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Below the roughening transition, crystal surfaces have macroscopic plateaus, facets, whose evo-
lution is driven by the microscale dynamics of steps. A long-standing puzzle was how to reconcile
discrete effects in facet motion with fully continuum approaches. We propose a resolution of this
issue via connecting, through a jump condition, the continuum-scale surface chemical potential away
from the facet, characterized by variations of the continuum surface free energy, with a chemical
potential originating from the decay of atomic steps on top of the facet. The proposed condition
accounts for step flow inside a discrete boundary layer near the facet. To validate this approach, we
implement in a radial geometry a hybrid discrete-continuum scheme in which the continuum theory is
coupled with only a few, minimally three, steps in diffusion-limited kinetics with conical initial data.

PACS number(s): 68.35.Md, 68.43.Jk, 61.50.Ah

I. INTRODUCTION

Material systems can in principle be described by equa-
tions governing the motion of their discrete constituents.
This approach requires resolving many degrees of free-
dom. If variables of interest exhibit smooth behavior at
macroscopic scales, an alternative is to apply continuum
models, e.g., partial differential equations (PDEs), that
result from appropriately averaging out microscopic de-
tails. Continuum equations are appealing since they are
amenable to analytical predictions such as scaling laws
testable in lab experiments. Moreover, continuum de-
scriptions offer computational advantages over discrete
schemes for large-scale simulations. Many macroscopic
systems, however, have small spatial regions where de-
pendent variables of interest exhibit singular behavior;
examples of such regions are edges of macroscale plateaus
(facets) on crystal surfaces, tips of cracks in brittle solids,
and contact lines of liquid films. These small regions may
dramatically influence evolution at macroscopic length
and time scales. A classic question is: How can such mi-
croscale effects be incorporated into continuum theories?
In this paper, we propose a scenario for incorporat-

ing the edges of facets into a continuum thermodynamics
framework consistent with the discrete flow. At the mi-
croscale, crystal surface evolution is driven by the motion
of many atomic line defects, steps. At the macroscale,
a PDE for the surface height outside the facet offers a
plausible description; physically relevant solutions to this
PDE have singular behavior near the facet edge. We rec-
oncile these two scales by imposing a step-driven discon-
tinuity of the surface chemical potential across the facet
edge, modifying the previously applied notion of a con-
tinuous chemical potential. To illustrate our approach
with relative computational ease, we focus on an ideal-
ized model: a semi-infinite axisymmetric structure with
a single facet in the absence of material deposition from
above. We study long-time surface relaxation, when the
slope profile exhibits self similarity.
Our main contributions with this work are:

(a) We empirically construct a global, macroscopic sur-
face chemical potential, µS, that expresses: (i) changes of
the continuum-scale free energy of many steps away from
the facet; and (ii) the annihilation of individual atomic
steps on the facet. These two distinct physical charac-
terizations of µS must suitably be connected across the
facet edge. To this end, we propose a jump condition
that accounts for details inside a narrow region of a few
steps, herein called a discrete boundary layer, near the
facet.

(b) We formulate a continuum theory outside the facet
that implicitly accounts for the discrete boundary layer.
The resulting free boundary problem for the facet consists
of: (i) a continuum equation for the self-similar surface
slope away from the facet; and (ii) boundary conditions
by which the large-scale surface chemical potential and a
flux generating it are forced to have jump discontinuities
at the facet edge as described in (a).

(c) To validate our approach, we formulate and imple-
ment a computational scheme, henceforth referred to as
the “hybrid scheme”, to approximately solve the above
free boundary problem without resolving the full step
system. As the time, t, advances, our scheme succes-
sively improves the slope profile through the solution of
discrete equations for a few, minimally three, steps in-
side the boundary layer. We show by numerics that our
scheme apparently converges to the surface slope profile
computed via independent many-step simulations.

From a physical perspective, our approach exemplifies
the key role of the surface chemical potential, µS, in rec-
onciling two seemingly disparate notions: (i) the facet,
a macroscopic object; and (ii) the (discrete) step. Our
work indicates that the facet and the bulk of steps away
from it can be treated as two distinct “phases” connected
through an unusual jump condition for µS. The magni-
tude of this jump depends on the continuum surface pro-
file and the curvatures of individual steps in the discrete
boundary layer; this layer represents the microstructure
of the interface between the two phases.

There is a long sequence of works analyzing facet mo-
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tion under diffusion of adsorbed atoms (adatoms). A
difficulty in the application of continuum theories stems
from microscale effects, namely, the collapses of atomic
steps on top of facets [1–4]. A central question is how to
incorporate such collapses into the continuum setting.

A plausible continuum approach, pioneered in [5], is to
treat the facet edge as a free boundary: apply a PDE,
which is herein viewed as the continuum limit of step
flow, for the surface height or slope on the smooth surface
region, outside the facet, and supply appropriate bound-
ary conditions at the facet edge. The choice of bound-
ary conditions is crucial. In the case of surface diffusion
without external material deposition, crystal structures
usually relax to become flat by lowering the total sur-
face free energy. In this context, boundary conditions
at the facet edge may result from thermodynamic ar-
guments, particularly the assumption that every point
on the surface evolves by causing the most rapid de-
crease to the continuum-scale surface free energy [6]. It
turns out that, as a consequence of this ansatz, the con-
tinuum surface height, positive slope and adatom flux
normal to the facet boundary are continuous; in addi-
tion, the chemical potential, defined as the change per
atom of the surface free energy, is extended continuously
onto the facet [5, 7]. Nonetheless, the imposition of the
above conditions, which we will refer to as the “refer-
ence case”, has been shown to be inconsistent with step
motion [8, 9]. Works that invoke a modified, smoothed
surface free energy or truncated Fourier expansions for
the surface height have the same flavor [10–12].

A means of reconciling step motion with continuum
theory near facets is offered by asymptotic matching of
the surface slope profile across the facet edge via ap-
propriate series expansions [3, 4, 13, 14]. In settings
where atomic steps collapse on top of the facet, this
view requires discrete details, i.e., the times of step col-
lapses [3, 4]; such details become available through solv-
ing a large system of differential equations for step posi-
tions.

An emerging question is: Can a reliable model of facet
evolution be constructed by coupling the continuum the-
ory outside the facet with the motion of only a few steps
near the facet? Such a model would be an appealing
alternative to the use of the whole set of discrete step
equations: First, it would be amenable to scaling predic-
tions, possibly testable in lab experiments; and, second,
the model would reduce the computational complexity of
integrating a large number of discrete equations.

Here, we aim to provide an answer to the above ques-
tion. Our idea is to introduce a surface chemical potential
that is discontinuous across the facet edge. The magni-
tude of the discontinuity is controlled both by the global
surface profile and the discrete dynamics of a few spe-
cial steps near the facet. This idea has the potential of
application to arbitrary geometries with facets.

