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Abstract. We study the global regularity of multi-dimensional repulsive Euler-Poisson equa-
tions in the radial setup. We show that the question of global regularity vs. finite breakdown of
smooth solutions depends on whether the initial configuration crosses an initial critical thresh-

olds in configuration space. Specifically, there exists a global-in-time smooth solution if and
only if the initial configuration of density ρ0, radial velocity R0 and electrical charge e0 satisfies
R′

0 ≥ F (ρ0, e0, R0) for a certain threshold F . Similarly, we characterize the critical threshold
for global smooth solutions subject to two-dimensional radially symmetric data with swirl. We
also discuss a possible framework for global regularity analysis beyond the radial case, which
indicates that the main difficulty lies with bounding the spectral gap, λ2(∇u) − λ1(∇u).
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1. Introduction

We are concerned here with the Euler-Poisson equations, where the density n(·, t) : R
d 7→ R,

and a velocity field, u(·, t) : R
d 7→ R

d, are governed by the system of equations

nt + ∇ · (nu) = 0,(1.1a)

(nu)t + ∇ · (ρu⊗ u) + ∇p(n) = kn∇φ, ∆φ = n− b(x).(1.1b)

This system represents the usual statements of the conservation of mass and Newton’s second
law subject to isentropic pressure term, p(n) = Anγ with amplitude A > 0, and an electrical
charge, ∇φ, induced by the density n with background mass which we set to zero b(x) ≡ 0. The
parameter k is a scaled physical constant signifying the property of the underlying force: the
force is repulsive if k > 0, and attractive if k < 0. This system describes dynamic behaviors of
many important physical flows, from small scale models of charged transport [20, 12], expansion
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of cold ions [9] and collisional plasma [10], to large scale models of cosmological waves [1, 2].
For smooth solutions away from vacuum, (1.1) can be reduced to

nt + ∇ · (nu) = 0,(1.2a)

ut + u · ∇u +
Aγ

γ − 1
∇

(

nγ−1
)

= k∇∆−1n,(1.2b)

Let us list some known results regarding (1.1). For the local existence in the small Hs

neighborhood of a steady state, see [7, 17, 19]. Global existence due to damping relaxation
and with nonzero background can be found in [16, 23, 24]. For the model without damping
relaxation, global existence in the neighborhood of a steady state was obtained in [8]. On the
other hand, finite time blowup results for attractive forces were obtained in [18], and for repulsive
forces in [21, 3, 4].

Beyond the two scenarios of global existence of smooth solutions and finite-time breakdown,
a third scenario of conditional regularity was promoted in [5, 6, 14, 15], where it was shown that
there exists a “large” set of O(1) initial configurations which lead to global smooth solutions, and
the complementary “large” set of O(1) initial configurations which yield finite-time breakdown.
That is, global regularity versus finite-time breakdown is separated by a non-trivial critical

threshold in the configuration space. The critical threshold in one-dimensional models of (1.1)
were studied in [5, 6]. The critical thresholds in higher dimensional models were analyzed in
[14, 15], via spectral dynamics. In particular, in [15], the authors studied the so-called restricted
Euler-Poisson model in two spatial dimensions, and showed the existence of critical threshold in
terms of the initial density, initial divergence, and the initial spectral gap.

The goal of this paper is to answer the question of global regularity versus finite-time break-
down of radial solutions to the multi-dimensional repulsive Euler-Poisson equations, (1.2). Most
of our discussion is devoted to the pressureless case, p(n) ≡ 0, where we distinguish between
two different types of radial solutions: an axisymmetric flow without swirl discussed in section
2, and the two-dimensional axisymmetric flow with swirl discussed in section 3. Finally, we
briefly comment on critical thresholds for radial solutions of the full system (1.2) with pressure
in section 4, and on the difficulties of addressing the quetion of global regularity of Euler-Poisson
equations beyond the radial case in section 5.

2. Radial solutions of Euler-Poisson equations without swirl

We consider the d-dimensional pressureless Euler-Poisson equations (1.1)

nt + ∇ · (nu) = 0, u(·, t) : R
d 7→ R

d,(2.1a)

(nu)t + ∇ · (nu⊗ u) = κn∇φ, ∆φ = n,(2.1b)

subject to spherically symmetric initial data

ρ0(x) = ρ0(r), u0(x) = R0(r)
x

r
, r = |x|.

