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A. Motivated by the hierarchical multiscale image representation of Tadmor et.
al., [25], we propose a novel integro-differential equation (IDE) for a multiscale image
representation. To this end, oneintegratesin inverse scale space a succession of refined,
recursive ‘slices’ of the image, which are balanced by a typical curvature term at the finer
scale. Although the original motivation came from a variational approach, the resulting
IDE can be extended using standard techniques from PDE-based image processing. We
use filtering, edge preserving and tangential smoothing to yield a family of modified IDE
models with applications to image denoising and image deblurring problems. The IDE
models depend on a user scaling function which is shown to dictate theBV∗ properties of
the residual error. Numerical experiments demonstrate application of the IDE approach to
denoising and deblurring.
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1. Introduction. A black and white image can be realized as a graph of a discrete function
f : Ω ⊂ R2 → R. The values of this function,f (x), denote the intensity of the image at the
discrete pointsx ∈ Ω: the functionf attains its maximum value at the brightest spots in the
image and minimum value of zero at the darkest spots. The graph of an image consists of
discrete pixels which for mathematical analysis, is postulated as anL2(Ω) function.

Many problems in image processing fall under two broad categories ofimage segmen-
tation and image restoration. In image segmentationone is interested in identifying con-
stituent parts of a given image, whereasimage restorationaims to denoise and deblur an
observed image in order to recover its underlying “clean” image. Additive noise, denoted
by η, is inadvertently added to images due to various reasons, such as limitations of the im-
age capturing facilities or transmission losses. Besides noise, images could also be blurred
due to unfocused camera lens, relative motion between the camera and the object pic-
tured, etc; such blurring is modeled by a linear, continuous operator,T : L2(Ω) → L2(Ω),
e.g., convolution with a Gaussian kernel. Thus, the observed image,f , could be writ-
ten as f = TU + η, whereU is the clean image sought without blurring and noise.
The recovery of the clean image from its observed blurred and noisy versionf , is the
problem of image restoration. This is an ill-posed problem which can be addressed by
several inverse problems solvers. We mention in this context variational techniques us-
ing Tikhonov-like regularization, PDE-based methods, filtering, stochastic modeling and
wavelets-based techniques that were developed for solving these image processing prob-
lems [1, 3, 9, 10, 11, 12, 13, 15, 17, 19, 20, 23, 24, 27].

Image restoration leads toimage decomposition. For example, an observed imagef
with additive noise and no blurring is naturally decomposed into a denoised part,Uα, and a
noisy part,ηα := f −Uα. Here,α is an algorithm-specificscaling parameter: in the case of
Gaussian smoothing, for example, the variance of the Gaussian kernel may serve as such
scaling parameter. Small scale features, categorized as noise, are then forced intoηα, re-
sulting in a larger scale version,Uα, of the original imagef . Thus, denoising off generates
a multiscale representation, {Uα}α∈A with a varying scaling parameterα ∈ A. Our paper
deals primarily with image restoration using PDE-based methods. Indeed, the novelty of
our approach is the use of multiscale image representation based onintegro-differential
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equations. The image representation is motivated by the variational-based hierarchical im-
age decomposition of [25, 26]. Incidentally, this shows the intimate relation between the
PDE-based and variational approaches in multiscale algorithms for image restoration.

We begin with some examples where denoising methods give rise to multiscale repre-
sentations.

1.1. Multiscale representations using PDE-based models.We first discuss PDE-based
models which produce multiscale representation{U(·, t)}t≥0 for a given imagef . For con-
venience we use the time variablet as the scaling parameter. One of the earliest PDE-based
methods for denoising a given imagef := U(·,0) is the heat equation

∂U
∂t
= ∆U, U ≡ U(x, t) : Ω × R+ 7→ R;

∂U
∂n

∣∣∣
∂Ω

= 0. (1.1a)

This yields a family of images,{U(·, t) : Ω → R}t≥0, which can be viewed as smoothed
versions off . In this linear set up, smoothing is implemented by a convolution with the
two-dimensional Gaussian kernel,Gσ(x) = 1

2πσ2 exp
(
−
|x|2

2σ2

)
, with standard deviationσ =

√
2t. Hence, details with a scale smaller than

√
2t are smoothed out. Here,λ(t) :=

√
2t

acts as ascaling function. We can say that{U(·, t)}t≥0 is a multiscale representation off , as
U(·, t) diffuses from the small scales inf into increasingly larger scales.