This perspective, especially the use of discontinu-
ities for thermodynamic variables at the facet edge, has
been inspired by a recent analysis of an evaporation-

condensation dynamics model [15]. In [15], the jump
is introduced only for the radial flux generating the
continuum-scale chemical potential. Here, we need ad-
ditional boundary conditions (since the PDE is of higher
order) [16–18]. In fact, we impose jumps for both the
large-scale chemical potential and its generating flux in
terms of a discrete geometric factor. Our definitions of
jump discontinuities are primarily phenomenological.

In order to computationally validate our approach, we
apply a hybrid scheme. This scheme resolves simultane-
ously the fast motion of a few top steps, near the facet,
and the relatively slow surface relaxation away from the
facet. The underlying two-scale strategy offers some in-
sight into the nature of continuum solutions near the
facet; in particular, the singularity for the surface slope
at the facet edge emerges as a pathology of the continuum
limit because of the reduction of the discrete boundary
layer to the sharp facet boundary.

It is of some interest to compare our approach to pre-
vious continuum models where atomic steps are annihi-
lated on top of facets, e.g., [3–5, 7–9, 15]. For example,
in [5, 7] only the continuity of the surface chemical po-
tential, which yields results not consistent with step flow,
is considered. In [3, 4, 9, 15] the entire many-step system
is simulated for reconciling continuum predictions with
step motion. In [8], a continuum-type equation is formu-
lated from an ensemble of step configurations, and the
facet boundary is not treated explicitly.

Alternate boundary conditions at the facet edge have
been invoked. In [3, 4], the continuity of the macroscopic
chemical potential is replaced by the statement that the
vertical facet speed must follow discrete changes of the
facet height, called the “step-drop condition”. This latter
condition requires the use of the differences, δtn, of step
collapse times, and involves high spatial derivatives of the
surface height at the facet edge. Thus far, the step-drop
condition is not deemed appealing for coupling steps
with continuum solutions for at least two reasons. First,
from a physical perspective, the step-drop condition ap-
pears unnatural within the continuum thermodynamics
framework. Second, the resulting slope profiles are too
sensitive to any errors in δtn; hence, the convergence
of any associated scheme is too difficult to achieve
numerically. Here, we keep variables of the continuum
framework but make an attempt to reconcile them with
the (non-equilibrium) discrete scheme for steps.

It is worthwhile noting that our approach has the
flavor of multiscale methods in mechanics and applied
mathematics; see, e.g. [19–22]. In particular, the
quasicontinuum method [19] addresses the coupling of
macroscopic equations to the atomistic structure. Key
aspects of our treatment are tailored to the physics of
the facet. Hence, direct comparisons of our approach to
existing multiscale methods lie beyond our present scope.

We describe discrete step flow via the classic models
by Kossel [23], Stranski [24], and Burton, Cabrera and
Frank [25]; for reviews on later additions to these models,
see [26, 27]. Each step interacts with its nearest neigh-
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bors through force-dipole and entropic repulsion [28, 29].
At this microscale level, adatoms diffuse on nanoscale ter-
races and attach to or detach from steps; as a result, steps
move by mass conservation. We assume that adatom dif-
fusion is the slowest process, restricting attention to the
“diffusion-limited kinetics” regime. Hence, there are two
main ingredients of step motion, namely, step energetics,
expressed via near-equilibrium thermodynamic concepts
such as the step chemical potential; and diffusion-limited
kinetics, reflected in the relation of adatom flux and step
chemical potential. These ingredients form our step flow
model. For comparison purposes, we numerically solve
the resulting large system of ordinary differential equa-
tions (ODEs) for the step radii by imposing initial data
for a linear cone. At sufficiently long time, the terrace
width or discrete slope (inverse of terrace width) exhibits
the anticipated self-similar behavior [3, 4].
In the continuum limit away from the facet, step ener-

getics give rise to a surface free energy whose variational
derivative produces the large-scale chemical potential, µ,
the continuum limit of the step chemical potential. At
this level of description, the physical facet mathemati-
cally corresponds to a particular type of singularity of
the free energy density, as a function of surface orien-
tation, at vanishing surface slope. We believe that our
scheme implicitly smooths out the surface free energy by
taking into account the motion of steps inside the discrete
boundary layer. We are aware that this approach in prin-
ciple implies a modified surface free energy close to the
facet. By treating the facet edge as a moving boundary,
we circumvent the use of such an energy.
Our approach has limitations. The analytic derivation

of facet boundary conditions from step flow remains an
open problem. Because of our self-similarity ansatz at
the continuum scale, we do not describe transient dy-
namics, for which the full evolution PDE away from the
facet is needed. The convergence of our hybrid scheme is
not studied. Kinetic regimes other than diffusion-limited
kinetics are not addressed. We consider only initial con-
ical data. The extension of our approach to two spatial
dimensions (2D) is not developed.
The remainder of the paper is organized as follows.

Section II provides an overview of the step flow model
and corresponding continuum theory. In Sec. III, we for-
mulate the step ODEs and describe (i) the free bound-
ary problem of the reference case, and (ii) the modi-
fied free boundary problem in terms of jump disconti-
nuities depending on the positions of steps inside the dis-
crete boundary layer. In Sec. IV, we describe our hybrid
scheme. Section V presents some numerical results. In
Sec. VI, we discuss plausible modifications of our work.
Finally, in Sec. VII we summarize our results.

II. BACKGROUND

In this section, we briefly review basic elements of the
step flow model [23–25] and the respective continuum de-

scription. We emphasize the special character of faceted
surface regions in the continuum framework.

A. Step flow model: A review

Steps are represented by smooth curves separated by
terraces and move as adatoms attach to or detach from
step edges. Adatoms can diffuse across terraces. We
neglect step edge diffusion and evaporation of adatoms,
and assume that no material is deposited on the surface
from above. The concentration C(r, t) of adatoms on
terraces obeys

∂C

∂t
= ∇ · (Ds∇C) , (1)

where Ds is the (constant for our purposes) terrace diffu-
sivity. In the quasistatic regime, we set ∂C/∂t ≈ 0 [30].
The validity of this approximation for fast-moving top
steps is an open issue not addressed here.

At each step we impose the kinetic relation [31]

J±,⊥ = k±(C± − Ceq); (2)

see also [25] for the special case C± = Ceq and related
reviews in [26, 27]. Here, J±,⊥ is the restriction at the
step edge of the component of the adatom flux J± =
−Ds∇C on the upper (+) or lower (−) terrace normal
to and directed toward the step; k± is the respective rate
of attachment-detachment due to the Ehrlich-Schwoebel
barrier [32]; C± is the value of the adatom concentration
at the step on the corresponding terrace; and Ceq is the
local equilibrium concentration at the step edge. For
diffusion-limited kinetics, the diffusion length Ds/k± is
considered small compared to the typical terrace width.

Equations (1) and (2) are linked to step energetics via

Ceq = cs exp

(
µst

kBT

)
≈ cs

(
1 +

µst

kBT

)
, (3)

where µst is the step chemical potential, cs is a constant
concentration, and kBT is the Boltzmann energy [33];
|µst| ≪ kBT . In particular, µst is the change in the step
free energy by addition of an atom to the step. It was
recently shown that if Ust is the step free energy per unit
length, µst is given by [34]

µst =
Ω

a
∇ · (Ust eη) , η = ηst, (4)

and thus depends on the step configuration via Ust. Here,
Ω is the atomic volume, a is the step height, and the step
edge curve is described by η = ηst in a curvilinear coor-
dinate system, (η, ς), with unit normal vector eη; Ust =
U(η, ς). If U = β, Eq. (4) yields µst = (Ω/a)β κst where
κst is the local step edge curvature, as expected [33].