Then, a radial solution of (2.1) of the form ρ := rd−1n, and u(x, t) = u(r, t)x

r is sought, where
(ρ, u) solves the corresponding system,

ρt + (ρu)r = 0,(2.2a)

ut + uur = κφr, (rd−1φr)r = ρ,(2.2b)

subject to initial conditions, ρ(r, 0) = ρ0(r) and u(r, 0) = R0(r). Let e := rd−1φr be the radial
electric field so that er = ρ, and the charge e satisfies a transport equation et + uer = 0.
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Therefore, e remains a constant along particle paths, {r(α, t) :
dr

dt
= u(r, t), r(α, 0) = α},

d

dt
e(r(·, t)) = 0.

Along these particle paths we also have,

du

dt
=

κe

rd−1
=

κe0
rd−1

,

and we end up with the second-order equation

(2.3)
d2r

dt2
=

κe0
rd−1

, r(α, 0) = α,
dr

dt
(α, 0) = R0(α).

We distinguish between two cases. If κ < 0, then the solution of (2.3) always breaks down at
a finite time. We turn to the repulsive case, κ > 0, which will occupy the rest of this section.
According to [6, Corollary 5.2], a smooth solution of the repulsive Euler-Poisson equations (2.1)
blows up at a finite time, t = tc, if and only if there exist an α ∈ R such that (∂r/∂α)(α, tc) = 0.
Thus, the solution to the Euler-Poisson equations (2.1) remains smooth as long as

(2.4)
∂r

∂α
(α, t) > 0, ∀α > 0.

To verify (2.4), we multiply (2.3) by
dr

dt
, obtaining,

1

2

d

dt

((dr

dt

)2)

=
κe0
rd−1

dr

dt
= κe0

dN (r)

dt
, N (r) :=







ln r, d = 2

1

2 − d
r2−d, d > 2.

It follows that
(dr

dt

)2
−R2

0(α) = 2κe0(N (r)−N (α)).

Following [6], we restrict ourselves to the caseR0 > 0. Since
du

dt
=

κe

rd−1
> 0, we have u(cdot, t) >

R0(α) > 0, which in turn implies that r(·, t) is increasing, r(α, t) > r(α, 0) = α. It follows, since
the Newtonian potential, N (r) is increasing, that N (r(·, t)) is increasing in time, N (r(α, t)) >
N (r(α, 0)) = N (α). Therefore

dr

dt
= [2κe0

(

N (r)−N (α)
)

+R2
0(α)]1/2,

or

(2.5)
dr

[2κe0
(

N (r)−N (α)
)

+ R2
0(α)]1/2

= dt.

Integrating both sides we find

(2.6)

∫ r(α,t)

α

1

[2κe0
(

N (s)−N (α)
)

+R2
0(α)]1/2

ds = t.

Taking the α derivative of (2.6) yields

∂r(α, t)

∂α

1

[2κe0(α)
(

N (r(α, t))−N (α)
)

+ R2
0(α)]1/2

− 1

R0(α)

−1

2

∫ r(α,t)

α

2κρ0(α)
(

N (s) −N (α)
)

− 2κe0(α)α1−d + 2R0(α)R′
0(α)

[2κe0(α)
(

N (s)−N (α)
)

+ R2
0(α)]3/2

ds = 0.
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Therefore

(2.7a)
∂r(α, t)

∂α
=

(

2κe0(α)
(

N (r(α, t))−N (α)
)

+R2
0(α)

)1/2

× ψα(r(α, t)),

where

(2.7b) ψα(y) :=

(

1

R0(α)
+

∫ y

α

κρ0(α)
(

N (s)−N (α)
)

− κe0(α)α1−d +R0(α)R′
0(α)

[2κe0(α)
(

N (s) −N (α)
)

+R2
0(α)]3/2

ds

)

.

Thus, a global smooth solution exists, ∂αr(α, t) > 0 as long as ψα(r(α, t)) remains positive for
all α > 0. This leads us to the main theorem of this section, which specifies the precise critical
thresholds for radial solutions of the repulsive Euler-Poisson equations.

