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Abstract. Spectral approximations to nonlinear hyperbolic conservation laws require dissipative regulariza-
tion for stability. The dissipative mechanism must on the other hand be small enough, in order to retain the

spectral accuracy in regions where the solution is smooth. We introduce a new form of viscous regularization
which is activated only in the local neighborhood of shock discontinuities. The basic idea is to employ a

spectral edge detection algorithm as a dynamical indicator of where in physical space to apply numerical
viscosity. The resulting spatially local viscosity is successfully combined with spectral viscosity, where a much

higher than usual cut-off frequency can be used. Numerical results show that the new Adaptive Spectral
Viscosity scheme significantly improves the accuracy of the standard spectral viscosity scheme. In particu-

lar, results are improved near the shocks and at low resolutions. Examples include numerical simulations of
Burgers’ equation, shallow water with bottom topography and the isothermal Euler equations. We also test

the schemes on a non-convex scalar problem, finding that the new scheme approximates the entropy solution
more reliably than the standard spectral viscosity scheme.

1. Introduction - main ingredients

Let u(·) : (−π, π) 7→ R be a 2π-periodic function and let uN ≡ PNu(x) denote its pseudospectral approxi-
mation of order N ,

(1.1a) uN (x) = PNu(x) :=

N∑

k=−N

ûkeikx, ûk =

N∑

j=−N

u(xj)e
−ikxj

∆x

2π
,

which is based on the equidistant sample points

(1.1b) xj =

(
j − 1

2

)
∆x, ∆x =

2π

2N + 1
.

If u ∈ C∞, the Fourier approximation enjoys infinite (i.e. spectral) order of accuracy. When applied to
functions that are only piecewise smooth, however, this property breaks down even in the smooth regions.
Around a discontinuity, O(1) Gibbs’ oscillations are observed, and only first order convergence O(1/N) is
obtained in the smooth regions. The spectral order of accuracy can be recovered by filtering techniques which
we will refer to as post-processing [1, 6, 18]. Since the filtering requires explicit knowledge of the locations
of singularities, algorithms for detecting edges from spectral data have been developed [2, 18].

We consider conservation laws

(1.2) ut + f(u)x = 0, u(·, t) : (−π, π) 7→ R,

subject to 2π-periodic initial data u0(x). A straightforward pseudospectral approximation of (1.2) takes the
form

(1.3) (uN)t + (PNf(uN ))x = 0.

Since solutions of (1.2) develop shock discontinuities at a finite time, Gibbs’ phenomena will render the
pseudospectral method (1.3) inaccurate or even unstable [16]. The instability can be addressed by the
classical vanishing viscosity method, which is given by

(1.4) (uN)t + (PNf(uN ))x = εN(uN)xx, εN = O(1/N).
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It yields a stable the scheme, but obviously involves a first order error O(1/N). Thus, stability is gained at
the expense of sacrificing spectral accuracy.

1.1. Spectral viscosity. In order to retain both high accuracy and stability, the spectral viscosity (SV)
method was introduced in [16],

(1.5) (uN)t + (PNf(uN ))x = εNQ ∗ (uN)xx, Q(x) :=
∑

|k|≤N

Q̂keikx.

The coefficient εN represents the magnitude of diffusion, and will be set to εN = O(1/N). The viscosity
kernel Q is chosen so as to filter out the large scales from the diffusion operator. Spectral accuracy is ensured

by leaving enough large scale modes without dissipation, i.e. Q̂k = 0 for |k| < m with the cutoff frequency
m increasing appropriately with N . We use

(1.6) Q(x) =
∑

|k|>m

exp

(
−
(N − k

k − m

)2
)

eikx,

and unless otherwise noted, we let m =
√

N , which results in a stable scheme (e.g. [11, 12, 16, 14, 15]). The
resulting SV method reads

(1.7) SV 7→ (uN)t + (PNf(uN ))x = −N
∑

|k|>m

k2

N2
Q̂kûk(t)eikx, Q̂k = exp

(
−
(N − k

k − m

)2
)

.

