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Zonal flow helps reduce and regulate the turbulent transport level in tokamaks. Rosenbluth and
Hinton have shown that zonal flow damps to a nonvanishing residual level in collisionless �M.
Rosenbluth and F. Hinton, Phys. Rev. Lett. 80, 724 �1998�� and collisional �F. Hinton and M.
Rosenbluth, Plasma Phys. Control. Fusion 41, A653 �1999�� banana regime plasmas. Recent zonal
flow advances are summarized including the evaluation of the effects on the zonal flow residual by
plasma cross-section shaping, shorter wavelengths including those less than an electron gyroradius,
and arbitrary ion collisionality relative to the zonal low frequency. In addition to giving a brief
summary of these new developments, the analytic results are compared with GS2 numerical
simulations �M. Kotschenreuther, G. Rewoldt, and W. Tang, Comput. Phys. Commun. 88, 128
�1991�� to demonstrate their value as benchmarks for turbulence codes. © 2007 American Institute
of Physics. �DOI: 10.1063/1.2718519�

I. INTRODUCTION

Recent discoveries in plasma turbulence show that zonal
flow is an important mechanism for suppressing ion tempera-
ture gradient �ITG�1–3 and trapped electron mode �TEM�4,5

turbulence. As a result, it is important to understand the
damping mechanisms that act on zonal flow. The original
Rosenbluth-Hinton �R-H� study showed that zonal flow is
modified by the collisionless neoclassical polarization, with a
significant residual flow surviving due to the smallness of
this polarization.6 Later, Hinton-Rosenbluth �H-R� found that
in the large radial wavelength limit collisional effects signifi-
cantly reduce the residual zonal flow to a level much
smaller7 than the collisionless kinetic theory predicts.6 Both
of these analytical studies are based on a large aspect ratio
circular flux surface tokamak model.

Three aspects of these pioneering studies on the linear
damping of zonal flow have been extended recently. First, in
the large radial wavelength limit, the original R-H collision-
less residual zonal flow calculation6 has been generalized to
more realistic flux surface shapes that allow elongation, tri-
angularity, and Shafranov shift to be retained in the equilib-
rium model.8 Second, the original R-H collisionless calcula-
tion has been extended to cover arbitrary radial wavelength
zonal flow,9 including, in particular, shorter wavelength ef-
fects of interest for ITG and TEM modes and the still shorter
wavelengths associated with electron temperature gradient
�ETG� turbulence. Finally, a new method has been developed
to study collisional zonal flow damping.10 This new analyti-
cal approach is valid for arbitrary collisionality and long
wavelengths, and is therefore a useful extension of the origi-
nal H-R collisional work.11,12

These new developments in the R-H and H-R zonal flow
studies provide not only new insights on the physics of re-
sidual zonal flow, but also new opportunities to crosscheck
numerical simulations. Some of these checks for the well-
known continuum turbulence code GS2 are presented here.13

Previously, the GS2 code had successfully benchmarked the
well-known R-H collisionless residual zonal flow
calculation.14 This code also discovered the increase in the
residual zonal flow at short radial wavelength driven by
ETG, ITG, and TEM turbulence.15 Moreover, a prior GS2
study on shaping effects16 gave results similar to the analyti-
cal theory of reference.8 Therefore, it is desirable to make a
more thorough and careful comparison between the new ana-
lytical developments8–10 and the numerical simulations using
the GS2 code under common circumstances and parameters.

This paper is organized as follows. Sections II and III
review the linear gyrokinetics of zonal flow and the recent
extensions of the R-H and H-R zonal flow models. In Sec.
IV, we briefly summarize the new analytical results for
plasma shaping effects and compare them to the GS2 nu-
merical simulations. Section V briefly reviews the recent
analytical calculation of collisionless residual zonal flow for
the arbitrary radial wavelength and compares it to the GS2
simulation result. In Sec. VI, we compare the collisional
damping of zonal flow from the GS2 code to the recent ana-
lytical result. Finally, Sec. VII provides a brief discussion
summarizing the newly discovered results including the
comparisons discussed in the preceding sections.