Theorem 2.1 (Radial solutions without swirl). Consider the d-dimensional repulsive Euler-

Poisson equations, (2.1), subject to the spherically symmetric initial conditions, ρ0(r) and u0(x) =

R0(r)
x

r
with R0 > 0. Then, it admits a globally smooth radial solution, ρ(r, t), u(r, t)

x

r
, if and

only if

(2.8a) R′
0(α) > sup

y>α
Fα(y; ρ0, e0, R0);

here Fα(y) ≡ Fα(y; ρ0, e0, R0) is given by

(2.8b) Fα(y) :=

− 1

R0(α)
−

∫ y

α

κρ0(α)
(

N (s) −N (α)
)

− κe0(α)α1−d

[2κe0(α)
(

N (s) −N (α)
)

+ R2
0(α)]3/2

ds

R0(α)

∫ y

α

1

[2κe0(α)
(

N (s)−N (α)
)

+R2
0(α)]3/2

ds

.

Proof. Recall that u(α, t) > R0(α) > 0. Therefore, every y > α takes the form y = r(α, t) for
some t > 0. According to (2.7), therefore, the radial solutions of the repulsive equations (2.1)
remains smooth if and only if ψα(y) is positive for all y(> α)’s:
(2.9)

1

R0(α)
+

∫ y

α

κρ0(α)
(

N (s)−N (α)
)

− κe0(α)α1−d + R0(α)R′
0(α)

[2κe0(α)
(

N (s)−N (α)
)

+ R2
0(α)]3/2

ds > 0, ∀α > 0, ∀y > α.

The critical threshold condition (2.9) is equivalent to

R0(α)R′
0(α)

∫ y

α

1

[2κe0(α)N (s)− 2κe0(α)N (α) + R2
0(α)]3/2

ds

> − 1

R0(α)
−

∫ y

α

κρ0(α)
(

N (s)−N (α)
)

− κe0(α)α1−d

[2κe0(α)
(

N (s)−N (α)
)

+R2
0(α)]3/2

ds.

That is, since R0(α) > 0,

(2.10) R′
0(α) >

− 1

R0(α)
−

∫ y

α

κρ0(α)
(

N (s) −N (α)
)

− κe0(α)α1−d

[2κe0(α)
(

N (s)−N (α)
)

+ R2
0(α)]3/2

ds

R0(α)

∫ y

α

1

[2κe0(α)
(

N (s)−N (α)
)

+R2
0(α)]3/2

ds

, ∀y > α,

and (2.8) follows.

Remark 2.1. supy>α Fα(y) is finite since Fα(y) < κe0(α)α1−d/R0(α), ∀y > α.
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Example 2.1 (The two- and three-dimensional cases). Critical thresholds for the two- and three
dimensional radial Euler-Poisson were worked out in [6, Section 5]: they take the form of a
sub-critical threshold, R′

0(α) > F+
α (ρ0, e0, R0) which guarantees global smooth solution, and a

super-critical threshold R′
0(α) > F−

α (ρ0, e0, R0) which leads to a finite-time breakdown. Here, we
close the gap, F+

α > F−
α : Theorem 2.1 provides the precise description of the critical threshold,

Fα, in the two- and three-dimensional spaces of initial configurations.

Example 2.2 (The four-dimensional case). When d = 4, then N (s) = −s−2/2, and the integral
(2.6) admits the explicit form,

∫ r

α

1

[2κe0(α)N (s)− 2κe0(α)N (α) +R2
0(α)]1/2

ds

=

∫ r

α

1

[−κe0(α)s−2 + κe0(α)α−2 + R2
0(α)]1/2

ds

=

∫ r

α

s
[

− κe0(α) +
(

κe0(α)α−2 + R2
0(α)

)

s2
]1/2

ds

=
1

2

∫ r

α

1
[

− κe0(α) +
(

κe0(α)α−2 + R2
0(α)

)

s2
]1/2

d(s2)

=

[

− κe0(α) +
(

κe0(α)α−2 + R2
0(α)

)

r2
]1/2

− αR0(α)
(

κe0(α)α−2 +R2
0(α)

) .

Thus

r(α, t) =

√

√

√

√

√

(

t
(

κe0(α)α−2 + R2
0(α)

)

+ αR0(α)

)2

+ κe0(α)

κe0(α)α−2 + R2
0(α)

=

√

(

κe0(α)α−2 +R2
0(α)

)

t2 + 2αR0(α)t+ α2.

