by adding to ODEs (1) the “small”

term εη̃i
√
Fwia2(

√
p−

√
1− p)+εη̃i+1

√
1− p

√
Fwi+1a2−εη̃i−1

√
p
√
Fwi−1a2 where 0 < ε � 1. Then,

(27) are viewed as the lowest-order equations in ε.
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Figure 3. Steady-state, scaled covariance matrix, Cm,st/m̃0, as function of p form = 0

(variance) and m = 1, 2 (covariance for first and second nearest neighbor). We use

g = 1. The narrowing of the TWD with F (decreasing p) is evident.

where |m| ≥ 1 and α = 2g(1 + 2ß)/[(1− 2p) + 2g(1 + 2ß)]; see figure 3.

We note in passing that, in the special (idealized) limit g ↓ 0 (vanishing step

interaction), the time-dependent TWD variance becomes (see Appendix B)

C0(t)|g↓0 =
m̃0

1− 2p

{
1− e−t̆[I0(t̆) + 2

√
p(1− p) I1(t̆)]

}
, (31)

where t̆ = 2(1 − 2p)tFa and In(t) is the modified Bessel function of nth order [42]. In

the limit t̆ → ∞, we obtain C0(t)|g↓0 → m̃0(1− 2p)−1.

Remark 3. If ν = Fa$2/(2D) ↓ 0 (i.e., p ↑ 1/2) and g = O(1) > 0, by (28) the

covariance approaches zero for any time t and all m. This behavior is derived by use

of ß = O(ν−1) as ν ↓ 0, and is consistent with SDEs (4), since these equations become

(deterministic) ODEs in view of (27) as F ↓ 0. Details for the precise role of time t

in this limiting case are provided in Remark 4 and Appendix C; see also figure 4 for

m = 0.

Remark 4. Interestingly, the limits ν ↓ 0 and t → ∞ of (28) do not commute (for

any m): the steady-state values (29) and (30) approach the finite value
√
3m̃2

0/2g as

ν ↓ 0, whereas, by (28), Cm(t) → 0 as p ↑ 1/2 for fixed t > 0 and g (cf. figures 3,

4 and Remark 3). To resolve this apparent paradox, we point out a transition in the

asymptotics for Cm if tFa = O(gν−3). If ν is small, the Cm given by (29) and (30)

is recovered from (28) if aFt is large enough so that the vanishing exponential term

does not suppress the emerging singularity in the integrand of (28). More precisely, for

νaFt � 1 the major contribution to integration comes from the vicinity of y = 0. Thus,

to extract the steady-state limits (29) and (30) we require that 1− 2p > O[g(1 + 2ß)y2]
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Figure 4. Time-dependent, scaled TWD variance, C0(t)/m̃0, computed by numerical

integration of (28) (dashed curves) versus the steady-state variance of (29) (solid line);

g = 1. For large tFa, the time-dependent variance converges to its steady-state value

non-uniformly in p: the depicted behavior near p = 1/2 indicates that the limits F ↓ 0

and t → ∞ do not commute (cf. Remark 4).

and (1 − 2p)y2aFt = O(1), by which tFa � gν−3. By contrast, if aFt � gν−3, then

Cm(t) can be arbitrarily close to zero (see Appendix C for further technical details).

Remark 5. Consider the steady-state variance C0,st(p, g) of (29) for 1 − 2p > 0. For

fixed p, C0,st decreases with g. For finite and fixed g, C0,st increases with p, and thus

decreases with F . The parameter ß decreases with F and becomes exponentially small

(compared to unity) if ν = v$/(2D) � 1. Therefore, (30) predicts a narrowing of the

TWD with increasing step interaction or deposition rate (see section 4.3).

Remark 6. The correlations given by (30) are positive, in contrast to the correlations

associated with the adatom noise of section 3.1; cf. (24). In the steady state, this means

that sgn(ξi) = sgn(ξi±1) with probability greater than 1/2. Therefore, the noise given by

(27) gives rise to a stepped surface in which long trains of wide terraces are likely to be

followed by step bunches. We emphasize that the structure of terrace width correlations

does not come specifically from the flux dependence of the noise, but rather from the

generic, asymmetric form of Q introduced by (27).

4. Discussion

In this section, we discuss the results of sections 2 and 3, with particular emphasis on the

relationship between noise structure and terrace width correlations. We also compare

the result of section 3.2 to a mean field approach [16,34], outline a plausible connection

to experiments, and discuss the validity of our linearized model.
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4.1. Noise structure and correlations

A major component of our work has been to determine the terrace width covariance

structures that arise from specific choices of conservative noise (cf. (13), (24), and (30)).