II. LINEAR GYROKINETICS DRIVEN BY ZONAL FLOW

The linearized gyrokinetic equation can be employed to
study the linear response of the plasma to an axisymmetric
zonal flow potential caused by turbulence.6 The distribution
function is assumed to be composed of two parts: the unper-
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turbed and the perturbed. The unperturbed part is assumed to
be a radially slowly varying Maxwellian F0. The perturbed
part is driven by the zonal flow potential and has the form
f =−e� /TF0+g, where the adiabatic response has been sepa-
rated out for convenience. Here we assume that all the per-
turbed quantities take an eikonal form �=�k�ke

iS with the
eikonal S=S��� and the radial wave vector k�=�S. Then in
the Fourier space, the guiding center distribution gk satisfies
the following gyrokinetic equation:6,17,18

�gk

�t
+ �v�b · � + i�D�gk − C�gk� =

e

T
F0J0

��k

�t
, �1�

where C is the gyroaveraged collision operator, J0 is the
zeroth-order Bessel function, J0=J0�k�v� /��, and �D

=k� ·vd=v�b ·�Q with Q= IS�v� /� coming from the mag-
netic drift vd=b /�� ���B+v�

2b ·�b� since vd ·��
=v�b ·��Iv� /��. Notice Q	k��p, where �p is the poloidal
gyroradius. The independent velocity variables used in the
preceding equation are kinetic energy E=v2 /2 and magnetic
moment �=v�

2 /2B. For simplicity, hereafter we assume hy-
drogenic ions in the plasma.

Since the zonal flow frequency � considered here is far
below the transit frequency of thermal particles �t=vT /qR0,
the equation can be solved perturbatively by expanding in
� /�t�1 �Ref. 6� by letting gk=gk

0+gk
1+¯. The leading-

order equation in this expansion gives

v�b · �gk
0 + iv�gk

0b · �Q = 0, �2�

whose solution has the form gk
0=hke

−iQ with b ·�hk=0. Then
next-order equation gives

v�b · �gk
1 + iv�gk

1b · �Q = −
�gk

0

�t
+ C�gk

0�	 +
e

T
F0J0

��k

�t
. �3�

The transit average of the product of this equation times eiQ

gives

�hk

�t
− eiQC�hke

−iQ� =
e

T
F0J0eiQ��k

�t
, �4�

where the transit average is defined as Ā= 
d
A / 
d
, with
d
=d� / �v�b ·���. For trapped particles, this average is over
a full bounce; while for passing particles it is over one com-
plete poloidal circuit. Specifically, for a large aspect ratio
circular cross-section tokamak, d
�qR0d� /v�, where q is
the safety factor. In this case the transit average becomes

Ā =
� d�

v�

A

� d�

v�

. �5�

When calculating the perturbed particle density in a flux sur-
face, we utilize

ñk = � d3vJ0hke
−iQ� −

e�k

T
n0, �6�

where � � represents the flux surface average �A�
= 
dl /BA / 
dl /B.

If the time scale of interest is much shorter than a typical
collision time, the plasma can be treated as collisionless;
otherwise collisions must be retained. For the collisionless
case, the solution to the transit average kinetic equation, Eq.
�4�, is straightforward,

hk =
e�k

T
F0J0eiQ. �7�

Hence, the perturbed particle density in Eq. �6� can be ex-
pressed as

ñk =
e�k

T
n0� 1

n0
� d3vJ0e−iQJ0eiQF0� − 1� , �8�

where the classical gyromotion effect �finite Larmor radius�
on polarization is retained in J0, and the effect of magnetic
drift �finite poloidal gyroradius� is retained in eiQ.

For the collisional case, the transit average kinetic equa-
tion �4� can only be solved for large radial wavelength zonal
flow where k��pi�1. The ITG and TEM mode driven zonal
flows fall into this category. Expanding Eqs. �4� and �6� to
order Q2 �Refs. 7 and 10�, we find

ñk = −
e�k

T
n0��k�

2 �2� +
1

n0
� d3vF0�Q2 +

iQThk
�1�

e�kF0
��� ,

�9�

where the distribution function hk
�1� satisfies

�hk
�1�

�t
− C�hk

�1�� = iQ̄
e

T
F0

��k

�t
. �10�

We define the gyroradius as �=�T /m /� with the gyrofre-
quency �=eB /mc.