By mass conservation, the normal step velocity is [25]

vst =
Ω

a
(J+,⊥ + J−,⊥). (5)

Equations (1)–(5) describe step motion given initial data
for step positions.
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B. Continuum limit away from facet

Next, for a monotone step train and diffusion-limited
kinetics, we outline elements of the continuum theory
away from the facet, in correspondence to the step flow
model of Sec. II A. In the continuum limit, a/λ → 0
while the step density is kept fixed, where λ is a typical
macroscopic length. Details on the formal derivation of
the continuum limit in 2D can be found in [34].
First, the step velocity, vst, approaches (∂h/∂t)/|∇h|.

Accordingly, step motion law (5) becomes the mass con-
servation statement

∂h

∂t
+Ω∇ · J = 0, (6)

where J(r, t) is the continuum-scale adatom flux.
Second, Eqs. (1)–(3) give rise to a constitutive rela-

tion between the large-scale adatom flux, J(r, t), and the
macroscale chemical potential, µ(r, t) [34]:

J(r, t) = −csDs

kBT
M · ∇µ, (7)

where M is an orientation-dependent (dimension-
less) tensor. For diffusion-limited kinetics, where
[Ds/(ka)]|∇h| ≪ 1, this M reduces to 1, the unit ten-
sor [17].
Third, by Eq. (4) the continuum-scale chemical poten-

tial, µ, is the variational derivative of the surface free
energy, E[h], the continuum limit of aUst [33]:

µ = Ω
δE

δh
, (8)

provided the right-hand side is well defined. For entropic
and force-dipole step-step interactions, the free energy,
E[h], of a vicinal surface reads [6]

E[h] =

∫∫ (
g0 + g1|∇h|+ 1

3
g3|∇h|3

)
dS, (9)

where g0 is the energy per area of the (x, y)-reference
plane, g1a = β is the step line tension, g3 accounts for
repulsive step-step interactions, g3 > 0, and dS = dx dy.
Notably, δE[h]/δh is (locally) ill defined at surface re-
gions where ∇h = 0, which correspond to facets in this
formulation (Sec. II C) [6]. By Eq. (8), the variable µ is

µ = Ωg1∇ · ξ, (10)

where

ξ = −
(
1 + g|∇h|2

) ∇h

|∇h|
, r : outside facet, (11)

and g = g3/g1 expresses the relative strength of step-step
interactions and step line tension.
The combination of Eqs. (6), (7) and (10) for diffusion-

limited kinetics yields a fourth-order PDE for h:

1

B

∂h

∂t
= ∇2 (∇ · ξ) , (12)

which is valid outside facets; ξ is defined by Eq. (11) and
B = csDsΩ

2g1/(kBT ) is a material parameter [17].

C. Facet as special free boundary

We now discuss aspects of the free boundary view for
the evolution of a faceted structure. As is indicated in
Sec. II B, PDE (12) with Eq. (11) is questionable at the
facet, where ∇h = 0 according to Eq. (9). In the math-
ematics literature, a remedy to this pathology has been
offered by a formalism (“subgradient formalism”) that
treats the facet as part of the PDE solution [35, 36].
This approach is consistent with the smoothing of the
energy E[h] in [10]; the treatment of the facet by use of
an analogy with porous-media equations in [5]; and the
application of (truncated) Fourier series expansions for
the surface height in [12]. In this context, the continuum
is self-contained. In the spirit of [35], PDE (12) is applied
everywhere on the surface; then, ξ must appropriately be
extended from the smooth sloping surface onto the facet.
A mathematically plausible extension follows from the
property that relaxation occurs as the steepest descent, in
some appropriate metric, of the surface free energy, E[h].
This approach implies a certain free boundary problem
[5]: Apply PDE (12) away from the facet and enforce
boundary conditions at the facet edge that include the
continuous extensions of the continuum-scale (i) surface
height, (ii) positive surface slope, |∇h|, (iii) adatom flux
normal to the facet edge, and (iv) chemical potential,
µ. The component of ξ normal to the facet edge is also
continuously extended onto the facet. In addition, far-
field conditions on a semi-infinite structure require that
the height and positive slope approach their initial data
far from the facet. This set of conditions forms our ref-
erence case, to be used for comparisons to an alternate
continuum theory (Sec. III E).

The above treatment of the facet is dictated by fully
continuum considerations. An emerging issue has been
whether the resulting macroscopic evolution is consistent
with the dynamics of step flow.

It has been demonstrated by simulations for a faceted
axisymmetric crystal structure under diffusion-limited ki-
netics that the continuum slope determined in the refer-
ence case is not consistent with step motion [8]. For
an analogous result in evaporation-condensation kinet-
ics, see [15]. In fact, it has been realized that the facet
is a special region where discrete effects, especially col-
lapses of steps, may dramatically influence the large-scale
surface morphology [4].

In [9], predictions of the continuum model are recon-
ciled with step flow simulations by replacement of the
continuity of the continuum-scale chemical potential by
a drastically different condition, the step-drop condition,
inspired by [4]. This latter condition requires that, in set-
tings where the facet is a plateau of zero surface slope,
the facet height, hf(t), decrease by increments of a single
atomic height at each step collapse:

hf(tn+1)− hf(tn) = −a, (13)

where tn is the nth-step collapse time. Equation (13)
can be viewed as a condition on the discrete derivative
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of hf(t), where t ≈ tn, and is approximately reduced to

ḣf ≈ − a

δt(t)
, δt(t) = tn+1 − tn, (14)

which imposes a vertical facet speed given the time dif-
ference δt(t) [9]. Note that the dot on top of a symbol
denotes differentiation with respect to time.
Because each tn is in principle computed by solving all

step flow equations, Eq. (14) reveals the nonlocal cou-
pling of facet motion with the surface profile through
step flow. The quantity δt(t) depends on the dynamics
of the many-step system. Equation (14) leads to predic-
tions consistent with steps [9]; however, it is deemed as
impractical for computing large-scale surface morpholo-
gies: First, the accurate evaluation of δt(t) may require
simulations of a large number of steps. Second, Eq. (14)
leads to a boundary condition sensitive to errors in δt(t).
An alternate scenario avoiding Eq. (13) was proposed

in [15] for an evaporation-condensation model in a radial
geometry. In this case, the evolution PDE takes the form
∂h/∂t = −νΩg1divξ everywhere [cf. Eq. (12)], where
ν is a material parameter. Then, the boundary condi-
tions serving as the reference case consist of continuity
of: height, radial flux variable ξ, and slope if g3 > 0 [cf.
Eqs. (10) and (11)]. The resulting free boundary prob-
lem in principle yields predictions not consistent with
step flow [15]. Instead of the use of the step-drop condi-
tion as a remedy, in [15] the radial ξ is required to have
a jump discontinuity at the facet edge [15]. The conti-
nuity of height and slope are left intact. Specifically, in
axisymmetry, if ξf(r, t) is the radial component of ξ on
the facet, r is the polar coordinate, and rf(t) is the facet
radius, the jump condition reads