Image denoising by the heat equation is based on isotropic diffusion, and consequently
blurs all edges, which may contain useful information about the image. This drawback was
removed by Perona-Malik (PM) model [23], which is based onnonlinear diffusion

∂U
∂t
= div(g(|∇U |)∇U), U : Ω × R+ 7→ R;

∂U
∂n

∣∣∣
∂Ω

= 0, (1.1b)

with an initial conditionU(·,0) := f . Here, the diffusion controlling function,g, is a real
valued function that vanishes at infinity, so that the amount of diffusion decreases as the
gradient|∇U | increases. Thus,g is responsible for the anisotropic nature of the PM model.
The family of PM models are not well-posed. They also pose a problem for noisy images,
since noise produces high gradients which can be confused with relevant edges. These
shortcomings were removed by Catté et. al. [6] by replacingg(|∇U |) with g(|Gσ ? ∇U |),
whereGσ ? ∇U denotes convolution of the two-dimensional Gaussian kernelGσ,

∂U
∂t
= div(g(|Gσ ? ∇U |)∇U), U : Ω × R+ 7→ R;

∂U
∂n

∣∣∣
∂Ω

= 0, (1.1c)

subject toU(·,0) := f .
The models (1.1) still suffer from a major drawback, namely, the solutionU(t) diffuses

to the average value−
∫

f , as t → ∞. Thus, a stopping criteriat = tc must be sought,
so that the desired denoised imageUc := U(tc) is obtained. This raises the question of
an appropriate stopping timetc. The necessity of finding a stopping time is removed in
Nordstr̈om’s biased anisotropic model [22]

∂U
∂t
= f − U + div (g(|∇U |)∇U), U : Ω × R+ 7→ R;

∂U
∂n

∣∣∣
∂Ω

= 0. (1.2)

In this case, the solutionU(·, t) varies from the initial conditionU(·,0) ≡ 0 to a desired
denoised imageUc, ast → ∞. Thus, the family{U(·, t)}t≥0 is an inverse scale representation
of Uc, with t acting as aninverse scaleparameter, e.g., [14, 16, 5]
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1.2. Multiscale representations using variational models.Variational approaches for
image processing like Mumford-Shah segmentation [20], [21], Rudin-Osher-Fatemi (ROF)
decomposition [24] etc., fall under a general category of Tikhonov regularization [27].
Here one solves the ill-posed problem of recoveringu from the observedf = Tu+ η. We
begin by restricting our attention to the pure denoising problem seeking a faithful, noise
free approximationu ∈ X of f = u + η ∈ L2, whereX ( L2 is an appropriate space
adapted to measure edges and textures sought inu (a discussion of the deblurring problem
is postponed to section5). This leads to the following minimization problem:

f = uλ + vλ, [uλ, vλ] := arginf
f=u+v

{
‖u‖X + λ ‖v‖

2
L2

}
.

The term‖u‖X is a regularizing term anduλ + vλ is a multiscale decomposition off which
varies with the positive scaling parameter,λ. In the case of the ROF model [24], for exam-
ple, edges are sought in the space of bounded variations,X = BV(Ω), e.g., [2]. This yields
the (BV, L2)-decomposition off :

f = uλ + vλ, [uλ, vλ] := arginf
f=u+v

{ ‖u‖BV + λ ‖v‖
2
L2}, (1.3)

where‖u‖BV :=
∫
Ω
|∇u|. For small values ofλ, the minimizeruλ is only a large-scale image,

consisting of only main features and prominent edges inf . On the other hand, ifλ is large,
thenuλ is a small-scale image which contains many details off . Therefore, withλ viewed
as a varying parameter, the ROF variational decomposition (1.3) generates a multiscale
representation,{uλ}λ>0, of f , with λ serving as aninverse-scaleparameter. The behavior
of this multiscale decomposition, as a function ofλ, is tied to the regularity off , once the
variational functional on the right is interpreted as an interpolationK-functional, [4].

The Euler-Lagrange equation characterizing the minimizer,uλ, for the variational prob-
lem (1.3) reads,

uλ = f +
1
2λ

div

(
∇uλ
|∇uλ|

)
. (1.4a)

For a fixedλ, the minimizer of (1.3) can be obtained as a steady state solution of the
nonlinear parabolic equation

∂u
∂t
= f − u+

1
2λ

div

(
∇u
|∇u|

)
, u ≡ u(x, t) : Ω × R+ 7→ R;

∂u
∂n

∣∣∣
∂Ω

= 0. (1.4b)

Starting withu(·,0) := f , the PDE (1.4b) produces a multiscale representation{u(·, t)}t≥0

which approaches the ROF minimizer,uλ, ast ↑ ∞. Observe thatt in (1.4b) serves as a
forward-scaleparameter for the variational ROF model (1.3). Incidentally, the variational-

based PDE (1.4b) is related to Nordstr̈om model (1.2) with g(s) :=
1

2λs
.

1.3. A novel multiscale integro-differential model. In this paper, we introduce a novel
integro-differential equation(IDE) for multiscale representation off∫ t

0
u(x, s) ds= f (x) +

1
2λ(t)

div

(
∇u(x, t)
|∇u(x, t)|

)
, u : Ω × R+ 7→ R;

∂u
∂n

∣∣∣
∂Ω

= 0, (1.5)

subject to appropriate initial conditionu(·,0) = u0(x) outlined in section3 below. The
integral U(·, t) :=

∫ t

0
u(·, s) ds gives a scaled version of the imagef for a givent. The

scaling function,λ(t) is at our disposal. The imageU(t) evolves witht, from a coarse (or
larger) scale images, to smaller scale images with finer details, asλ(t) increases with time.
Thus, (1.5) is an inverse scalemethod, as opposed to theforward scalemethods such as
heat equation or PM models (1.1).
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The motivation behind this IDE comes from the hierarchical (BV, L2) multiscale image
decomposition of Tadmor et. al., [25, 26], which we will elaborate upon in the next section.
In particular, in section3.1we show how the choice of scaling functionλ(t) dictates the size
of the residual imageV(t) := f−U(t). In sections4.1and4.2, we propose further extensions
of our IDE approach which introduce further refinements to tangential smoothing. A final
extension of the IDE model for dealing with deblurring is presented in section5. The
details of the numerical schemes used to implement the various IDE models are outlined in
the Appendix.