For systems in equilibrium, the fluctuation-dissipation theorem allows one to calculate

the structure of the noise in a system from known correlations of thermodynamic

variables, and vice versa. We emphasize that application of this theorem is contingent

upon knowledge of the steady state of the system, which acts as a constraint in

determining the noise.

An alternate perspective, which we adopt here, is that the noise should be

constrained by geometric properties of the system. First, the total system size should

not fluctuate. This requirement is satisfied by choosing the noise to be conservative;

that is, the sum of elements in any row or column of Q must be zero. This choice implies

that summing equations (3) over all i yields the deterministic equation
∑

i ξ̇i = 0, so

that the total length of the system is constant. As an additional constraint, we require

the covariance matrix to be bounded for long times. This requirement must be checked

for each Q by taking the limit t → ∞ in (13).9

For the two cases examined in sections 3.1 and 3.2, we find that our geometric

constraints are sufficient to force the system to a steady state having a well-defined

covariance matrix. Hence, our choices of noise are consistent with the fluctuation-

dissipation theorem, insofar as there exist steady-state covariances that in turn imply

our noises by the fluctuation-dissipation theorem. Such an application of the fluctuation-

dissipation theorem does not require the system to attain or be near equilibrium.

The study of terrace width fluctuations in the BCF framework with noise provides

a means of predicting how terrace width correlations should behave in a continuum

description of surfaces. If we take a = O(N−1) as N → ∞, then we can view the

surface in terms of a continuous height profile (see section 2.4). The discrete solution,

ξi, for terrace widths is mapped to a continuous variable, ξ(h): ξi 7→ ξ(h); this ξ(h)

measures the relative deviation of the slope from its average value at height h (cf. the

discussion following (13), especially the footnote). In our formulation, h = y. Because

the covariance matrices (24) and (30) depend on m = h/a, we see that values of ξ(h)

separated by finite h are not correlated.

This conclusion holds despite key differences in the structure and effects of the noise

models used in sections 3.1 and 3.2. Specifically, the noise (16) results in terrace widths

that are anti-correlated (no step bunching), while (27) leads to correlated terrace widths

(step bunching). However, these detailed correlations are “washed out” when ma is a

macroscopic length (comparable to the size of the system), so that |m| � 1. This limit

corresponds to a coarse-graining of the stepped surface.

9 The reader should not infer that the fixed system size constraint necessarily implies a bounded

TWD variance; see [35] for an (unphysical) counter-example of a conservative noise yielding a TWD

variance that is unbounded for long times. For finite (but large) N , this behavior [35] means that the

TWD variance tends to become of the order of the system size at long times.
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4.2. Mean field approach and decorrelation hypothesis

Heuristically speaking, the main goal of a mean field formalism is to reduce the SDE

system to a single Langevin-type equation that produces the same TWD as the starting,

coupled system [34,35]. For SDEs of the form

ξ̇i = G(ξi−2, ξi−1, ξi, ξi+1, ξi+2) +
N−1∑
k=0

Qi,kηk (32)

(where ηk are independent white noises and Q = [Qi,k] is circulant), this task is pursued

via the replacements ξi → ξmf and ξi±1, ξi±2 → f(ξmf , t) where f is a (deterministic)

field to be determined [34, 35]. In principle, this f depends on the joint probability

density, p5, of five terraces. This p5 satisfies a BBGKY hierarchy, which in principle

involves the joint probability densities, pn, of n terraces [35].

Since the ηk are independent, it can be argued that the term
∑N−1

k=0 Qi,kηk should

be replaced by q η where q2 =
∑N−1

k=0 Q2
i,k = |Q|2. A formal justification comes from

considering the first equation of the BBGKY hierarchy, which is an evolution equation

for the TWD, P (ξ, t), where the coefficient of ∂ξξP (ξ, t) is 1
2
|Q|2. Thus, (32) becomes

ξ̇mf = G(f(ξmf , t), f(ξmf , t), ξmf , f(ξmf , t), f(ξmf , t)) + q η . (33)

By comparison of the Fokker-Planck equation for (33) with the first equation of

the BBGKY hierarchy for (32), one obtains a (self-consistent) formula for f [35]. For a

linear G, such a self-consistent f requires knowing the pair correlation. Specifically, one

needs to know the conditional expectation for a terrace width, i.e., the average width

of a terrace in a pair of terraces given the value of the width of the other terrace [34].