Next, we will review the Rosenbluth-Hinton zonal flow
physics and its relationship to the current linear density cal-
culation.

III. GENERALIZED ROSENBLUTH-HINTON ZONAL
FLOW PHYSICS

Quasineutrality of the plasma requires that the linear per-
turbed charge density be compensated by the nonlinear tur-
bulent charge source, i.e., eñk

�i�−eñk
�e�=−�k

NL. In the
Rosenbluth-Hinton zonal flow model, turbulence produces a
constant initial charge source within a time that is much
shorter than one transit time but much larger than one gyro-
period. Therefore, drift and collisional effects can be ignored
�Q=0=C� on such short time scales and the initial zonal
flow potential is given by

�
� 1

n0
� d3vJ0i

2F0i� − 1�
+ � 1

n0
� d3vJ0e

2F0e� − 1��n0e2

Te
�k�t = 0� = − �k

NL�0� ,

�11�

055910-2 Xiao, Catto, and Dorland Phys. Plasmas 14, 055910 �2007�

Downloaded 17 Jan 2008 to 128.8.80.201. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



according to Eq. �8� and quasineutrality, where 
=Te /Ti. For
the long-wavelength ITG and/or TEM zonal flow cases,
k��pi�1, this equation simplifies considerably to become

n0e2

Ti
�k�t = 0��k�

2 �i
2� = − �k

NL�0� . �12�

After several transit periods, drift effects become impor-
tant. In the collisionless limit, the long-time zonal flow is
then given by

�
� 1

n0
� d3vJ0ie

−iQiJ0ie
iQiF0i� − 1�

+ � 1

n0
� d3vJ0ee

−iQeJ0ee
iQeF0e� − 1��

�
n0e2

Te
�k�t = �� = − �k

NL�0� . �13�

Therefore, the zonal flow residual that is customarily defined
to be �k�t=�� /�k�t=0� has the form,

�k�t = ��

�k�t = 0�
=


� 1

n0

� d3vJ0i
2F0i� − 1� + � 1

n0

� d3vJ0e
2F0e� − 1�


� 1

n0

� d3vJ0ie
−iQiJ0ie

iQiF0i� − 1� + � 1

n0

� d3vJ0ee
−iQeJ0ee

iQeF0e� − 1� . �14�

In the long-wavelength limit k��pi�1, the collisionless
zonal flow residual reduces to

�k�t = ��

�k�t = 0�
=

�k�
2 �i

2�

�k�
2 �i

2� +
1

n0

� d3vF0i�Qi
2 − Qi

2�� . �15�

Collisional effects become significant when the time scales
of interest are comparable to a typical collision time. At
present, the collisional case is only tractable for the large
wavelength zonal flow. In this case, the bounce average drift
kinetic equation, Eq. �10�, must be solved to evaluate the
linearized particle density in Eq. �9�. It is generally more
convenient to solve Eq. �10� in the frequency domain,

hk
�1��p� −

1

p
C�hk

�1��p�� = iQ̄
e

T
F0�k�p� , �16�

which comes from the Laplace transform of Eq. �10�. The
Laplace transforms of �k and hk

�1� are defined by �k�p�
=�0

�dte−pt�k�t� and hk
�1��p�=�0

�dte−pthk
�1��t�, where p is the

frequency variable. In the frequency domain, the quasineu-
trality condition becomes

n0e2

Ti
�k�p���k�

2 �i
2� +

1

n0
� d3vF0i�Qi

2 +
iQiTihk

�1��p�
e�kF0

���
=

�k
NL�0�

p
, �17�

where the distribution hk
�1��p� satisfies Eq. �16� for ions. The

perturbed electron charge density is normally ignored be-
cause it is a mass ratio smaller than the ion part for ITG and
TEM zonal flows. This equation, together with Eq. �12�,
gives the frequency response of the zonal flow to be

�k�p�

�k�t = 0�
=

�k�
2 �i

2�/p

�k�
2 �i

2� +
1

n0
� d3vF0i�Qi

2 +
iQiTihk

�1��p�

e�kF0

�� .