2. Motivation for the Integro-Di fferential Equation (IDE). Rudin, Osher and Fatemi
introduced a BV-based minimization functional for image denoising in [24], which in turn
led to the unconstrained (BV, L2) decomposition (1.3) in [7, 8]. The minimizer of (1.3), uλ,
is a coarse representation of the imagef , containing smooth parts and prominent edges,
whereas the residualvλ contains texture and finer details, declared as “noise” off . The
parameterλ is theinversescale parameter ofuλ, i.e. a small value ofλ corresponds to more
details invλ and thus, the imageuλ is more coarse and vice versa.

As a first step, we realize that the intensity of images is quantized. If we letτ denote
the small intensity quanta, then we rescale the coarse representationuλ in τ-units. The
corresponding (BV, L2) image decomposition (1.3) takes the form

f = τuλ0 + vλ0, [uλ0, vλ0] := arginf
f=τu+v

{
‖u‖BV +

λ0

τ
‖v‖2L2

}
. (2.1)

Tadmor, Nezzar and Vese observed in [25] that for a small value of the scaling parameter
λ0, the residual imagevλ0 may still contain important details when viewed at a finer scale.
Thus,vλ0 can be further decomposed using a refined scaling parameterλ1 > λ0,

vλ0 = τuλ1 + vλ1, [uλ1, vλ1] := arginf
vλ0=τu+v

{
‖u‖BV +

λ1

τ
‖v‖2L2

}
.

We can continue this process forλ0 < λ1 < λ2 . . .

vλ j−1 = τuλ j + vλ j , [uλ j , vλ j ] := arginf
vλ j−1=τu+v

{
‖u‖BV +

λ j

τ
‖v‖2L2

}
. (2.2)

Repeating this refinement step, we obtain the followinghierarchicalmultiscale representa-
tion of f , [25]

f = τuλ0 + vλ0

= τuλ0 + τuλ1 + vλ1

= . . . . . .

= τuλ0 + τuλ1 + . . . τuλN + vλN .

Thus, we have
N∑

j=0

uλ jτ = f − vλN . (2.3)

The Euler-Lagrange equations characterizing minimizers of (2.2) are

vλ j−1 = τuλ j −
1

2λ j
div

(
∇uλ j

|∇uλ j |

)
. (2.4)

From (2.4) and (2.2) we get

vλ j = −
1

2λ j
div

(
∇uλ j

|∇uλ j |

)
,
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and inserting this into (2.3) yields the hierarchical decomposition off as
N∑

j=0

uλ jτ = f +
1

2λN
div

(
∇uλN

|∇uλN |

)
. (2.5)

We consider a multiscale scaling, continuous in time,u(x, t) : Ω × R+ 7→ R such that
uλ j (x) 7→ u(x, t j := jτ). Observe that the right hand side of (2.5) is homogeneous of degree
zero. Lettingτ→ 0, the hierarchical description (2.5) motivates a multiscale representation
u(x, ·) which is sought as a solution to our IDE (1.5),∫ t

0
u(x, s) ds= f (x) +

1
2λ(t)

div

(
∇u(x, t)
|∇u(x, t)|

)
,

∂u
∂n

∣∣∣∣
∂Ω

= 0. (2.6)

The IDE (2.6) needs to be augmented with a proper choice of a scaling functionλ(t) and
one needs to set the initial conditionsλ(0) andu(x,0). These will be discussed in section
3.2.

An an example for the IDE multiscale representation of an imagef ,{
U(·, t) :=

∫ t

0
u(·, s) ds

}
t≥0

,

is depicted in figure3.1. Here,u(x, t) denotes thespeedat which the imageU(t) changes
with time. The numerical scheme for its evolution using the IDE (1.5) is prescribed in
section6.

Remark 1. It is instructive to compare our IDE model (2.6) with the time dependent PDE
used in solving the ROF minimization, (1.4). In contrast to the forward scale PDE realiza-
tion of (1.4b), where the solution evolves fromu(·,0) = 0 to a bigger scale imageuλ, our
IDE model (2.6) is an ‘inverse scale’ model, whose solution evolves fromu(x,0) = u0(·) to
f asλ(t)→ ∞.

3. Specifying the augmenting parameters for the IDE.To complete the formulation of
the IDE (2.6), one has to specify a scaling function,λ(t) and theinitial conditions u0(x) ≡
u(x,0). The functionλ(t) serves as aninverse scaling function: asλ(t) → ∞, the image
computed in (2.6)

U(t) :=
∫ t

0
u(x, s) ds,

extracts consecutively smaller scale slices of the original imagef . The residual,V(t) :=
f −U(t) contains texture and noisy parts off . The choices ofλ(t) andu0(x) are outlined in
sections3.1and3.2below.