To circumvent the hurdle of solving the BBGKY hierarchy, it is tempting to apply

the decorrelation ansatz pn(~wn, t) =
∏n

j=1 P (wj, t), where ~wn = (w0, . . . , wn) [34,35]. For

a linear SDE system, i.e., whenG is linear, the mean field is given by f = Eξi = 0 [34,35].

In [35], where the first-row entries for Q are set to [2,−1, 0 . . . , 0,−1] (yielding a second-

order conservative noise scheme similar to (18)), it was verified for the linearized SDEs

that the long-time limit of the mean field variance coincides with that of the exact

solution.

Motivated by these previous studies, we compute the mean field variance for SDEs

(4) under the F -dependent noise (27). By taking f = Eξi = 0, these equations are

reduced to the effective Langevin equation

dξdc

dτ
= −[1− 2p+ 3g(1 + 2ß)]ξdc + q η̃(τ), q2 = 2m̃0[1−

√
p(1− p)],(34)

where ξdc approximates (in some sense) the mean field stochastic process ξmf under

the decorrelation ansatz. Thus, ξdc is a Gaussian random variable with zero mean and

variance

σdc(t)2 = m̃0

1−
√

p(1− p)

1− 2p+ 3g(1 + 2ß)
{1− e−2Fa[1−2p+3g(1+2ß)]t} , (35)

which approaches σdc(∞)2 = m̃0[1−
√
p(1− p)][1− 2p+ 3g(1 + 2ß)]−1 as t → ∞.
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The long-time limit (35) differs from the variance calculated by (29). We attribute

this discrepancy to the fact that terrace correlations persist at long time (cf. (30)), in

contradistinction to the decorrelation ansatz. For strong enough step interactions, i.e.,

g(1 + 2ß) � 1− 2p, we have σdc(∞)2 = O(g−1) while by (30) we have C0,st = O(g−1/2).

Thus, the decorrelation hypothesis exaggerates the narrowing of the TWD; the (positive)

terrace width pair correlations favor broadening of the TWD.

4.3. Related past works and plausible connection to experiments

Next, we point out features of our predictions for the variances C0,st of (23) and (29) that

may be experimentally testable, and discuss comparisons of these to results of [10,16].

(i) Narrowing of TWD [16]. In the case with a flux(F )-dependent noise and large

ν = aF$2/(2D), by (29) the variance C0,st approaches the limit

C0,st → m̃0 (1 + 4g)−1/2 as ν → ∞ , (36)

under the assumption that the quasi-steady approximation is meaningful. In the near-

equilibrium case with large ν, the variance approaches a constant with complicated

g-dependence; cf. (25). These predictions should be contrasted with the corresponding

variance in [16], where σ2 = C0,st = O(F−1) for large F .

For small deposition flux F (p ↑ 1/2), (29) yields C0,st → O(g−1/2) as ν ↓ 0. In

the near-equilibrium case, the variance (23) is O(g−1) as F ↓ 0. These predictions

stand in contrast to the behavior C0,st = O(F−2) given in [16]. Hence, our noise models

significantly tone down the narrowing of the TWD reported in [16], where deposition is

the only source of TWD narrowing and the noise is F -independent. More precisely, the

discrepancy of our result for C0,st with the variance in [16] is due to: (i) the different

scaling of the noise term with F ; and (ii) the application of the mean field approximation

with a non-conservative white noise in [16]. Other models of noise for terraces can

plausibly be constructed by mixing elements of (18) and (27).

(ii) Comparison to [10]. In the model of [10], the deterministic equations account

for the same kinetic (flux-induced) asymmetry in step motion but steps are non-

interacting. The noise used in [10] for every terrace, wi, appears to have the form

ηi,1
√
Fpwi−1 + ηi,2

√
Fpwi + ηi,3

√
F (1− p)wi + ηi,4

√
F (1− p)wi+1 where ηi,k (k =

1, . . . , 4) are independent white noises and units with a = 1 are apparently used. In the

mean field approximation (under the decorrelation ansatz for terrace widths), this model

yields the (scaled by $2) steady-state variance σ̂(t → ∞)2 = (1 − 2p)−1 [10]. In [10]

this prediction is found to appreciably overestimate the variance produced by kinetic

Monte Carlo simulations for small rate F (see figure 4 in [10]). Since the simulations

do not allow for step crossing, it is expected that these simulations do include entropic

repulsions between steps. On the other hand, our analytical model does contain the

effect of step repulsion explicitly (via ğ) and predicts a lower value of the variance for

small F .