This is the same as [6, equation 5.46]. Taking the α derivative

∂r

∂α
=
α+ (R0 + αR′

0)t+ (R0R
′
0 − κe0α

−3 + 1
2κρ0α

−2)t2
√

(

κe0(α)α−2 +R2
0(α)

)

t2 + 2αR0(α)t+ α2

.

We conclude that ∂αr(·, t) remains positive for all t > 0 if and only if both (i) and (ii) hold:
(i) R0R

′
0 − κe0α

−3 + 1
2κρ0α

−2 > 0;

(ii) [R0 − αR′
0]

2 < 4α[−κe0α−3 + 1
2κρ0α

−2] (so that ∂αr(·, t) = 0 has no real solution), or
R0 + αR′

0 > 0 (so that ∂αr(·, t) = 0 has two negative solutions, t1 < 0 and t2 < 0).

We set

(2.11a) f1(α) :=
κe0α

−3 − 1
2κρ0α

−2

R0
,

and

(2.11b) f2(α) =

{

1

α
min{−R0, R0 −

√

−4αR0f1(α)}, f1(α) ≤ 0,

−∞, f1(α) > 0.
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Then the critical threshold condition (2.8) for 4-dimensional radial repulsive solutions reads

(2.11c) R′
0(α) > max{f1(α), f2(α)}.

Starting from (2.10) will yield the same result, that is,

sup
y>α

Fα(y) = max{f1(α), f2(α)},

which proves the 4-dimensional critical threshold condition of the form R′
0(α) > supy>α Fα(y).

This extends the critical threshold result of [6, theorem 5.10] which places the further restriction
that R′

0 needs to be upper-bounded for global smooth solutions: the reason is that the authors
of [6] ignored case (i) and the second part of case (ii).

3. Two-dimensional radial Euler-Poisson solutions with swirl

Consider the two dimensional Euler-Poisson equations

nt + ∇ · (nu) = 0, u(·, t) = (u(·, t), v(·, t)) : R
2 7→ R

2,(3.1a)

(nu)t + ∇ · (nu⊗ u) = κn∇φ, ∆φ = n = ρ/r,(3.1b)

subject to spherically symmetric initial data with swirl,

(3.2) ρ0(x) = ρ0(r), u0(x) = R0(r)
x

r
+ Θ0(r)

x⊥

r
, x = (x, y), x⊥ = (−y, x), r = |x|.

Here, R0 and Θ0 are the radial and tangential components of the initial velocity field, u0.
Due to the radial symmetry, the solution propagates along circles: starting with a circle of

radius α at time 0, the particle path,
d

dt
x = u(x, t) such that |x|(α, 0) = α, will form a circle

at time t with radius |x| = r(α, t). Indeed, the precise evolution of r(α, t) will be worked out
in (3.8) below. To trace the solution along these circles, we can therefore pick any sampling
point on the initial circle with radius α, and evolve it along its particle path to discover r(α, t):
without loss of generality, we choose the particle located at (x, y)|t=0 = (α, 0). Observe that the
x- and y-components of the velocity at this initial position, (x, y) = (α, 0), coincide with the
polar components, u0(α, 0) = R0(α) and v0(α, 0) = Θ0(α). Since the charge, e = rφr, remains
constant along these paths, then u(t) ≡ (u(x(t), t), v(x(t), t)), is therefore governed by

(3.3)
du

dt
=
κe0(α)x

r2
,

dv

dt
=
κe0(α)y

r2
,

subject to initial data u((α, 0), 0) = R0(α), v((α, 0), 0) = Θ0(α). This implies,

(3.4a)
d2x

dt2
= κe0

x

r2
,

(3.4b)
d2y

dt2
= κe0

y

r2
.

Multiply (3.4a) by 2
dx

dt
, multiply (3.4b) by 2

dy

dt
, and sum, we obtain

2
dx

dt

d2x

dt2
+ 2

dy

dt

d2y

dt2
= 2κe0

xdx
dt + y dy

dt

r2
,

or
d

dt

[(dx

dt

)2
+

(dy

dt

)2]

=
d

dt
(2κe0 ln r).

Therefore

(3.5)
(dx

dt

)2
+

(dy

dt

)2
= 2κe0 ln

r

α
+ R2

0(α) + Θ2
0(α).
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Another useful equality is

(3.6) x
d2x

dt2
+ y

d2y

dt2
= κe0.