3.1. On the scaling functionλ(t). It is argued in [18] that the dual norm,

‖w‖∗ := sup
‖ϕ‖BV,0

(w, ϕ)
‖ϕ‖BV

,

is a proper norm to measure texture. The critical role of the scaling functionλ(t) in the IDE
model (2.6) and its relationship with the star-norm is outlined in the following theorem.

Theorem 3.1. Consider the IDE model(2.6)∫ t

0
u(x, s) ds= f (x) +

1
2λ(t)

div

(
∇u(x, t)
|∇u(x, t)|

)
,

and let V(·, t) be the residual
V(·, t) := f − U(·, t).
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Then size of the residual is dictated by the scaling functionλ(t),

‖V(·, t)‖∗ =
1

2λ(t)
. (3.1)

Proof. Forϕ ∈ BV(Ω) we have the following

| (V(·, t), ϕ) | =
∣∣∣∣∣ ( 1

2λ(t)
div

(
∇u(·, t)
|∇u(·, t)|

)
, ϕ

) ∣∣∣∣∣ ≤ 1
2λ(t)

‖ϕ‖BV. (3.2)

Thus, we have‖V(·, t)‖∗ ≤ 1
2λ(t) . Lettingϕ = u(·, t), we get∣∣∣∣∣ ( 1

2λ(t)
div

(
∇u(·, t)
|∇u(·, t)|

)
,u(·, t)

) ∣∣∣∣∣ = 1
2λ(t)

‖u(·, t)‖BV. (3.3)

From (3.2) and (3.3) we get the desired result (3.1). �

t = 1 t = 4

t = 6 t = 10

F 3.1. The images,U(t) =
∫ t

0
u(·, s) ds, of the IDE (1.5) at t =

1,4,6,10. Here,λ(t) = 0.002× 2t.

The importance of Theorem3.1lies in the fact that it enables us to dictate the star-norm
of the residual. For small values ofλ(t), we get a significant amount of texture in the
residual and thus, the imageU(t) :=

∫ t

0
u(·, s) dswill contain only features with big scale.

On the other hand, asλ(t) increases, more and more details will appear inU(t). Hence,
the functionλ(t) can be viewed as an ‘inverse scale function’ for U(t). In particular, if
we choose the scaling functionλ(t), such that limt→∞ λ(t) = c with a prescribed constant
c, then limt→∞‖V(t)‖∗ = 1

2c. Thus, Theorem3.1 enables us to denoise images to any pre-
determined level in theBV∗ sense.

The previous theorem establishes a weak convergence in theG-topology [18, §1.14],
U(t) ⇀ f , for all L2-images. In fact, a strongerL2-convergence holds for slightly more
regular images, e.g.,f ∈ BV. To this end we first prove the following energy decomposi-
tion, interesting in its own sake, along the lines of [25, theorem 2.2].
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Theorem 3.2. Consider the IDE model(2.6) associated with an L2- image f , and let V(·, t)
be the residual, V(t) = f − U(t). Then the following energy decomposition holds∫ t

s=0

1
λ(s)
‖u(·, s)‖BV ds+ ‖V(·, t)‖2L2 = ‖ f ‖

2
L2. (3.4)

To verify (3.4), integrate (2.6) againstu(·, t) in space and time to find∫ t

s=0

(
U(·, s),Us(·, s)

)
ds−

(
f ,U(·, t)

)
= −

∫ t

s=0

1
2λ(t)

‖u(·, s)‖BV ds.

The expression on the left is then rewritten as∫ t

s=0

(
U(·, s),Us(·, s)

)
ds−

(
f ,U(·, t)

)
=

1
2
‖U(·, t)‖2L2 −

(
f ,U(·, t)

)
≡

1
2

[(
U(·, t) − f ,U(·, t) − f

)]
−

1
2
‖ f ‖2L2,

and (3.4) follows from the last two equalities.

Remark 2. A different, equivalent way of stating Theorem3.2 is that (u(t),V(t)) form a
maximal pairin the sense that they turn the inequality (w, ϕ) ≤ ‖w‖BV‖ϕ‖∗ into an equality:

(u(·, t),V(·, t)) = ‖u(·, t)‖BV‖V(·, t)‖∗. (3.5)

Indeed, differentiating (3.4) with respect to time we find

1
λ(t)
‖u(·, t)‖BV + 2(V(·, t),−u(·, t)) = 0,

and (3.5) follows in view of (3.1), ‖V(·, t)‖∗ = 1/2λ(t).