The parameterization m ∼
√

N corresponds to the second-order diffusion in the vanishing viscosity regular-
ization in (1.4). A more general setup, based on hyper-viscosity of order 2s was introduced in [17],

(1.8) HyperSV 7→ (uN)t + (PNf(uN ))x = −N
∑

|k|>m

η

( |k|
N

)
ûk(t)eikx, η(ξ) ≥ max

{
ξ2s − c

N
, 0
}
.

The case s = 1 corresponds to the usual SV method. As s increases, the resulting HyperSV is activated at
smaller portions of the spectrum, |k| > m ∼ N (2s−1)/(2s) and its stability was proved in [17]. In particular,
this allows us to parametrize the cut-off m as a fixed fraction of N , which will be advocated below. In closing,
we note that the SV and HyperSV methods have been generalized to non-periodic problems in [10, 7, 9].

1.2. Post-processing. As pointed out in [10, 13], the SV solution uN is better viewed as an approximation
to the Fourier projection PNu(·, t), rather than to the exact solution u(·, t) itself. The total error

(1.9) uN − u ≡ (uN − PNu) + (PNu − u),

will therefore be dominated by the interpolation error PNu − u which is O(1/N) due to Gibbs oscillations.
Nevertheless, spectral accuracy of PNu can be recovered by postprocessing in smooth regions. Hence, we
expect that spectral accuracy of the SV solution uN can be recovered in the same way. Following [19, 21], a
post-processed SV solution, denoted ũN , will be recovered from uN by a convolution with a proper mollifier,
M(ξ),

(1.10a) ũN (x) =

∫ ∞

−∞

1

θ
M

(
x − y

θ

)
uN(y) dy M(ξ) := ρ(ξ)Dp(ξ).

Here, Dp is the usual Dirichlet kernel of degree p

(1.10b) Dp(ξ) =
sin[(p + 1

2)ξ]

sin[ 12 ξ]
,

and ρ is the smooth weighting function locally supported in [−π, π]

(1.10c) ρ(ξ) = ρ̄ exp

(
− 10ξ2

(π2 − ξ2)+

)

with the normalization factor ρ̄ chosen so that ρ has unit mass,

(1.10d)

∫ ∞

−∞

M(ξ) dξ = 1.

There are two parameters to be chosen:

1. The degree p in (1.10b) is set to be a fraction of N ; we use p = 0.5586θN as suggested in [21].
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2. The scaling factor θ dictates the active neighborhood of mollification, [x − θπ, x + θπ] in (1.10). Note
that θ can depend on x. Indeed, we will take θ(x) = dist(x,S(u))/π, where S(u) is the set of singular
points of u. In the next section we describe an algorithm to find S(u) from uN .

1.3. Spectral edge detection. As seen in the previous section, postprocessing requires explicit knowledge
of the spatial location of discontinuities. One needs to know the interval of smoothness surrounding each
point x so that θ(x) in (1.10) can be computed. To this end, the locations, as well as the magnitudes, of
discontinuities may be extracted from spectral data by using the following edge detection algorithm from
[2, 3, 18]. Let K(uN ) be the concentration kernel

(1.11a) K(uN )(x) =
∑

|k|≤N

sign(k)σkûkeikx,

where the so called concentration factors, σk ≡ σ(|k|/N), are normalized such that

(1.11b)

N∑

k=1

σ (k/N)

k
= 1.

The idea behind the concentration kernel is to provide a function K(uN ) that vanishes in smooth regions
of u, and equals the (signed) magnitude of the jump discontinuity at the jump location. Here, we take the
concentration kernel

(1.11c) σ(ξ) = σ̄(1 − cos πξ),

where (1.11b) determines the normalization factor

(1.11d) σ̄ =

(
N∑

k=1

1 − cos πk
N

k

)−1

.

This choice of σ yields an accurate localizer K(uN ) that has some oscillations near the discontinuities.
In order to pinpoint the shock locations, the authors of [3] suggested a resolution-dependent lower threshold

for which K(uN )-values that signify a shock. They consider the enhanced spectral concentration kernel given
by

(1.12a) Kδ(uN)(x) = χδ[K(uN)],

where

(1.12b) χδ[ξ] :=

{
0, |ξ| ≤ δ,

ξ, |ξ| > δ,

is a cut-off function parameterized by the cut-off magnitude δ. The cut-off δ will typically depend on N.
The underlying assumption is that there is a scale separation between the shock magnitude and the local
variation in the smooth data, and these scales should be reflected in the cut-off δ. This cut-off technique was
used in [4] to provide shock locations for post-processing, i.e. to specify θ in (1.10). In the next section we
will introduce a new application of this shock detection method: We will use it as a dynamical indicator of
where in physical space to activate spectral diffusion.