Combine (3.5) and (3.6) to find

(3.7)
d2(r2)

dt2
=
d2(x2 + y2)

dt2
= 2κe0 + 4κe0 ln

r

α
+ 2R0(α)2 + 2Θ2

0(α).

Multiplying (3.7) by d(r2)/dt, we obtain

d(r2)

dt

d2(r2)

dt2
= 2r

dr

dt
[2κe0 + 4κe0 ln

r

α
+ 2R2

0(α) + 2Θ2
0(α)].

That is,

1

2

d

dt

[d(r2)

dt

]2
= (2κe0 + 2R2

0(α) + 2Θ2
0(α))

d(r2)

dt
+
d

dt
(4κe0r

2 ln r − 2κe0r
2) − d

dt
(4κe0r

2 lnα),

and hence

1

2

[d(r2)

dt

]2
− 1

2

(

2αR0(α)
)2

= (2κe0 + 2R2
0(α) + 2Θ2

0(α))(r2 − α2) + (4κe0r
2 ln r − 2κe0r

2)

−(4κe0α
2 lnα− 2κe0α

2)− (4κe0r
2 lnα) + (4κe0α

2 lnα)

= 2(R2
0(α) + Θ2

0(α))(r2 − α2) + 4κe0r
2 ln

r

α
.

Therefore,

2r2
[dr

dt

]2
= 2r2(R2

0(α) + Θ2
0(α))− 2α2Θ2

0(α) + 4κe0r
2 ln

r

α
,

which implies

(3.8)
dr

dt
=

[

R2
0(α) + Θ2

0(α) − α2

r2
Θ2

0(α) + 2κe0 ln
r

α

]1/2
=: ζ(r, α)−1.

Integrating ζ(r, α)dr = dt, we obtain

(3.9)

∫ r(α,t)

α
ζ(s, α)ds = t,

and taking the α-derivative of (3.9) yields

(3.10a)
∂r(α, t)

∂α
=

1

ζ(r(α, t), α)
× ϕα(r(α, t)),

where

(3.10b) ϕα(y) = ζ(α, α)−
∫ y

α

∂

∂α
ζ(s, α)ds = 0, ζ(α, α) =

1

R0(α)
.

Thus, (3.1) admits global smooth solutions as long as ϕα(r(α, t)) remains positive. Similar to
our analysis of the case without a swirl in section 2, we derive the following theorem.

Theorem 3.1 (Radial solutions with swirl). Consider the two dimensional repulsive Euler-

Poisson equations (3.1) with radial initial data with swirl (3.2). They admit global in time

smooth solutions if and only if

(3.11a) Pα(y)R′
0(α) +Qα(y)Θ′

0(α) > Sα(y), ∀y > α > 0,
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where Pα, Qα and Sα are given by

Pα(y) =

∫ y

α

R0
[

R2
0 + Θ2

0 − (α2/s2)Θ2
0 + 2κe0 ln(s/α)

]3/2
ds,

Qα(y) =

∫ y

α

Θ0

(

1− (α2/s2)
)

[

R2
0 + Θ2

0 − (α2/s2)Θ2
0 + 2κe0 ln(s/α)

]3/2
ds,

Sα(y) =

∫ y

α

(α/s2)Θ2
0 − κρ0 ln(s/α) + (κe0/α)

[

R2
0 + Θ2

0 − (α2/s2)Θ2
0 + 2κe0 ln(s/α)

]3/2
ds− 1

R0
.

4. Radial Euler-Poisson equations with pressure

We now return to the Euler-Poisson equations with pressure. The one-dimensional critical
threshold in this case, [22], states that there exists a constant K0 = K0(k) > 0 such that

(4.1) R′
0(α) > −K0

√

ρ0(α) +
√

Aγ|ρ′0(α)|
(

ρ0(α)
)

γ−3

2 , γ ≥ 1.

When A = 0 (4.1) recovers the critical threshold of the one-dimensional pressureless case with

K0 =
√

2k. Otherwise, the inequality (4.1) quantifies the competition between the destabilizing
pressure effects, as the range of sub-critical initial configurations shrinks with the growth of
the amplitude of the pressure, A, while the stabilizing effect of the Poisson forcing increases
the sub-critical range with a growing k. Similarly, we expect that pressure will have a similar
“competitive” role with multi-dimensional radial solutions of Euler-Poisson equations, (1.2a).
Namely, if the amplitude of the pressure is not “too large” relative to k then (1.2a) admits global
smooth solutions for a large set of sub-critical initial configurations. The precise form of the
multidimensional radial critical threshold is left for a future work.