ξf(r, t)
∣∣
rf (t)−

= Q(t) ξ(r, t)
∣∣
rf(t)+

, (15)

where r±f indicates the limit as r approaches the
facet edge from outside (+) or inside (−) the facet.
Here, Q(t) represents a piecewise-constant multiplicative
jump depending on the radii of two top steps at col-
lapse times through the geometric factor [rn+1(tn−1) +
rn(tn−1)]/[2rn+1(tn−1)] for tn−1 ≤ t < tn (n ≥ 1); ri(t)
is the i-th step radius. For large enough time, step sim-
ulations reveal that Q(t) ≈ 3/4 [15]. The resulting con-
tinuum theory is found to be in excellent agreement with
step flow simulations [15]. It has been argued that in this
case the facet moves vertically much in the same way that
a shock wave propagates in a fluid [15]; by mass conser-
vation, the condition for the shock-wave speed entails
Eq. (15) with the above value for Q [15].
Here, we make the attempt to extend some of these

insights to the case with diffusion-limited kinetics. We
consider jump discontinuities in both the global chemical
potential and its generating flux, ξ (see Sec. III). From
a physical viewpoint, this approach aims to reconcile the
thermodynamic structure of macroscopic evolution laws,
e.g., Eq. (8), with the microstructure of step flow near
the facet via suitable factors that reveal details of the

discrete boundary layer. We view this approach as a
potential guide to more systematic studies in 2D.

III. RADIAL GEOMETRY: FORMULATION AT
TWO SCALES

In this section, we describe the radial geometry of the
faceted crystal, provide the governing equations of mo-
tion for steps in diffusion-limited kinetics, and formulate
two free boundary problems at the continuum scale. One
of these formulations is the reference case. Another for-
mulation uses jump boundary conditions for the large-
scale chemical potential and its generating flux.

A. Geometry

At the macroscale, the axisymmetric crystal surface
is represented by the height profile, h(r, t) (see Fig. 1).
The crystal structure is taken to be semi-infinite for our
purposes. The facet, which is assumed to have fixed ori-
entation of zero slope (∂h/∂r = 0), has height hf(t) and
radius rf(t). It is expected that hf(t) is monotonically
decreasing and rf(t) is increasing with t.

At the microscale, the crystal structure consists of a
monotone step train with concentric circular steps of
atomic height, a (Fig. 1). The ith-step radius is ri(t). Ini-
tially (at t = 0), there are N steps with radii ri(0), where
ri(0) < ri+1(0), 1 ≤ i ≤ N and N ≫ 1 (rN+1 = ∞).
The nth-step collapse time, tn, is defined by rn(t) ≡ 0
for t ≥ tn and rn(t) > 0 for t < tn (1 ≤ n ≤ N). For
tn < t < tn+1, there are N − n moving steps and the
ith terrace is the region ri(t) < r < ri+1(t), which has
width ri+1− ri, n ≤ i ≤ N −1; N approaches infinity for
our purposes. We hypothesize that the initial ordering
of steps is preserved by the flow for all times t > 0, since
the force-dipole step repulsion prevents their crossing [cf.
Eqs. (18) and (19) below]. The discrete slope is

mi(t) =
a

ri+1(t)− ri(t)
, (16)

assumed to be positive (mi(t) > 0).

B. Microscale: Step motion laws

Next, we briefly describe the governing step equations.
Some details can be found in [4, 7]. In the radial geom-
etry, diffusion equation (1) in the quasi-static regime is
solved exactly on each terrace with Eqs. (2) and (3) at
the bounding step edges. By diffusion-limited kinetics,
when Ds/[k±(ri+1 − ri)] ≪ 1, the resulting adatom flux,
Ji(r, t), on the ith terrace is

Ji(r, t) = −Dscs
kBT

µi+1 − µi

ln ri+1

ri

1

r
. (17)
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h(r,t)
a

reference plane

facet

r (t)f

h (t)f

FIG. 1: Geometry of axisymmetric structure at macroscale
(left) and microscale (right).

In view of Eq. (4), the ith-step chemical potential, µi,
is proportional to the change of the total free energy, EN ,
with respect to the step radius, ri. By the formulas [7]

EN = a
∑
i

2πri(t) [g1 + g3V (ri, ri+1)] , (18)

V (ri, ri+1) =
1

3

2ri+1

ri+1 + ri

(
a

ri+1 − ri

)2

, (19)

µi = (Ω/a)(2πri)
−1(∂EN/∂ri) is computed by

µi(r, t) =
Ωg1
ri

(1 + gΦi−1,i,i+1) , (20)

where the (dimensionless) Φi−1,i,i+1 couples three steps,

Φi−1,i,i+1 =
∂ [riV (ri, ri+1) + ri−1V (ri−1, ri)]

∂ri
. (21)

The use of Eq. (20) in Eq. (17) yields the adatom flux in
terms of the step radii, ri(t).
It remains to express the i-th step velocity, vst,i = ṙi ≡

dri/dt, in terms of the step radii, ri(t), for tn ≤ t < tn+1

(i ≥ n+ 1). By recourse to Eq. (5), we find that

ṙi =
csDsΩ

kBT

1

ari

(
µi+1 − µi

ln ri+1

ri

− µi − µi−1

ln ri
ri−1

)
(22)

where i ≥ n + 3. For i = n + 1 and n + 2, the step
equations need to modified, since each of these steps has
one or no neighboring step on one side; in particular, for
i = n + 1 the second term of Eq. (22) disappears. We
numerically solve ODEs (22) subject to the initial data

ri(0) = r0 + ia, 1 ≤ i ≤ N. (23)

C. Discrete boundary layer

Next, we provide an intuitive discussion on the notion
of a discrete boundary layer based on step simulations.
Our goal is to motivate the use of discontinuities for

certain continuum-scale variables across the facet edge
(Sec. III E).

Figure 2 shows the step radii, ri(t), as a function of
time, computed for g = 0.1 and N = 103; see also figures
2 and 4 in [4]. By inspection of the step trajectories, we
observe that, in each time interval tn − ϵn < t < tn + ϵn
(where 0 < ϵn < min{tn+1 − tn, tn − tn−1}), the collapse
of the nth (top) step causes a significant disturbance to
the motion of only very few adjacent steps (numbered by
i, i ≥ n+ 1). This influence is manifested in the form of
ripples in step motion, whose amplitudes rapidly decay
with the radial distance from the topmost step. This pic-
ture also reveals a time scale separation: top steps (near
the facet) move fast in comparison to the slow motion
of steps away from the facet. In addition, the width of
terraces away from the facet exhibits a relative slow spa-
tial variation, at any given time. It is thus reasonable to
describe the respective step density away from the facet
via a continuum solution which can be informed about
the behavior of top steps through suitable boundary con-
ditions.