We now turn to upper-bound theL2-size of the residual. Using the usual duality estimate
together with (3.1) to find

‖V(·, t)‖2L2 ≤ ‖V(·, t)‖∗‖V(·, t)‖BV =
1

2λ(t)
‖V(·, t)‖BV, (3.6)

and it remains to study how fast‖V(·, t)‖BV grows. To this end we write

V(x, t) = f (x) −
∫ t/2

s=0
u(x, s) ds−

∫ t

s=t/2
u(x, s) ds,

which implies

‖V(·, t)‖BV ≤ ‖ f ‖BV + λ (t/2)
∫ t/2

s=0

1
λ(s)
‖u(·, s)‖BV ds+ λ(t)

∫ t

s=t/2

1
λ(s)
‖u(·, s)‖BV ds.

Inserting this into (3.6) we end up with the desired upper bound,

‖V(·, t)‖2L2 ≤
1

2λ(t)
‖ f ‖BV +

λ(t/2)
2λ(t)

‖ f ‖2L2 +

∫ t

s=t/2

1
2λ(s)

‖u(·, s)‖BV ds.

Now, the first term on the right vanishes forf ∈ BV at thet = ∞-limit as λ(t) ↑ ∞; the
second term vanishes ifλ(t) increases fast enough to form a Hadamard sequence so that
λ(t)/λ(t/2) ↑ ∞ (e.g.,λ(t) ∼ 2t); and the third term vanishes att ↑ ∞ as the tail of the
uniformly bounded time integral in the energy bound (3.4). We summarize by stating the
following.
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Theorem 3.3. Given an image f∈ BV, we consider the IDE model(2.6) with rapidly
increasing scaling functionλ(t) so that

λ(t/2)
λ(t)

t→∞
−→ 0.

Then, f admits the multiscale representation (where equality is interpreted in L2- sense)

f (x) =
∫ ∞

s=0
u(x, s) ds, (3.7a)

with energy decomposition

‖ f ‖2L2 =

∫ ∞

s=0

1
λ(s)
‖u(·, s)‖BV ds. (3.7b)

3.2. Setting the initial conditions. At t = 0, the IDE (2.6) reads

f +
1

2λ(0)
div

(
∇u(·,0)
|∇u(·,0)|

)
= 0.

Theorem3.1tells us that it has no solution if the initial value of the scaling functionλ(0) ≡
λ0 is set such thatλ(0) , 1/(2‖ f ‖∗). To gain a better understanding for the choice of the
initial parameters,λ(0) = λ0 andu0, we return to the underlying discrete version of the
IDE, given by hierarchical decomposition (2.5)

N∑
j=0

uλ jτ = f +
1

2λN
div

(
∇uλN

|∇uλN |

)
.

This is a discrete version of the IDE (2.6), where the term on the LHS is a quadrature of the

corresponding integral,
∫ t

0
u(x, s)ds, sampled at the equidistant time-steps,t j = jτ, with τ

being the basic intensity quanta.
At t = 0, u(0) ≡ uλ(0) is determined as the solution of

u(0)τ = f +
1

2λ(0)
div

(
∇u(·,0)
|∇u(·,0)|

)
.

This is the Euler-Lagrange equation associated with the ROF variational decomposition
(2.1), and according to [18, Theorem 3], [25, Corollary 2.5], the minimizer of the latter
vanishes,u(0) ≡ 0, if

λ(0) <
1

2‖ f ‖∗
. (3.8)

Assuming that (3.8) holds, then at the solution at the next hierarchical step,u(t = τ) ≡ uλ1

is determined by

u(τ)τ = f +
1

2λ(τ)
div

(
∇u(·, τ)
|∇u(·, τ)|

)
.

Viewed as the corresponding minimizer,u(τ) will vanish if λ(τ) ≡ λ1 < 1/(2‖ f ‖∗). This
process will continue to produce vanishing solutionsu( jτ) ≡ uλ j = 0 until the first time,
t0 := j0τ, when the scaleλ(t0) = λ j0 becomeslarge enoughso that

λ(t0) ≥
1

2‖ f ‖∗
. (3.9a)

At this scale, the IDE picks up the first large features of the imagef with non-trivial initial
conditions,u(t0),

u(t0)τ = f +
1

2λ(t0)
div

(
∇u(·, t0)
|∇u(·, t0)|

)
. (3.9b)
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t = 1 t = 4

t = 6 t = 10

F 4.1. The images,U(t) =
∫ t

0
u(·, s) ds, for the modified IDE (4.1)

at t = 1,4,6,10. Hereλ(t) = 0.002× 2t.

The IDE (2.6),(3.9) then can be equivalently written as∫ t

t0

u(x, s) ds= f (x) +
1

2λ(t)
div

(
∇u(x, t)
|∇u(x, t)|

)
,

∂u
∂n

∣∣∣∣
∂Ω

= 0, t ≥ t0, (3.10)

where the initial timet0 is determined as the first scale such that (3.9) holds. This setup
is in complete analogy with the initialization process of the hierarchical decomposition in
[26, section 2.3].

4. Extensions of the IDE model.Our IDE model is motivated by a variational formula-
tion. An important advantage of the IDE model, however, is that it is no longer limited
to a variational formulation and we can therefore extend it using PDE-based modifications
similar to (1.1b) and (1.1c). We will discuss such modifications in sections4.1 and4.2
below.