5. Euler-Poisson in R
2 – beyond the radial case

In this section we discuss the difficulties in addressing the question of global smooth solutions
vs. finite time breakdown of Euler-Poisson equation in the general non-radial case. The main
difficulty lies with the nonlocal term ∇φ in the system (2.1). This feature was emphasized in
[15], and was the main motivation for studying the restricted model, where the nonlocal term
∇φ is replaced by a local term. Here is a brief overview.

We start with the local well-posedness and the blowup criterion for the system (2.1). To
simplify matters, we restrict attention to the two-dimensional case, governing the velocity field
u := (u1,u2). Standard energy method arguments lead to the local well-posedness for the
system (2.1) in energy spaces Hs, s > 2, and the blowup criterion in terms of ∇u. Then, we
will refine the blowup condition in terms of the divergence d := ∇ · u.

Proposition 5.1 (Local existence). Fix k > 0 and consider the Euler-Poisson equations

nt + ∇ · (nu) = 0,(5.1a)

ut + u · ∇u = k∇∆−1n,(5.1b)

subject to initial conditions, n0 ∈ Hs(R2), and ∇u0 ∈ Hs(R2), s > 1. Then, there exists T > 0
and a unique solution of (5.1), (n,∇u) ∈ C([0, T ];Hs). Moreover, we have the following blow-up

criterion: if tc > 0 is the maximal time for the existence of such a smooth solution, then

tc <∞ ⇒
∫ tc

0
‖∇ · u(t)‖L∞dt = ∞.
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Proof. The proof consists of three steps.
Step 1. We begin with standard energy method arguments, to obtain the usual energy estimates
in Sobolev spaces, Hs := {f | ‖f‖Hs = ‖Dsf‖L2}, where D stands for the pseudo-differential

operator, D := (I − ∆)1/2. Differentiate the momentum equation (5.1b) by acting with Ds and
integrate by parts against Dsu, we find

1

2

d

dt
‖u(·, t)‖2

Hs =

−
∑

j

(

Dsu, [Ds,uj]∂ju

)

+
1

2

(

Dsu, (∇ · u)Dsu

)

+ k
(

Dsu, Ds∇∆−1n
)

.

The commutator on the first term on the right does not exceed [11],

‖[Ds,uj]∂ju‖L2 . ‖∇u‖L∞‖u‖Hs

which yields

(5.2) ‖u(·, t)‖Hs . ‖u0‖Hs +

∫ t

0

‖∇u(·, τ)‖L∞‖u(·, τ)‖Hsdτ +

∫ t

0

‖n(τ)‖Hs−1dτ.

Similarly, energy estimate of the mass equation (5.1a) yields, [13]

(5.3) ‖n(·, t)‖Hs . ‖n0‖Hs +

∫ t

0

(

‖∇u(·, τ)‖L∞‖n(·, τ)‖Hs

)

dτ,

Let Y (T ) := sup0≤t≤T

(

‖u(t)‖Hs + ‖n(t)‖Hs

)

. Since Hs(R2) ⊂ L∞(R2) for s > 1, we have

Y (T ) . Y (0) + TY 2(T ),

which implies the local well-posedness for the system (1.2).
Step 2. We prove the blow-up criterion in terms of ∇u. By (5.2) and (5.3) and with the aid of
Gronwall’s inequality, we obtain

(5.4) Y (T ) . Y (0) exp
[

∫ T

0

(

‖∇u(·, t)‖L∞ + ‖n(·, t)‖L∞ + 1
)

dt
]

.

The mass equation tells us that

nt + u · ∇n = −(∇ · u)n,

and hence

sup
0≤t≤T

‖n(·, t)‖L∞ . ‖n0‖L∞ exp
[

∫ T

0

||∇ · u(·, t)||L∞dt
]

.

Therefore, we can replace (5.4) by

(5.5) Y (T ) . exp
[

Y (0) exp

∫ T

0
(‖∇u(·, t)‖L∞ + 1)dt

]

,

which implies the blow-up criterion in terms of ∇u.
Step 3. Next, we express ∇u in terms of the vorticity ω := ∂1u2 − ∂2u1 and the divergence,
d = ∇ · u,

∂ui

∂xj
= RiRj(d)±RjR3−i(ω), i, j = 1, 2, ω = ∇× u, d = ∇ · u.