(iii) Experiment on Si(111) [14, 43].
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Scanning tunneling microscopy (STM) measurements on Si(111) can yield images

of “quasi-1D” step trains [43]. These systems have been modeled previously by

deterministic 1D evolution equations resembling (1) [8]; our stochastic model (4)

accounts for the additional effects of noise. By measuring terrace width correlations

under equilibrium and non-equilibrium conditions, it should be possible to test the

validity of the noise models (18) and (27), respectively.

As mentioned in [16], experimental techniques that enable observation of

equilibrium TWD can in principle also probe narrowing due to the combined influence of

growth and step interactions. An example is the reflection electron microscopy applied

in [14]. In this experiment [14], TWD narrowing is observed on vicinal Si(111) at 1100
oC and attributed solely to electromigration (which also causes a drift in the adatom

flux) although a deposition flux from above and step interactions are present.

4.4. On the validity of the model

We repeat that a limitation of our model is due to its 1D character. Despite this feature,

our analysis may be useful in describing quantitative aspects of “quasi-1D” step systems,

e.g., those in [8, 43], as also noted in [35].

Another limitation is related to the perturbation expansion for “small” noise

(small terrace width fluctuations), which underlies our linearization. Within this

approximation, an indication that the linearization may not be valid arises if the TWD

variance satisfies C0(t) > 1: by (10), the negative tail of the (approximate) TWD,

P (ξ, t;N), may have an appreciable effect on moments. To provide a condition necessary

for the validity of our model, we require that C0(t) is sufficiently small for all t.

We also comment on the magnitude of the ratio ν = Fa$2/(2D) which first appears

in (1). This constant is considered to be O(1), so that the convection (resulting from our

transformation to the step comoving frame) is not necessarily negligible in our analysis.

For many physical systems, ν can be estimated by [8]

ν =
Faτ0
e−ED/T

1

2m̃2
0

, (37)

where ED is the energy barrier (i.e. a diffusion barrier) that an adatom must overcome

to move to an adjacent lattice site, and τ−1
0 is an attempt frequency; we use the relation

D = a2τ−1
0 exp[−ET /T ] [8]. Typical values for ET range from 0.04 eV for Al(111) to

0.97 eV ± 0.07 eV for Si(111) [8]. The attempt frequency, τ−1
0 , is usually taken to be

1013 s−1. For a deposition rate of one monolayer per second (Fa = 1 s−1) at room

temperature, values of ν are found to range approximately from 10−11 to 108. Although

we find the upper bound of these values to be exaggerated, we are in principle motivated

to account for all ν ≥ 0 in our model. For many experimental systems of current interest,

however, our model is expected to be in the small-deposition-flux regime, with small ν

and p ≈ 1/2. Notably, an advantage of the model for arbitrary ν is that it is generic to

a variety of asymmetric kinetic processes (as noted in section 1). We repeat that care

must be exercised in applying the long-time limit of (28) (see Remark 4).
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5. Conclusion

In this paper, we studied small stochastic fluctuations of line defects on a crystal

surface when material is deposited from above in 1+1 dimensions. This work has been

inspired by [9,10,16], and aims to complement recent kinetic studies in the steady-state

distribution of terrace widths on vicinal crystal surfaces [34–36]. We started with a

reasonably general formulation of terrace width fluctuations in 1+1 dimensions, allowing

for a noise that stems from the fluctuation-dissipation theorem for adatoms [9]; and,

alternatively, from a phenomenological description of a deposition-dependent effect at

step edges [10]. The ensuing models include a conservative noise, deposition-flux-induced

kinetic asymmetry in the noise coefficients, and step repulsion.

Our perturbation analysis led to a Gaussian TWD and a simple closed form for

the associated variance. Similarly, we obtained closed-form expressions for the terrace

width covariance matrices. The TWD, which is symmetric about the expectation of

the terrace width, is plausibly valid for values of terrace widths near the peak of the

actual TWD. On the basis of these results, we inferred that growth combined with

step interaction sustain a reduced narrowing of the TWD with the deposition rate, F ,

in juxtaposition to the corresponding (more exaggerated) F -dependence noted in [16].

Furthermore, we applied a previous mean field approach [16,34], and thereby indicated

and discussed the role of terrace width pair correlations at long times. We found that

these correlations decay exponentially in the height difference between two terraces, and

practically vanish in the macroscopic limit.