4.1. IDE with filtered di ffusion. Recall that one of the drawbacks in using the heat equa-
tion (1.1a) for denoising is that it results in an isotropic diffusion. The PM model (1.1b)
removes this drawback by introducing a diffusion controlling function, that controls the
diffusion near prominent edges in a given image. We propose a similar modification to our
IDE model, seekingu(x, t) : Ω × R+ 7→ R such that∫ t

0
u(x, s) ds= f (x) +

g(|Gσ ? ∇u(x, t)|)
2λ(t)

div

(
∇u(x, t)
|∇u(x, t)|

)
;
∂u
∂n

∣∣∣
∂Ω

= 0, (4.1a)

subject tou0(x) ≡ u(·,0) such that

u0 = f +
1

2λ(0)
g(|Gσ ? ∇u0|) div

(
∇u0

|∇u0|

)
, λ(0) >

g(|Gσ ? ∇u0|)
2‖ f ‖∗

.
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Similar to the PM models (1.1b), we can choose the pre-factor functiong so that it van-
ishes at infinity to control the diffusion at prominent edges in the image. Thus, the function
g acts here as a high-pass filter which retains prominent edges in the image

∫ t

0
u(x, s) ds

without diffusing them. As choices for such ag-filter, figure4.1displays the results of the
modified IDE (4.1a) with

g(s) =
1

1+ (s/β)2
, (4.1b)

Here, the constantβ determines the extent to which edges are preserved: for smallβ’s, rele-
vant edges are preserved whereas for largeβ’s, they are diffused. Detailed discussion of the
numerical scheme for the filtered diffusion model (4.1) is given in section6. Comparing

t = 1 t = 4 t = 6 t = 10

F 4.2. The images,U(t) =
∫ t

0
u(·, s) ds, of the standard IDE (1.5) at

t = 1,4,6,10. Here,λ(t) = 0.002× 2t.

t = 1 t = 4 t = 6 t = 10

F 4.3. The images,U(t) =
∫ t

0
u(·, s) ds, of the filtered IDE (4.1a) at

t = 1,4,6,10. Here,λ(t) = 0.002× 2t.

the results of the filtered IDE (4.1a) shown in figure4.1, we observe that edges, which are
diffused by the basic IDE (2.6) as depicted in figure3.1, are preserved in figure4.1. This
phenomenon is more apparent for smaller values oft due to the fact that ast increases,
U(·, t) in both models approachesf , and consequently, suffer from less diffusion of the
edges. The usefulness of the filtered diffusion IDE model becomes apparent when certain
edges are required in the scale-space for smaller values oft. For example, in figure4.2, the
edges are blurred for smaller values oft with the standard IDE (1.5), but with the filtered
diffusion IDE (4.1a) we retain relevant edges, as shown in figure4.3.

4.2. IDE with tangential smoothing. The approach of using the diffusion controlling
function works well with natural images with moderate gradients. With other images,
however, such as those which often arise in computer vision and industrial applications,
the boundaries of their internal objects are marked with large, sharp gradients; for exam-
ple, characteristic functionχD, whereD ⊂ Ω. In such cases, we can choose to smooth
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f at t = 0 t = 1 t = 4 t = 7

F 4.4. A given noisy imagef and the IDE images,
∫ t

0
u(·, s) ds, of

(1.5) at t = 1,4,7. Here, the scaling function isλ(t) = 0.002× 2t. Most
of the noise is present at scalet = 7.

only in the tangential direction to the boundaries of the objects, e.g., [1]. To this end, write
∆u := uTT + uNN, whereuTT anduNN are the tangential and normal diffusion components,
i.e.

uTT = ∆u− uNN = |∇u|div

(
∇u
|∇u|

)
, uNN =

〈
∇u
|∇u|
,∇2u

∇u
|∇u|

〉
.

Restricting the diffusion in our IDE model to tangential directions, this leads to modified
IDEs with tangential smoothing,∫ t

0
u(x, s) ds= f (x) +

1
2λ(t)

|∇u(x, t)|div

(
∇u(x, t)
|∇u(x, t)|

)
;
∂u
∂n

∣∣∣
∂Ω

= 0, (4.2)

and with tangential smoothing and filtering,∫ t

0
u(x, s) ds= f (x) +

g(|Gσ ? ∇u(x, t)|)
2λ(t)

|∇u(x, t)|div

(
∇u(x, t)
|∇u(x, t)|

)
;
∂u
∂n

∣∣∣
∂Ω

= 0.

(4.3)

As before,u : Ω × R+ 7→ R evolves in inverse scale space starting withλ(0) andu0(x) ≡
u(·,0),

u0τ = f +
1

2λ(0)
g(|Gσ ? ∇u0|)|∇u0|div

(
∇u0

|∇u0|

)
, λ(0) ≥

g(|Gσ ? ∇u0|)|∇u0|

2‖ f ‖∗
.

Numerical experiments are shown in figures (4.4)-(4.6). Compare the standard IDE results
(1.5) shown in figure4.4with the tangential smoothing (4.2) shown in figure4.5and with
additional filtering, (4.3), in figure 4.6: the point here is that tangential diffusion model
preserves the edges, while denoising the rest of the image in a much faster rate than in the
standard IDE model.