In each interval tn < t < tn+1, we empirically define
the (time-dependent) discrete boundary layer as the nar-
row surface region near the facet edge formed by steps
of index i ≥ n+ 1 whose terrace width has rapid spatial
and temporal variations. Evidently, this discrete layer
contains a number of steps much smaller than the total
number, N , of steps in the initial structure; the height of
the boundary layer is of the order of a, the step size.

In the continuum limit, when terraces away from the
facet are described by the continuous slope profile, we
need to eliminate the above discrete layer, effectively re-
placing it by a (time-dependent) circle. We claim that,
to a good approximation, this circle is the free boundary
of the facet if the continuum chemical potential and its
generating flux have appropriately defined jumps across
this boundary. These jumps are phenomenologically de-
scribed in Sec. III E.

D. Continuum scale: Reference case

We now describe the macroscopic free boundary prob-
lem in the reference case, which leaves out microstruc-
ture details. In Sec. V, we verify numerically that this
approach is not consistent with step flow [9].

In our radial geometry, PDE (12) becomes

1

B

∂h

∂t
=

1

r3
+ g

1

r

∂

∂r
r
∂

∂r

1

r

∂

∂r

(
rm2

)
, r > rf(t), (24)

where m(r, t) = |∂h(r, t)/∂r|, the positive surface slope.
The differentiation of both sides of Eq. (12) with respect
to r yields a PDE for m:

1

B

∂m

∂t
=

3

r4
− g

∂

∂r

1

r

∂

∂r
r
∂

∂r

1

r

∂

∂r

(
rm2

)
, (25)

which is valid away from the facet.
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FIG. 2: Simulation data for step trajectories, ri(t), by nu-
merically solving Eq. (22) with initial data (23), for N = 103,
r0 = 0 and g = 0.1. The non-dimensional time, τ , is defined
by τ = [csDsΩ

2a−4g1/(kBT )]t = (Ba−4)t. The annihilations
of top steps are evident.

Next, we outline the reference case for Eq. (25); see
also [7]. By Eq. (11), the (radially directed) flux, ξ,
generating the macroscale chemical potential outside the
facet is

ξ(r, t) = ξ(r, t)er, ξ = 1 + gm2, r > rf(t). (26)

First, the continuity of slope yields

m(rf(t), t) = 0; (27)

in particular, m(r, t) ≈ C(t)[r − rf(t)]
1/2 near the facet,

revealing the singular behavior of the continuum solution.
Second, by continuity of height, h(rf(t)

+, t) = hf(t), and
Eq. (27) we obtain

r3f ḣf

B
= 1− grf

(
∂rm

2 − 2rf∂
2
rm

2 − r2f ∂
3
rm

2
)∣∣

r=rf (t)+
,

(28)
where ∂r ≡ ∂/∂r. Third, we address continuity of the

radial adatom flux. By writing ḣf + Ω∇ · Jf = 0 on the
facet (r < rf) and setting er · Jf(r, t) equal to er · J(r, t)
at r = rf(t) we have

−r3f ḣf

2B
= 1− grf

(
∂rm

2 + rf∂
2
rm

2
)∣∣

r=rf (t)+
. (29)

Fourth, by the continuous extension of the step
chemical potential, we set µ(r+f , t) [cf. Eqs. (10) and

(11)] equal to µf(r
−
f , t); the latter term stems from

integration of the relation Jf = −[csDs/(kBT )]∇µf

applied for r < rf . Thus, we obtain

Ωg1
4B

[
r2f ḣf + b(t)

]
= Ωg1

(
1

r
+ g∂rm

2

)∣∣∣∣
r=rf (t)+

. (30)

A few comments on Eq. (30) are in order. The left-hand
side is the chemical potential µf(r

−
f , t) on the facet [7],

driven by changes of the facet height, where b(t) is an
integration constant; thus, this µf is directly influenced
by the loss of top steps and can in principle incorporate
discrete changes, if needed. The right-hand side of
Eq. (30) is the continuum limit, µ(r+f , t), of the step
chemical potential outside the facet, which expresses the
variation of the step free energy according to Eq. (8).

In addition, in view of the relation µ = Ωg1∇ · ξ on
the entire surface, it is reasonable to continuously extend
er · ξ onto the facet, viz.,

1

16B

[
r3f ḣf + 2rfb(t)

]
= 1 + gm(rf(t), t)

2 = 1, (31)

where the left-hand side is the radial component of ξ
on the facet. Boundary conditions (27)–(31) are supple-
mented by the requirement that

m(r, t) → 1 as r → ∞, (32)

so that in the far field the slope is compatible with initial
data (23). Equation (32) is meant to imply ∂rm → 0 as
r → ∞.

Equation (25) and conditions (27)–(32) are believed to
form a meaningful free boundary problem. If the slope
m is self similar, this problem is transformed accordingly
and simplified (see Sec. VA for details).

Certain ingredients of this formulation are known to
be questionable from a physical standpoint [1]. In par-
ticular, there is no compelling reason for µ and µf to be
equal at the facet edge. In fact, since these chemical po-
tentials express different physical mechanisms, µ and µf

may be incompatible at the facet boundary. This obser-
vation suggests the scenario that Eq. (30) be replaced by
a discontinuity condition (Sec. III E). In the same vein,
there is no compelling reason for Eq. (31) to hold.

E. Continuum scale: Modified free boundary
problem

In principle, the set of boundary conditions at the facet
edge consistent with step flow should be derived from the
continuum limit of ODEs (22). We have been unable to
carry out this limit near the facet. Thus, we resort to
speculation of the requisite boundary conditions, partly
guided by results in [15] and numerical simulations. In
particular, we modify Eqs. (30) and (31) to address the
distinct origins of the two chemical potentials, defined in
the regions away from and on the facet, by introducing
jump discontinuities at the facet edge.

For later convenience, let

µf(r, t) =
Ωg1
4B

[
r2ḣf + b(t)

]
, r < rf (t), (33)

ξf(r, t) =
1

16B

[
r3ḣf + 2rb(t)

]
, r < rf (t). (34)
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We define the global large-scale chemical potential as

µS(r, t) =

{
µ(r, t) = Ωg1r

−1∂r(rξ), r > rf(t),
µf(r, t), r < rf(t).

(35)

Accordingly, we define the generating flux

ξS(r, t) =

{
ξ(r, t) = 1 + gm2, r > rf(t),
ξf(r, t), r < rf(t).