2. New algorithms - From edge detection to adaptive viscosity

Our basic intuition is that we want to avoid numerical diffusion in the smooth regions, while we want to
ensure that there is enough of it in the local neighborhood of shocks. To accomplish this we employ the
localizer K(uN ) as a local diffusion coefficient, letting

(2.1) (uN)t + (PNf(uN ))x = εN |K(uN)| · (uN )xx.

Note however, that K(uN) need not be spectrally small in the smooth region, hence (2.1) does not lead to
a spectrally accurate scheme. In order to retain spectral accuracy in smooth regions we cut off the localizer
KN below a small threshold in the spirit of the enhanced edge detector (1.12). Other factors may also make
K(uN ) unsuitable, for example it will be oscillatory near the discontinuities.

Thus, in order to obtain a more suitable local diffusion coefficient we consider a modified localizer L(uN ).
The modification can be broken down into the following steps:
i) First evaluate |K(uN)| to ensure a positive viscosity amplitude, as already indicated in (2.1).
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ii) Next, we truncate to enforce |K(uN)| ≤ 1, since we want to control the largest possible magnitude of the
diffusion coefficient. Neglecting this may produce restrictions on the step size when discretizing in time.
iii) We then mollify the result with a small width λ = O(1/N). This eliminates small scale oscillations in
K(uN ).
iv) We renormalize so that the maximum of min(1, K(uN)) before mollification is retained, since that is the
true measure of shock strength.
v) Any value smaller than δ = O(1/N) is set to 0. This cut-off is crucial, since K(uN ) need not be spectrally
small away from the discontinuities 1.

The resulting modified localizer LN reads

(2.2a) L(uN) ≡ χδ[ Cµλ ∗ min(|K(uN)|, 1)],

where C is a renormalizing constant so that step (iv) holds,

(2.2b) C =
‖ min (|K(uN)|, 1) ‖∞

‖ µλ ∗ min (|K(uN)|, 1) ‖∞
,

the cut-off function χδ is given by (1.12), and µλ is the mollification kernel

(2.2c) µλ(x) =
1

λ
exp

(
− 10x2

(λ2π2 − x2)+

)
.

Two N -dependent parameters remain to be specified. Throughout, we will take the mollification width
λ = 3π/N , and the lower cutoff δ = π/N .

2.1. Localized Viscosity (LV). We define the localized viscosity (LV) scheme by

(2.3) (uN)t + (PNf(uN ))x = εNL(uN) · (uN)xx.

Hence this scheme amounts to the classical vanishing viscosity scheme (1.4) when L(uN )(x) ≡ 1, i.e. at a
discontinuity, and the inviscid scheme (1.3) when L(uN )(x) vanishes.

2.2. Localized Spectral Viscosity (LSV). Instead of the full viscosity term in (2.3), we could add a
spectral viscosity. The result is the localized spectral viscosity scheme (LSV)

(2.4) (uN)t + (PNf(uN ))x = εNL(uN )[Q ∗ (uN)xx].

This scheme switches between the spectral viscosity scheme (1.5) near discontinuities, and the inviscid scheme
(1.3) elsewhere. It is therefore less dissipative than both the LV and SV schemes, and need not provide
sufficient dissipation to control Gibbs’ oscillations.

2.3. Adaptive Spectral Viscosity (ASV). Finally we consider a scheme that switches between full vis-
cosity near discontinuities and spectral viscosity in smooth regions. This is the adaptive spectral viscosity
scheme (ASV)

(2.5) (uN )t + (PNf(uN ))x = εNL(uN )(uN )xx + εN (1 − L(uN )) [Q ∗ (uN )xx].