5. The IDE model for deblurring. We now extend our IDE model to deblurring of im-
ages. Blurring is modeled by a continuous, linear operatorT : L2(Ω) → L2(Ω). Examples
of a blurring operator include convolution with a Gaussian kernel, directional averaging etc.
Thus, an observed image is expressed asf = TU, whereU is the original unblurred image
which we aim to recover. Hierarchical decomposition of blurred images was discussed in
[26]. To this end, one sets a sequence of increasing scaling parametersλ0 < λ1 < λ2 . . . .
Starting withv−1 = f , we get the following iteration

vλ j−1 = τTuλ j + vλ j , arginf
vλ j−1=τTu+v

{ ‖u‖BV +
λ j

τ
‖v‖2L2}. (5.1)
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f at t = 0 t = 1 t = 4 t = 7

F 4.5. The same noisy imagef and the corresponding
∫ t

0
u(·, s) ds,

of the IDE with tangential smoothing (4.2) at t = 1,4,7. The same scal-
ing function as before,λ(t) = 0.002× 2t. Large portion of the noise is
suppressed att = 7 but there is normal diffusion of edges.

f at t = 0 t = 1 t = 4 t = 7

F 4.6. The same noisy image and the images,
∫ t

0
u(·, s) ds, of IDE

with tangential smoothing and filtering (4.3) at t = 1,4,7. Here,λ(t) =
0.002× 2t andg(s) = 1/(1+ (s/5)2). Noise is suppressed with minimal
normal edge diffusion.

This gives us ahierarchical multiscale representationof the blurred imagef presented
in [26],

f = τTuλ0 + vλ0

= τTuλ0 + τTuλ1 + vλ1

= . . . . . .

= τTuλ0 + τTuλ1 + . . . τTuλN + vλN .

Thus, after applying the conjugateT∗ to the above equation we obtain,

τ

N∑
j=0

T∗Tuλ j = T∗ f − T∗vλN . (5.2)

Using the Euler-Lagrange characterization of the minimizer in (5.1),

T∗vλ j−1 = τT
∗Tuλ j −

1
2λ j

div

(
∇uλ j

|∇uλ j |

)
,

which, in view ofT∗vλ j−1 = τT
∗Tuλ j + T∗vλ j implies

T∗vλ j = −
1

2λ j
div

(
∇uλ j

|∇uλ j |

)
.
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(a) (b)

F 5.1. Image(a) shows a blurred image of Lenna blurred using a
Gaussian kernel withσ = 1. Image(b) shows the result of the deblurring
IDE model (5.4), ast → ∞.

Using the above expression we can rewrite (5.2) as
N∑

j=0

T∗Tuλ jτ = T∗ f +
1

2λN
div

(
∇uλN

|∇uλN |

)
. (5.3)

As τ → 0, the expression (5.3) motivates the following integro-differential equation (IDE)
for deblurring, whereu(x, t) : Ω × R+ 7→ R is sought such that∫ t

0
T∗Tu(x, s) ds= T∗ f (x) +

1
2λ(t)

div

(
∇u(x, t)
|∇u(x, t)|

)
;
∂u
∂n

∣∣∣
∂Ω

= 0. (5.4)

In this IDE,
∫ t

0
u(·, s) dsprovides a multiscale representation of theunblurred image U(x, t) :=∫ t

0
u(x, s) ds. Note that the blurring operatorT is in general non-invertible for generalL2

images, but it is assumed to be invertible on the restricted set of multiscale representations∫ t

0
T∗Tu(x, s) ds. Thus, the deblurring IDE (5.4) gives us a recipe to extract the unblurred

imageU from its blurred versionf .
We can see the deblurring result of (5.4) in figure5.1. Furthermore, we can modify the

deblurring integro-differential equation using edge enhancing filtering, where aU(x, t) =∫ t

0
u(x, s) ds : Ω × R+ 7→ R is sought as a solution of

T∗TU(x, t) = T∗ f (x) +
g(|Gσ ? u(x, t)|)

2λ(t)
div

(
∇u(x, t)
|∇u(x, t)|

)
;
∂u
∂n

∣∣∣
∂Ω

= 0. (5.5)

Conclusions. We introduced a novel integro-differential equation (IDE) for multiscale de-
composition of images. This is a continuous analogue of the hierarchical decomposition in
[25, 26] with the same computational complexity of one ROF solver per time step. The ba-
sic IDE evolves in inverse time scale. Its continuous formulation enables us to incorporate
related techniques from PDE-based methods of filtering, anisotropic tangential smoothing
and deblurring. The resulting family of IDE models depend on a scaling function,λ(t), at
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our disposal, which is shown to dictate the size of the error measured in the weakBV∗-
norm. Numerical simulations show the utility of our IDE model as a promising alternative
for PDE-based models. In particular, the deblurring results based on the IDE model are
particularly striking.