(36)

1. Jump conditions at facet edge

We require that the global large-scale chemical poten-
tial and its generating flux are discontinuous at the facet
edge. As an extension of the formulation in [15], we
express such discontinuities in terms of non-dimensional
multiplicative factors, denoted Qµ(t) and Qξ(t). Accord-
ingly, we formally impose

µf(rf(t)
−, t) = Qµ(t) µ(rf(t)

+, t), (37)

ξf(rf(t)
−, t) = Qξ(t) ξ(rf(t)

+, t), (38)

instead of applying Eqs. (30) and (31). Recall that
µ(r+f , t) = Ωg1[r

−1
f + g(∂rm

2)|r=r+f
] and ξ(r+f , t) = 1 are

the limiting values of the continuum-scale chemical po-
tential and its generating flux as r approaches the facet
boundary from the smooth surface. The factors Qµ(t)
and Qξ(t) in principle depend on the behavior of steps
inside the discrete boundary layer. Note that setting
Qµ(t) ≡ 1 ≡ Qξ(t) corresponds to the reference case.
It can be claimed that Eq. (38) is a generalization of the

shock-wave condition used for evaporation-condensation
kinetics in [15]. It is tempting to compare Eq. (37) to
the known Gibbs-Thomson formula, which describes the
change in chemical potential or vapor pressure across an
interface. Here, we are inclined to view the facet bound-
ary as an interface separating two distinct phases: the
facet, where individual step collapses occur, and the bulk
of steps, which slowly evolves in a continuum-like fash-
ion. In contrast to the Gibbs-Thomson relation, Eq. (37)
allows for a jump µf(rf(t)

−, t)−µ(rf(t)
+, t) that may de-

pend on global features of the surface profile via µ in
addition to the local characteristics (e.g., curvatures) of
steps inside the discrete boundary layer.
Hence, the modified free boundary problem consists of

PDE (25) under conditions (27)–(29), (32), (37) and (38).
The remaining task is to provide formulas for Qµ and Qξ.

2. Factors Qµ(t) and Qξ(t)

In the spirit of [15], we seek conditions that incorpo-
rate the step collapses on top of the facet, taking into
account steps that move inside the discrete boundary
layer. We empirically construct jumps compatible with
the following properties.

(a) Qℓ(t) (ℓ = µ, ξ) is constant in every time interval
tn < t < tn+1 for all n = 0, 1, . . . (t0 = 0).

(b) Qℓ(t) is expressed in terms of curvatures (or radii)
of a few top steps [cf. Eq. (15)]. In the simplest
possible scenario, such a factor involves two con-
secutive steps and becomes unity if the step radii
tend to coalesce, i.e., when ri ≈ ri+1, and none of
these steps collapses.

(c) Qξ(t) < 1, by analogy with evaporation [15].

We first address the choice of Qξ. In the radial set-
ting, a familiar geometric factor is Gi(t) = [ri+1(t) +
ri(t)]/[2ri+1(t)] [15], where Gi(t) < 1 since we assume
that the steps are ordered, ri+1(t) > ri(t). Accordingly,
by inspecting properties (a) and (b), we set

Qξ(t) = F (Gn(tn),Gn+1(tn), . . . ,Gn+m−1(tn)) (39)

for tn ≤ t < tn+1; Gn(tn) = 1/2 by definition of tn. Here,
F is an multivariable function, to be discussed next.

We speculate the form of F , justifying our choice on
the basis of our numerics later on (see Sec. V). In
evaporation-condensation kinetics [15], the correspond-
ing F depends on a single variable and is linear. In the
present case, an analogously simple choice is

F = F (Gn,Gn+1) ≡
1

2
[Gn(tn) + Gn+1(tn)] , (40)

a function of two variables, which expresses the arith-
metic mean of the geometric factors Gn(t) and Gn+1(t)
each evaluated at the step collapse times, t = tn (n ≥ 1);
thus, Qξ(t) < 1.

In Fig. 3, we show values of the piecewise constant
Qξ(t) = Qξ(t; g) in the intervals tn ≤ t < tn+1 versus
the step collapse number, n, for different values of the
step interaction parameter, g. The data is obtained by
numerically solving step ODEs (22) under Eq. (23). Ev-
idently, for large t, Qξ(t) asymptotically approaches a g-
dependent constant. This behavior is consistent with the
anticipated self-similar behavior of the discrete slopes,
mi(t) (see Sec. VA).

Next, we turn our attention to the factor Qµ(t). This
type of jump has no counterpart in the case with evapo-
ration, where the chemical potential is not invoked in the
facet boundary conditions [15]. We find that the choice

Qµ(t) = F (Gn,Gn+1)
−1, tn ≤ t < tn+1, (41)

in combination with Eq. (39), produces results in excel-
lent agreement with many-step simulations (see Sec. V).

Our choices of discontinuity factors are not unique. For
example, another scenario includes having a discontinu-
ous large-scale chemical potential in combination with a
continuous generating flux (see Sec. VIA). In our ef-
forts to implement this possibility, we had to make use
of geometric factors evaluated at discrete times differ-
ent from tn. Our goal at this stage is to describe jump
discontinuities that can form elements of a viable com-
putational scheme. Thus, we choose to make use of the
collapse times, tn, in order to characterize the jumps.
The derivation of the boundary conditions at the facet
from the discrete scheme for steps remains an unresolved
issue.
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FIG. 3: Step simulation data for values of piecewise constant
jump factor Qξ(t) = Qξ(t; g) in intervals tn ≤ t < tn+1 as
a function of step collapse number, n. Circles: weak step
interaction, g = 0.01; squares: g = 0.1; and triangles: g = 1.

IV. HYBRID DISCRETE-CONTINUUM
SCHEME

In this section, we formulate a computational scheme
that couples the continuum theory with the motion of
only a few steps near the facet, in an effort to validate the
modified free boundary problem introduced in Sec. III E.
The numerical results from this scheme are in excellent
agreement with many-step simulations (see Sec. V).

Two important features of the jumps Qµ and Qξ of
Sec. III E are: (i) the jumps approach a g-dependent con-
stant for n ≫ 1 (after many steps collapse); and (ii) the
jumps depend only on a small number of steps. These
features rely on the assumed step kinetics and energet-
ics, e.g. the property that each step interacts only with
its nearest neighbors. For example, in the hypothetical
scenario with long-range step-step interactions, plausible
jump factors may depend on many step positions.

The use of Qµ and Qξ aims to incorporate into the
continuum model the fast motion of steps inside the dis-
crete boundary layer (see Fig. 2). In this sense, the pro-
posed hybrid scheme links the slow motion of steps away
from the facet, where continuum theory is applicable, to
rapidly changing (due to step annihilations) step trajec-
tories near the facet.

In our scheme, we start with the self-similar contin-
uum solution of the reference case, which does not re-
quire any input from steps (Sec. IIID). As the time ad-
vances and the number of step annihilations increases,
we successively improve this solution through solving a
few ODEs for steps inside the discrete boundary layer in
combination with the modified free boundary problem of
Sec. III E. In solving a few ODEs, say, for M = 3 steps,
we have to provide a reasonable approximation for the

radii of adjacent steps interacting with these M steps.
For this purpose, we use

ri+1 ≈ ri +
a

m(ri, t)
. (42)

Here, m(r, t) denotes a continuum-scale solution for the
surface slope; by our self-similarity ansatz, m(r, t) ≈
M(η) where η = r/(Bt)1/4 (see Sec. VA).

Our iterative scheme consists of the following stages.