Given the same choice of parameters, this scheme will be more dissipative than the SV, LV and LSV schemes.
However, for the ASV scheme we use larger values of the cutoff frequency m than with the other schemes,
with m = 2

3N as a default choice.
More generally, one can let the choice of Q depend on uN locally in space. This is only computationally

efficient if a small number of coefficients Q is available, hence the ASV scheme (2.5) is a reasonable imple-
mentation of this idea, with the local dissipation given by either a standard SV choice of Q (1.6), the classical

viscosity Q̂k = 1 or a linear combination of the two. A related application of the localizer was put forth in
[20], where polynomial reconstruction of pointwise data were taken to as high order as possible while only
using data from a smooth region.

2.4. Postprocessing. Independent of which type of viscous regularization is employed, we expect to have
a situation analogous to the one described in section 1.2: The approximation error uN −u will be dominated
by the O(1/N) representation error PNu − u. Therefore, after computing uN(x, T ) at a desired time t = T ,
we compute the postprocessed solution ũN(x, T ) using (1.10) to recover spectral accuracy.

1Spectrally small amplitude of K(uN ) in smooth regions can be achieved by using exponential concentration factors, (page

1356) [3].
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Figure 1. Solutions for Burgers’ equation with smooth initial data

2.5. Time discretization. All the above schemes are semi-discrete in the sense that they take the form of
ODE systems in time. We discretize time with the strong stability-preserving explicit fourth order Runge-
Kutta method [5]. Hence, formally we can only expect fourth order accuracy. At low enough resolutions,
however, it may be that errors related to the spectral spatial approximation dominates, hence one may still
observe spectral accuracy in actual practice. The time step size is set to ∆t = 1/2N in all our examples.

3. Numerical studies

We have presented four schemes that will be subject to numerical tests in this section. The schemes are
SV (1.5) and LSV (2.4), both with cut-off frequency m =

√
N , ASV (2.5) with m = 2

3
N and LV (2.3).

Our goals are to identify schemes that maintain spectral accuracy when shocks develop, and to compare
the overall performance of the schemes relative to each other. For all the examples, we use the viscosity
coefficient εN = 4/N .

3.1. Burgers’ equation. Consider Burgers’ equation ut + (1
2
u2)x = 0 subject to initial data

(3.1) u0(x) = 1 +
1

2
sin(x).

The approximations uN are sampled at t = π at which time a shock has formed and is located at x = 0.
The solution profiles are shown in Figure 1. While SV yields visible oscillations near the shock, LV yields
a smoothed profile reminiscent of a TVD (total variation diminishing) scheme. For a more detailed study
of accuracy, we plot the errors of the postprocessed solutions in Figure 2. Spectral viscosity can be seen to
yield the expected spectral convergence. In comparison, the localized viscosity scheme LV is significantly
more accurate near the shock and at low resolutions. However, its convergence eventually stagnates. An
explanation can be obtained from closely inspecting the solution profile: Although the LV scheme produces
a near smooth shock profile, very small amplitude oscillations are still present in the smooth region, which
could deteriorate performance at higher resolutions. Therefore, we turn to the ASV scheme as a compromise
between local and spectral viscosity. Indeed, using ASV with cut-off at m = 2

3
N keeps the diffusive zone

around the shock narrow as with LV, while removing the spurious oscillations. The result, as seen in Figure
2, is satisfactorily fast convergence comparable to SV, while we retain the improved efficiency of LV at low
resolutions and near the shock. Finally, we test the LSV scheme. This scheme is clearly inferior to the
others, in particular SV and ASV. Clearly too little dissipation is left in LSV after both spatial localization
and spectral cut-off of viscosity.

For a more quantitative comparison of the ASV and SV schemes, we compute the average errors over all
control points at least a distance 1 away from the shock, see Table 1. The observations based on the plots are
confirmed. The more accurate behavior near the shock of the ASV scheme improves these error measures by
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Figure 2. Burgers’ equation with smooth initial data. Errors in postprocessed solutions
ln |ũN − u| at t = π. Top left: SV, top right: LV, bottom left: ASV, bottom right: LSV.
The exact solution was calculated by characteristic tracing from the initial sample points.