Our analysis points to several open questions. For example, the nonlinearities left

out from our stochastic scheme should cause the TWD to be non-symmetric about the

mean [35]. The derivation of such a modified TWD remains unresolved. Any effect of

multiplicative noise (where the noise coefficients depend on terrace widths) is left for

future work. Another open question concerns 2D geometries, which were not considered

here. In real systems, edge atoms diffuse along steps (besides diffusing on terraces and

attaching/detaching at step edges). In addition, kinks on steps influence the form of

noise. Many-step interacting systems in 2D are the subject of work in progress.
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Appendix A. Derivations for covariant matrix

In this appendix, we derive (8) and use this result to show (11). In the following, we

abandon the summation convention for repeated indices.

Lemma A.1. For arbitrary N×N circulant matrices A and Q, and a stochastic process

ξ(t) given by (7) with ξ(0) = 0, the covariance matrix Cm(t) is given by (8).

Proof. Consider a given lattice site with index j. By the invariance of (4) under

translations of j, the covariance matrix is

Cm(t) = N−1

N−1∑
j=0

E[ξj(t) ξj+m(t)] = N−1E[ξ(t)T (ξ(t))cm]

=
1

N

∫ τ

0

ds

∫ τ

0

ds′ E
[(

Qe−A(τ−s)η(s)

)T(
Qe−A(τ−s′)η(s′)

)c

m

]
, (A.1)

where the symbol (·)cm denotes the mth cyclic permutation of the vector inside the

parenthesis. For any circulant matrix X and vector y, the ith component of (Xy)cm is

[(X y)cm]i =
N−1∑
j=0

Xi+m,j yj =
N−1∑
j=0

Xi+m,j+m yj+m

=
N−1∑
j=0

Xi,j yj+m = [X (y)cm]i , (A.2)

where all indices are interpreted as moduloN , and the last line follows from the definition

of a circulant matrix. Moreover, the product of any two circulant matrices is circulant.

Hence, the term Q exp[−A(τ − s′)] appearing in (A.1) is circulant. Equation (8) is

deduced from (A.2). �
Next, we derive (11) on the basis of (8). This amounts to proving the following.

Proposition A.1. For arbitrary N × N , constant circulant matrices A and Q, and

delta-correlated noise η(s), where E[η(s)η(s′)] = δ(s− s′), the following relation holds:

E
[
η(s′)T e−AT (τ−s′)QTQe−A(τ−s)(η(s)cm)

]
=

δ(s− s′)
N−1∑
k=0

ϑk e−λk(τ−s) cos

[
2πkm

N

]
, (A.3)

where θk are the eigenvalues of QTQ and λk are the eigenvalues of A+AT .

Proof. Since A and Q are circulant, they are diagonalized by the discrete Fourier

transform F , where Fk,l = e−2πi(kl/N) (i2 = −1). Specifically,

e−AT (τ−s′)QTQe−A(τ−s) = F−1DF , Dj,k = δj,kϑk e−λk(τ−s) , (A.4)

which follows from the relation F−1 exp(C)F = exp(F−1CF ) for any matrix C. Hence,

the expectation of the left-hand side of (A.3) simplifies to

E[η(s′)TF−1DF (η(s))cm] =
1

N

N−1∑
j,k,n=0

E[ηj(s′)e2πijk/NDk,ke
−2πikn/N [(η(s))cm]n]
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=
δ(s− s′)

N

N−1∑
j,k,n=0

Dk,ke
2πik(j−n)/Nδj+m,n = δ(s− s′)

N−1∑
k=0

Dk,ke
−2πikm/N , (A.5)

where we have written sums explicitly to avoid any ambiguity when summing over k.

Furthermore, note that the eigenvalues of a circulant matrix C are given by the

product Fj,kCk,0. SinceA+AT andQQT are both symmetric and circulant, they satisfy

Ck,0 = CN−k,0. This last property implies (A.3). �

Proposition A.1 offers an extension of a result given in [35]. More precisely, in the

case of the TWD variance, i.e., with m = 0, we recover formula (16) given in [35].

Appendix B. Useful relations

This appendix provides some relations that help simplify results of section 2.

Appendix B.1. Long-time behavior of integral (13)

We show that the exponential term in (13) vanishes when τ → ∞. This property

holds for both forms of ϑ(x) given in section 3, and the λk given by (20) when F 6= 0.