1. Compute m(r, t) in the self-similar regime, i.e., via
M(η), for the reference case (Sec. IIID).

2. Simulate M top steps (3 ≤ M ≪ N) in the time
interval t̃n⋄ < t ≤ t̃n∗ . The M step ODEs are
terminated by use of Eq. (42) where i = n +M +
l, n⋄ ≤ n < n∗, and l = 0, 1. The number of
simulated steps isM at all times; when the i-th step
collapses, i.e., ri becomes 0, the respective ODE is
removed and the ODE for ri+M is added to the
system. Here, t̃n denotes the n-th step collapse
time computed within this scheme. This part is
initiated for n⋄ = 0 and n∗ ≥ 1 with t̃0 = 0.

3. Re-compute the self-similar slope M(η) by using
the jump boundary conditions (Sec. III E) at t =
t̃n∗ , where Qξ and Qµ are determined by Eqs. (39)–
(41) from the previously resolved, reduced system
of M steps.

4. Iterate: Repeat parts 2 and 3 by replacement of
n⋄ by the previous n∗ and enforcement of one step
collapse (advancing n∗ to n⋄ + 2). Continue, ad-
vancing t until many steps have collapsed.

Our hybrid scheme is heuristic. The total number of
iterations, N (g), in principle decreases with the step-step
interaction parameter, g (see Sec. VB). However, it has
not been possible to a priori predict how many iterations
are needed precisely, and thus how many times the jump
conditions must be applied, until satisfactory accuracy is
achieved. This would require a systematic error analysis
of our scheme, which is not pursued here.

V. NUMERICAL RESULTS

In this section, we provide details of our numerical sim-
ulations for the relaxation of an initial cone. Specifically,
we carry out computations by our hybrid scheme and
compare the results to many-step simulations.

A. Self-similarity

Our step simulations for conical initial data indicate
that the discrete slope, mi = a/(ri+1 − ri), becomes self-
similar at long time, as is also observed in [4, 9]. In
this section, we outline consequences of this behavior.
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FIG. 4: Log-log plot of collapse times tn versus n, for step
interaction parameters g = 0.1 and g = 10.

FIG. 5: Discrete slope mi versus: radial coordinate ri for
different times t = tn (inset); and scaled variable ri/(Btn)

1/4

(main plot). The step-step interaction parameter equals g =
0.1 and the number of collapsing steps is n = 100, 125, 150.

In particular, we hypothesize that evolution PDE (25)
reduces to a similarity ODE in the context of the free
boundary problems of Sec. III. At the moment, we are
not aware of any analytical proof for the existence of such
self-similar continuum solution.

An indication of self similarity is the asymptotic behav-
ior tn ≈ t∗(g)n

4 for n ≫ 1; cf. Fig. 4. In addition, the
plots of mi(t; g) versus ri for any fixed step annihilation
time, t = tn, approximately yield a single (g-dependent)
curve if ri is scaled by (Bt)1/4 and n ≫ 1; cf. Fig. 5.

Following [9], we assume that m(r, t) ≈ M(η) where
η = r/(Bt)1/4 and t is large enough. Thus, PDE (25) is

converted to the similarity ODE [9]

−η

4

dM

dη
=

3

η4
− g

d

dη

1

η

d

dη
η
d

dη

1

η

d

dη

(
ηM2

)
, (43)

for η > ηf ≡ rf/(Bt)1/4, outside the facet.
The requisite boundary conditions are transformed ac-

cordingly. The reference case is presented in [9]. For the
modified boundary value problem, conditions (27)–(29),
(37), and (38) at the facet edge become

M(ηf) = 0, (44)

−κη3f = 1 + gηf
[
−(M2)′ + 2ηf(M

2)′′ + η2f (M
2)′′′
]∣∣

η=ηf
,

(45)

1

2
κη3f = 1− gηf

[
(M2)′ + ηf(M

2)′′
]∣∣

η=ηf
, (46)

1

8
κη3f = 2Qξ −Qµ

[
1 + gηf (M2)′

∣∣
η=ηf

]
, (47)

where Qµ = limn→∞ Qµ(tn) and Qξ = limn→∞ Qξ(tn).
Equation (47) accounts for both the conditions on µ
and ξ, Eqs. (37) and (38), where the related constant
of integration, b(t), was eliminated. In the above, κ =

−ḣf(Bt)3/4/B and the prime denotes differentiation with
respect to the self-similarity variable, η. In addition, by
far-field condition (32), we have

M(η) → 1 as η → ∞. (48)

We use m(r, t) ≈ M(η) at all stages of our hybrid
scheme (Sec. IV). Since the scheme starts from t = 0
with a self-similar solution, which in principle holds at
long time, we expect significant numerical error in the
surface slope computed at small times.

We numerically compute the self-similar solution M(η)
by applying the Matlab boundary value problem solver
bvp4c to ODE (43) for different values of the interaction
parameter g. The main plots in Figs. 6 and 7 show out-
comes of step simulations for the discrete slope and the
continuum-scale slope computed via the jump conditions;
the corresponding factors Qµ and Qξ are evaluated via
the full system of step ODEs (22). Evidently, the jump
conditions yield results in excellent agreement with step
simulations when the discrete simulation data is used for
the jump factors. In contrast, the insets in Figs. 6 and 7
confirm that the reference case is in principle not consis-
tent with step simulations.

B. Results of hybrid scheme

We now implement our hybrid scheme (Sec. IV) for
different values of the interaction parameter, g. For this
purpose, we simulate a small number of steps, M = 3,
which is minimal within the discrete model of nearest-
neighbor step-step interactions. The main conclusion
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FIG. 6: Comparison of discrete slope (circles) versus contin-
uum slope (solid curve) using: (i) natural boundary condi-
tions (inset), and (ii) jump boundary conditions (main plot)
when g = 0.1. The time unit is chosen so that B = 1.
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FIG. 7: Comparison of discrete slope (circles) versus contin-
uum slope (solid curve) using: (i) natural boundary condi-
tions (inset), and (ii) jump boundary conditions (main plot)
when g = 0.01. The time unit is chosen so that B = 1.

drawn from our numerical results is that the self-similar
continuum slope, produced by the slope of the reference
case after a sufficient number of iterations of the hybrid
scheme, approaches the discrete slope computed by the
many-step simulations. This apparent convergence of
our scheme is illustrated for three different values of g
in Fig. 8.
We observe that the number of iterations, N , decreases

with the step interaction parameter, g. This behavior is
expected, stemming from the property that increasing g
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FIG. 8: Comparison of discrete slope (circles) from step simu-
lations and continuum self-similar solution by hybrid scheme
for M = 3, n⋄ = 0 and n∗ = 4. The reference case (dash-
dots) is the starting continuum solution. The hybrid scheme
sufficiently approaches a continuum slope (solid curve) after
N iterations. An intermediate solution (dashes) is produced
by a smaller number of iterations, N1. (a) g = 0.01, with
N = 66 and N1 = 6. (b) g = 0.1, with N = 16 and N1 = 1.
(c) g = 1, with N = 1. The time unit is chosen so that B = 1.
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causes a lower step density near the facet edge as strongly
interacting steps tend to be farther apart. In fact, the
facet (at fixed time t) shrinks while the jump factors Qµ

and Qξ approach unity as g increases, which suppresses
discrete effects and the need for a truly hybrid scheme.
In contrast, small values of g result in an increase of the
number of iterations, N , because the weakly interacting
steps tend to form a bunch near the facet edge.