Here, Ri’s are the singular Riesz transforms, Ri = ∂i∆
−1/2. These singular integral operators

do not map L∞ to L∞, yet the estimate ∇u in terms of ω and d can be saved using a logarithmic
correction,

(5.6) ‖∇u‖L∞ . (‖ω‖L∞ + ‖d‖L∞) log(‖u‖Hs + 1), s > 2.
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Finally, we recall that the two-dimensional vorticity is transported

ωt + u · ∇ω + ωd = 0,

from which we can estimate the vorticity ω in terms of d as follows,

(5.7) sup
0≤t≤T

‖ω(·, t)‖L∞ . ‖ω0‖L∞ exp
[

∫ T

0
‖d(·, t)‖L∞dt

]

.

Therefore, we only need to control the divergence, d, in L∞, to determine whether a smooth
solution exists globally-in-time. The final regularity result, in the form of a double exponential

bound on Y (T ) in terms of

∫ T

0
‖d(·, t)‖L∞dt, then follows from (5.5),(5.6) and (5.7).

To proceed with the global regularity, we obtain an evolution equation for the divergence, d:
taking the divergence of (5.1b), we find,

(∂t + u · ∇) d = kn −
∑

i,j=1,2

∂iuj∂jui

= kn + 2(∂1u1∂2u2 − ∂1u2∂2u1)− (∇ · u)2(5.8)

= kn − d2 + 2λ1λ2 = kn− 1

2
d2 − 1

2
η2.

Here, λ1 and λ2 are eigenvalues of the 2 × 2 gradient matrix, ∇u := {∂ui/∂xj}i,j=1,2, and
η := λ2 − λ1, is the spectral gap. One possible approach for controlling d in (5.8) is therefore to
estimate η globally-in-time. To this end, we first differentiate the momentum equation, (5.1b),
which yields that the gradient matrix, ∇u, satisfies the Riccati’s type equation,

(5.9) (∂t + u · ∇) (∇u) + (∇u)2 = kR(n), R(n)ij := RiRj(n), i, j = 1, 2.

The spectral dynamics associated with this system [14, Lemma 3.1], tells us that the eigenvalues,
λi, associated with left and right eigenvectors li and ri, are governed by

(5.10) (∂t + u · ∇)λi + λ2
i = k〈li,R(n)ri〉.

Taking the difference, we find that the spectral gap satisfies the non-local evolution equation,

(5.11) (∂t + u · ∇) η + dη = k〈l2,R(n)r2〉 − k〈l1,R(n)r1〉.
The right-hand side of (5.11) is highly nonlinear and non-local and it is therefore seems rather
difficult to control the spectral gap globally-in-time.

To avoid this difficulty, the authors of [15] introduced the following restricted Euler-Poisson
system for the 2× 2 matrix M : R

2 7→ R
2 × R

2,

(5.12)

{

nt + ∇ · (nu) = 0,

(∂t + u · ∇)M +M2 =
k

2
nI2×2.

This is similar to the system of equations satisfied by the 2 × 2 velocity gradient of the non-
restricted Euler-Poisson equations, (5.9),

(5.13)

{

nt + ∇ · (nu) = 0,

(∂t + u · ∇) (∇u) + (∇u)2 = kR(n), R(n)ij := RiRj(n), i, j = 1, 2.

Thus, compared with the restricted model, (5.12), we see that the non-local Riesz matrix, R(n),
is replaced here by the local matrix, 1

2nI2×2, while keeping the same trace,

trace
(

R(n)
)

= trace
(1

2
nI2×2

)

.
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This simplification of the restricted model yields a spectral dynamics, (∂t + u · ∇) λi+λ
2
i = kn/2,

which in turn, implies the following evolution equation for the spectral gap

(∂t + u · ∇) η + dη = 0.

This should be contrasted with the nonlocal terms on the right-hand-side of (5.11). Using
this local version of the spectral gap, one is able to derive a complete description of the critical
threshold in the two dimensional restricted Euler-Poisson equations, [15, Theorem 1.1], expressed
in terms of the relative sizes of three quantities: the initial density, the initial divergence, and
the initial spectral gap.
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