6. Appendix: numerical discretizations. In this appendix we describe the numerical im-
plementation of (1.5) and (5.4). First let us concentrate on the basic IDE model (1.5),
rewritten here for convenience:∫ t

0
u(x, s) ds= f (x) +

1
2λ(t)

div

(
∇u(x, t)
|∇u(x, t)|

)
. (6.1)

As usual,U(t) :=
∫ t

0
u(x, s) ds is the exact solution. Let∆t be the time step andUn+1 will

denote the corresponding computed solution attn+1 = (n+ 1)∆t:

Un+1 = Un +Wn+1, Wn+1 ≡Wn+1
i, j := un+1

i, j ∆t,

whereun+1
i, j ≡ un+1(ih, jh) is the approximate solution of the IDE at grid point (ih, jh). With

this, the IDE (6.1) is discretized att = tn+1:

Un
i, j + ω

k+1
i, j = fi, j

+
1

2λ(n+1)h2

 ωk
i+1, j − ω

k+1
i, j√

ε2 + (D+xω
k
i, j)

2 + (D0yω
k
i, j)

2
−

ωk+1
i, j − ω

k
i−1, j√

ε2 + (D−xω
k
i, j)

2 + (D0yω
k
i−1, j)

2


(6.2)

+
1

2λ(n+1)h2

 ωk
i, j+1 − ω

k+1
i, j√

ε2 + (D0xω
k
i, j)

2 + (D+yω
k
i, j)

2
−

ωk+1
i, j − ω

k
i, j−1√

ε2 + (D0xω
k
i, j−1)2 + (D−yω

k
i, j)

2

 .
The nonlinear system (6.2) is solved using Jacobi iterations which leads to the fixed-point
iterations for computingωk+1:

ωk+1
i, j =

2λ(n+1)h2( fi, j − Un
i, j) + cEω

k
i+1, j + cWω

k
i−1, j + cSω

k
i, j+1 + cNω

k
i, j−1

2λ(n+1)h2 + cE + cW + cS + cN
. (6.3a)

Here,λ(n+1) = λ(tn+1) are the discrete scaling parameters andcE, cW, cS, cN are the discrete
coefficients

cE :=
1√

ε2 + (D+xω
k
i, j)

2 + (D0yω
k
i, j)

2
, cW :=

1√
ε2 + (D−xω

k
i, j)

2 + (D0yω
k
i−1, j)

2
,

cS :=
1√

ε2 + (D0xω
k
i, j)

2 + (D+yω
k
i, j)

2
, cN :=

1√
ε2 + (D0xω

k
i, j−1)2 + (D−yω

k
i, j)

2
,

In the computations above we seth = 1. To minimize the grid effects, we alternate
the directions in which the above iterations were carried out, starting at the top-left corner
position (1,1), fixing i = 1 we vary j = 1 to jmax (East-South direction), initiating the
next iteration at the top-right corner, and so on. This fixed point iterations (6.3a) yield

ωk k→∞
−→ Wn+1 ≡ un+1∆t and we can update the computed imageU:

Un+1 = Un +Wn+1. (6.3b)
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Next, we consider the filtered IDE (4.1a), which is rewritten here for convenience as∫ t

0
u(x, s) ds= f (x) +

g(|Gσ ? ∇u(x, t)|)
2λ(t)

div

(
∇u(x, t)
|∇u(x, t)|

)
.

The only difference here is the additional diffusion controlling functiong(|Gσ ? ∇u(x, t)|),
whereGσ is the two-dimensional Gaussian smoothing with standard deviationσ. The
functiong(s) = 1

1+(s/β)2 with β = 5 is used in our numerical experiments. We approximate

g(|Gσ ? ∇u(x, t)|) ≈ g

∣∣∣∣Gσ ? ∇ωn
i, j

∆t

∣∣∣∣ ,
and the expression on the right enters into the RHS of (6.2). We end up with the same
discrete IDE scheme (6.3) with λ(n) 7→ λ(n)/g (∣∣∣Gσ ? ∇ωn

i, j/∆t
∣∣∣).

Finally, we describe the numerical implementation of the deblurring IDE models (5.4)
and its filtered version (5.5). The equation (5.4) is rewritten here for convenience.

T∗T
∫ t

0
u(x, s) ds= T∗ f (x) +

1
2λ(t)

div

(
∇u(x, t)
|∇u(x, t)|

)
. (6.4)

Let U(t) :=
∫ t

0
u(x, s) ds. As before, the left hand side of the above equation is approxi-

mated as follows

Un+1 = Un +Wn+1, Wn+1 ≡Wn+1
i, j := un+1

i, j ∆t, (6.5)

and time-marching to a steady solution of (6.4) yields the following iteration for computing
Wn+1 asWn+1 = lim ωk,

ωk+1
i, j − ω

k
i, j

δt
= T∗ fi, j − T∗TUn

i, j +
1

2λ(n+1)h2
(cEω

k
i+1, j + cWω

k
i−1, j + cSω

k
i, j+1 + cNω

k
i, j−1)

−
1

2λ(n+1)h2
ωk+1

i, j (cE + cW + cS + cN),

wherecE, cW, cS, cN are defined as before.
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