VI. DISCUSSION

In this section, we discuss plausible modifications of
our formulation. In particular, we address a free bound-
ary problem where a single jump is introduced. We also
comment on the use of an alternate hybrid scheme in
which the step ODEs are linked to the continuum theory
via the step-drop condition [9]. Finally, we discuss open
challenges in 2D.

A. Boundary conditions with single jump

It is compelling to ask whether the jump factors of
Eqs. (39)-(41) can be chosen uniquely. We claim that, in
the context of our empirical approach, the answer to this
question is negative if the jump factors are evaluated at
times different from the step collapse times, tn.
For example, let us consider the scenario where contin-

uum equation (43) is solved numerically by imposition of
only one jump condition. Specifically, suppose we choose
to apply either the jump (Qµ) in the chemical potential or
the jump (Qξ) in the flux generating the chemical poten-
tial. Then, by our numerical computations the ensuing
continuum theory predicts surface slopes not consistent
with step motion if the jump is evaluated at the step
collapse times, tn. This observation indicates that the
sequence of times at which a single jump should be eval-
uated may not be a priori characterized; the sequence
consists of adjustable parameters whose linkage to ri(t)
appears as unknown, and needs to be determined. This
hypothetical formulation is deemed as impractical for vi-
able computations of facet evolution. In contrast, the
step collapse times tn are characterized by rn(tn) = 0,
which can be incorporated into a hybrid scheme.
Following this scenario of a single jump, our numerics

also yield the sequence of times, t̂n, required to achieve
agreement of continuum predictions with step simula-
tions; tn < t̂n < tn+1. Each t̂n is close to tn for suffi-
ciently large values of g.

B. Step-drop condition: Alternate hybrid scheme

It of some interest to examine whether a viable hybrid
scheme can be devised on the basis of step-drop condi-
tion (14) [9]. Although we have not yet reached a defini-
tive conclusion in this direction, numerical results sug-

gest that our “jump formulation” of boundary conditions
(Sec. III E), relying on discontinuities of two thermody-
namic variables, forms a more viable approach.

First, we comment on a comparison of the two formu-
lations. Evidently, the jump formulation maintains the
thermodynamic structure of continuum theory, since it
retains variables such as the chemical potential which is
the variational derivative of the surface free energy out-
side the facet. On the other hand, the step-drop condi-
tion makes direct use of the vertical facet speed which is
remotely connected to the thermodynamic structure. In
view of these features, we believe that the jump formu-
lation bears certain advantages over the step-drop con-
dition. For example, computations of the surface slope
based on the former are more robust.

We made an attempt to construct a hybrid scheme
that iteratively utilizes the step-drop condition. Numeri-
cal results of this scheme indicate poor convergence after
a large number of iterations, in contrast to the outcomes
of the hybrid scheme in Sec. IV. This behavior is possibly
due to significant numerical error in the continuum solu-
tion because of error in the step collapse time differences,
tn+1 − tn, explicitly used in the step drop condition.

C. Issues with facets in 2D

The extension of our formulation to full 2D, e.g., for pe-
riodic surface corrugations, calls for improvements of our
approach. An emerging issue is to numerically solve the
full PDE for the surface height, abandoning the assump-
tion of self similarity for the positive surface slope. The
resolution of this issue is the subject of work in progress
for the radial setting. A plausible numerical treatment
is offered by the finite element method, which has been
a valuable tool in studies of surface morphological evolu-
tion, e.g., in [37]. However, commonly known versions of
this method correspond to the reference case. The incor-
poration of jump conditions across the facet boundary
into this method is an open problem.

A related issue is the nature of the jumps at the edges
of 2D, non-circular facets. In the radial setting, the jump
factors, Qµ and Qξ, depend on the radii of top steps. In
a more general 2D setting, a plausible scenario is to use
Eq. (39) by replacing ri in each Gi(t) by the Lagrangian
coordinate of step motion invoked in [34]. In this con-
text, it is of course necessary to formulate the respective
equations of motion for steps by use of these Lagrangian
coordinates. This task is left for near-future work.

VII. CONCLUSION

Motivated by the need to predict non-equilibrium
properties of crystals, we revisited a classic problem in
crystal surface morphological evolution: the formulation
of a continuum theory for evolving facets. Our perspec-
tive is different from previous approaches, as we aim to
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reconcile the discrete nature of step motion with a con-
tinuum description without using any adjustable param-
eters. For an axisymmetric, semi-infinite structure with
a single facet, we showed that in the self-similar regime,
at sufficiently long time: (i) a PDE for the surface slope
outside the facet can account for the facet microstruc-
ture through certain step-driven jump discontinuities at
the facet for a continuum-scale chemical potential and
the flux that generates it; and (ii) this theory can be
implemented efficiently by an iterative two-scale, hybrid
scheme which couples the PDE away from the facet with
the motion of only three top steps lying inside a discrete
boundary layer near the facet.
Our approach indicates the special role of the surface

chemical potential in formulating a minimal continuum
model consistent with step flow for the near-equilibrium
evolution of crystal facets. The facet boundary is treated
as an interface separating two phases: the bulk of steps
whose motion is described through variations of the sur-
face free energy and a Fick-type law of diffusion; and the
facet whose height decrease is dictated by individual step
collapses. The jump imposed on the continuum chemical
potential depends both on the (local) curvatures of steps
near the facet and the global surface profile. Physically, a
jump condition may be expected, since the chemical po-
tential on the facet, driven by the loss of individual steps,
is distinct from the chemical potential away the facet,
driven by variations of the surface free energy. Mathe-
matically, it is tempting to claim that the imposition of
such discontinuities is consistent with recent interpreta-
tions of the facet as a shock-type wave [15, 38]; however,

we have been unable to place this statement on firm an-
alytical grounds.

Our treatment reveals the nature of the singular behav-
ior of the surface slope at the facet edge. This behavior
is due to the reduction of the discrete boundary layer
to the sharp facet boundary; then, requisite details of
step flow are no longer transparent. Our work indicates
how such details can possibly be retained through jump
discontinuities within a continuum framework.

While numerical outcomes of the hybrid scheme war-
rant attention to our approach, there remain key unre-
solved questions. The jumps introduced here are specu-
lative; a rigorous analysis would be desirable. We have
only treated the radial geometry and diffusion-limited
kinetics. Nevertheless, we are optimistic that our free
boundary treatment utilizing jump boundary conditions
can be extended to other systems with facets. Specifi-
cally, the attachment-detachment limited regime in radial
geometry should be a tractable case. An analogous hy-
brid approach to the full (2+1)-dimensional setting is an
open problem. In the same vein, the PDE for the height
profile must be solved numerically without assuming a
self-similar |∇h|. We hope that our present contribution
will stimulate further research in this direction.
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