SV ASV ASV, m =
√

N SV, m = 2
3
N

8 5.0e-2 1.6e-3 3.4e-3 4.7e-2
16 1.6e-2 2.3e-4 9.2e-4 1.4e-2
32 1.9e-3 9,4e-6 2.7e-4 7.4e-4
64 1.4e-5 4.3e-7 1.5e-5 3.4e-5

128 5.8e-8 3.6e-9 1.5-8 7.6e-7
256 4.2e-10 9.2e-13 1.0e-12 9.4e-9

Table 1. Average error for checkpoints in |x| ∈ [1, π]

orders of magnitude. We also provide error measures for alternative choices of cut-off frequencies m, which
shows that they provide inferior results to their respective default values.

Computing solutions with rarefaction waves relies critically on sufficient dissipation to avoid unphysical
shocks, hence it should be checked that new schemes can handle such a case. As an example, we consider
initial data

(3.2) u0(x) = 1 − 1

2
sign(x).
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Figure 3. Burgers’ equation rarefaction wave solution profiles.

Results are shown in Figure 3. We find that both SV and ASV provide satisfactory results, while LSV shows
some signs of instability in the rarefaction fan. These initial data also produce a shock wave, for which the
schemes perform much like in the first example.

3.2. Buckley-Leverett equation. Next, consider the nonconvex Buckley-Leverett equation

(3.3) ut +

(
v2

v2 + (1 − v)2

)

x

= 0, v = max(0, min(1, u)).

This system is sensitive to what type of dissipative regularization is applied (e.g. [8]), i.e. different regulariza-
tions may converge to different weak solutions. First, we consider initial data u(x, 0) = 1

2 + 1
2 sin(x). Figure

4 shows results at time t = π after shocks were formed. The ASV and LV schemes produce stable, accurate
results, much like in their performance in the convex case, while the SV scheme produces an apparently
spurious solution. What appears to happen with SV is that the overshoots behind the shocks get interpreted
as additional wave fronts. In order to look closer at this phenomenon, we repeat this experiment with a
different form of the spectral viscosity filter Q, taking

(3.4) Q̂k =






0, |k| ≤ m

exp(−(2m−k
k−m )2), m < |k| < 2m

1, 2m ≤ |k|.

This choice is based on [12], where a theoretical convergence rate of 1/2 was obtained. The results with (3.4)

and cut-off m =
√

N are shown in Figure 5. The spurious wave is still present, but it appears to vanish
slowly with resolution, a tendency that is not clear with our standard choice of Q. Errors from the LV scheme
and the ASV scheme are in Figure 6. The ASV scheme yields fast convergence, while LV does not perform
satisfactorily upon this close inspection.

Next, we consider Riemann initial data with u jumping from 0 to 1. The entropy solution consists of
a compound wave that can be expressed analytically. The ASV scheme approximates the entropy solution
quite well, see Figure 7, except for small artifacts behind the shock that appear to vanish with resolution.
The SV scheme only slowly approaches the entropy solution even when the more dissipative viscosity filter
(3.4) is used, see Figure 7.

3.3. Shallow water equations. This fluid equation system has a quadratic pressure-like term and a source
term that models bottom topography. It takes the form

(3.5) ρt + (ρu)x = 0, (ρu)t + (ρu2 +
1

2
ρ2)x = −ρzx,
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Figure 4. Solution profiles, initially smooth data for the Buckley-Leverett equation, N =
128, t = π. ASV (solid), LV (stapled) and SV (dots). We compare to a multivalued solution
based on tracing characteristics (stapled).
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Figure 5. Solution profile, initially smooth data for the Buckley-Leverett equation. Refine-
ment study of SV with Q given by (3.4).

where z is a given bottom topography that is fixed, i.e zt = 0. As an example we consider

(3.6) z(x) =





0.1 exp

(
x2

x2 − 1.72

)
, |x| < 1.7

0, |x| ≥ 1.7.