Specifically, the following inequality holds:∣∣∣∣∫ 1

0

dy ϑ(y)λ−1(y)e−τλ(y) cos(2πmy)

∣∣∣∣ ≤ c1

∫ 1

0

dy e−τc2(1−cos(2πy))

< c1

∫ ∞

−∞
e−τc2y2dy

= O(τ−1/2) as τ → ∞ , (B.1)

where c1, c2 > 0 are constants independent of y.

Appendix B.2. Two formulas

In certain cases, the time dependence of the covariance matrix, e.g., in (31), can be

resolved via the identity [42]

ez cos(x) = I0(z) + 2
∞∑
n=1

In(z) cos(nx) , (B.2)

where In(z) is the modified Bessel function of order n.

The following integral, when combined with the appropriate trigonometric

identities, is useful for calculating steady-state covariances by (8):∫ π

0

dx
cos(nx)

1− α cos(x)
=

π√
1− α2

[
1−

√
1− α2

α

]|n|
, (B.3)

where |n| = 0, 1, 2, . . .. This formula can be shown by contour integration or,

alternatively, it can be found in integral tables, e.g., [44].
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Appendix C. Time-dependent covariance for ν � 1

In this appendix, we asymptotically evaluate integral (28) for small ν = Fa$2/(2D),

g = O(1), and m = O(1). For algebraic convenience, set m̃0 = 1 (only in this appendix).

By the change of the integration variable to z = sin(φ/2), the integral becomes

Cm(t) =
1

2π

1

g(1 + 2ß)

∫ 1

0

dz Tm(1− 2z2)√
1− z2

[1 + 2
√

p(1− p)(1− 2z2)]

× 1− e−(α2
1+z2)α2

2z
2

z2 + α2
1

, (C.1)

where Tm(x) is the mth-order Chebyshev polynomial of the first kind, α2
1 = (1 −

2p)[4g(1 + 2ß)]−1, and α2
2 = 16tgFa(1 + 2ß). As ν ↓ 0 with fixed g and tFa ≥ O(1), we

have α2
1 = O(ν2) while α2

2 ≥ O(ν−1). Thus, the task is to evaluate Cm(t) by (C.1) for

small α1 and large α2 (where α1, α2 > 0).

By inspection of the integrand in (C.1), we distinguish the following cases.

(i) α−1
2 � α2

1, i.e., tFa � g(1 + 2ß)(1 − 2p)−2: The major contribution to integration

comes from a neighborhood of width O(α
−1/2
2 ) around z = 0, and α2

1 is neglected

compared to z2. Specifically, we have

Cm(t) ≈
1

π

1

g(1 + 2ß)

∫ 1

0

√
1− z2

1− e−α2
2z

4

z2
dz

=
1

π

1

g(1 + 2ß)

(∫ A

0

+

∫ α2
2

A

)∫ 1

0

√
1− z2 z2 e−yz4 dz dy , (C.2)

where A is any fixed yet large positive number and Tm(1 − 2z2) ≈ 1 to leading order.

Thus, the y in
∫ α2

2

A
is large and the respective integral in z is evaluated by expanding

the integrand near z = 0. Finally, we obtain

Cm(t) ≈
2

π
Γ(3

4
) [g(1 + 2ß)]−3/4 (tFa)1/4 , (C.3)

where Γ(ζ) is the Gamma function [45]. So, if tFa is fixed as ν ↓ 0, then Cm(t) vanishes as

O(ν3/4). However, if instead 2Dt/$2 is kept fixed as ν ↓ 0, then Cm(t) = O(ν) = O(F ).

(ii) α−1
2 � α2

1, i.e., tFa � g(1 + 2ß)(1 − 2p)−2: The major contribution to integration

in the time-dependent term of (C.1) arises from a vicinity of width O((α1α2)
−1) =

O((νtFa)−1/2) around z = 0. Approximating Tm(1− 2z2) ≈ 1, we obtain

Cm(t) ≈
1

2π

1

g(1 + 2ß)

∫ 1

−1

√
1− z2

z2 + α2
1

dz . (C.4)

To evaluate this integral to leading order in ν, we apply analytic continuation of the

integrand to complex z. So, deform the path of integration to the upper half of the

complex z-plane so as to pick up the residue from the simple pole at z = iα1 (i
2 = −1).

Thus, compute

Cm(t) = (2g/3)−1/2 +O(ν) = Cm(t → ∞; p ↑ 1/2, g) , (C.5)

which is the limit of steady-state formulas (29) and (30) for small ν = Fa$2/(2D).
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