For initial data, the velocity u is set to zero, while ρ+z jumps from 0.2 to 0.4 at x = 0. For the shallow water
system, we need to make some modification to the localizer: First, note that it is enough to consider the
mass density profile ρ for detecting the shocks of this system, hence we use K(ρN ). Obviously the resulting
localizer needs to be properly normalized. In order to normalize, we simply divide K(ρN ) with the local
value of ρN (before performing the modifications (2.2a)-(2.2c)).
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Figure 6. Errors, initially smooth data for the Buckley-Leverett. The postprocessing used
θ(x) = min(|x − 1.62|, |x+ 1.52|)/π.
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Figure 7. Riemann problem for Buckley Leverett equation at t = π/2. The SV method
(left) vs. the ASV method (right)

The water height profiles ρ from ASV and SV at N = 256 are plotted in Figure 8. ASV smoothes out
the singularities somewhat, while SV shows a sharp profile with oscillations. As an error indicator, we show
ln|ũN |, the absolute value of postprocessed velocity, logarithmically scaled, in Figure 9. The postprocessing
was performed assuming the singularities were at −2.5, −0.6, 0.7 and 2.4. In the regions not yet affected by
any waves, the exact solution is u = 0. We would want the schemes to retain at least 4th order accuracy in
these regions. This expectation is confirmed sufficiently far from wave fronts, with ASV performing the best.
The unprocessed velocity profiles at N = 256 are shown in Figure 9. It is interesting to note that SV and
ASV primarily differ near the singularities before postprocessing.

3.4. Isothermal gas dynamics. As another example system we look at

(3.7) ρt + (ρu)x = 0, (ρu)t + (ρu2 + ρ)x = 0.

We consider Riemann initial data with u = 0, and ρ jumping from 1 to 0.5 at x = 0, yielding two Riemann
problems due to periodicity. The resulting velocity profiles from SV and ASV are shown in Figure 10. In
the regions not yet affected by any waves, the exact solution for the velocity is u = 0. Therefore, as an error
measure, we plot ln|ũN | in Figure 11. The ASV scheme shows the best accuracy, especially at low resolutions.
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Figure 9. The shallow water problem. The velocity field for SV and ASV method pre-
processed (left) vs. post-processed (right).

The postprocessing here is performed assuming the singularities are at 1, π− 1, −0.9 and −π +0.9. We base
the localizer on ρ in the same manner as described for the shallow water system above.

4. Conclusion

We introduced the new adaptive spectral viscosity (ASV) scheme (2.5). The scheme combines the high
accuracy of the spectral viscosity method with stabilizing diffusion applied only at discontinuities. The
discontinuity locations are found with the spectral edge detection algorithm of [2, 3, 18].

The ASV scheme (2.5) was tested numerically and compared to the standard spectral viscosity method. We
conclude that ASV offers significant improvement. In particular, for tests with Burgers’ equation, isothermal
gas dynamics and for shallow water with bottom topography, we obtained much better accuracy near the
shock waves, and also significantly increased accuracy in the smooth regions. In particular, we observe a
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Figure 10. Velocity profiles for isothermal Euler Riemann problem. Solution sampled at t = π/4.

−3 −2 −1 0 1 2 3

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

x

ln
|u

p N
|

−3 −2 −1 0 1 2 3

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

x

ln
|u

p N
|

Figure 11. ln |ũN | for isothermal Euler Riemann problem. ASV (left) and SV (right)
solutions at N=32, 62, 128 and 256. Solution sampled at t = π/4.

strong improvement at low resolutions. In addition to ASV, we also tested the new local viscosity (2.3) and
local spectral viscosity (2.4) schemes. They appeared stable, yet convergence was sometimes slow, indicating
that they do not feature enough viscosity to control the Gibbs oscillations.

The Buckley-Leverett equation was used as a test case for treating scalar problems with non-convex fluxes.
The entropy solution to this problem is unique, but it is known that the convergence of various approximate
methods to the entropy solution in this case may depend on sensitive parameterizations; otherwise, the ap-
proximations may converge to other weak solutions. The standard spectral viscosity method had problems
finding the entropy solution, although with sufficiently strong dissipation there appeared to be a slow con-
vergence towards it. In contrast, the ASV method seems to be more robust, as it maintained high accuracy
in the smooth regions also for the non-convex case.

The ASV scheme may be implemented efficiently using FFT techniques. It is straightforward to augment
existing implementations with ASV since one only has to add new terms to an existing code, rather than
changing it.
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