�18�

The time evolution of zonal flow is then given by the follow-
ing inverse Laplace transform:

�k�t�
�k�t = 0�

=
1

2i
� dpept �k�p�

�k�t = 0�
. �19�

Therefore, the long-time behavior of zonal flow or the zonal
flow residual is determined by the zero-frequency response
of Eq. �18�, and the damping rate of the zonal flow is deter-
mined by the zeroes of the term �k�

2 �i
2�+1/n0��d3vF0i�Qi

2

+ iQiTihk
�1��p� /e�kF0��.

The following sections will briefly discuss three different
recent developments that extend the R-H and H-R zonal flow
calculations, and briefly present comparisons to the corre-
sponding GS2 simulations.

IV. PLASMA SHAPING EFFECTS ON ZONAL FLOW
RESIDUAL

The shaping factors for magnetic flux surfaces, such as
elongation, triangularity, and Shafranov shift, are important
ingredients in suppressing turbulent transport in tokamaks.19

Recent numerical16 and analytical8 studies show that shaping
also acts on the collisionless residual zonal flow level. Al-
though these two approaches are based on different equilib-
rium models, they show similar dependences on plasma
shaping. Here we provide a more careful comparison be-
tween the analytical formula and GS2 numerical simulation.

The analytical approach applies a global equilibrium,20

whose flux surface in the large aspect ratio limit can be sim-
plified to8
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R = R0�1 + � cos � − � − �� sin2 �� , �20�

Z = R0�� sin � , �21�

while keeping the important shapings, such as elongation �,
triangularity �, and Shafranov shift �, in the model. This
model equilibrium has Bp= ���� /R with �=4�2�0

=R0�I�2 /2q and

��r� =
��2cos2 � + sin2 � + 4�sin2 � cos � + 4�2sin2 �cos2 �

�1 − 2��/��cos ��
,

with q the safety factor. In this model, the triangularity � is
assumed to be �� and Shafranov shift ���2, while the elon-
gation � is a constant. To lowest order, Bp

= I� /R0q��2cos2 �+sin2 �. For a large aspect ratio tokamak,
an � expansion can be applied to calculate the zonal flow
residual in Eq. �16� to obtain

�k�t = ��
�k�t = 0�

=
1

1 + Sq2/��
, �22�

with the shaping function S given by

S =
1

1 + �2�3.27 + �� + 0.722� − 1.443� − 2.945
�

�

+
0.692�2 − 0.722

q2 �� . �23�

This analytical result can be compared to GS2 simulations,
as shown in Figs. 1 and 2. In Fig. 1, the elongation depen-
dence of the zonal flow residual is compared to GS2 simu-
lation, showing very good agreement. In Fig. 2, �=1.8, and
the triangularity dependence of the zonal flow residual is
compared to GS2 simulation. The slope of these two curves
are the same, telling us that the coefficient of the dependence
of � in the shaping function is the same. The small differ-
ences between the GS2 results and Eq. �21� are due to the
differing � dependence of the global analytical and the local

GS2 numerical equilibrium models in higher order. Shafra-
nov shift comparisons cannot be meaningfully performed be-
cause the global model used to obtain the analytic results
assumes � is of order �2, while the local model in GS2
assumes � is of order � �as in the Miller et al. model19� and
does not treat order �2 corrections in the same way as the
global model.

We see that the leading-order effect of shaping is due to
elongation, which comes from the increase of the poloidal
field Bp with elongation � when keeping the safety factor q
fixed. The triangularity effect is due to the change of the
trapped-passing boundary location and therefore the change
in the ratio between the trapped and passing particles.

V. SHORT WAVELENGTH EFFECTS ON ZONAL FLOW
RESIDUAL

In the preceding section, the plasma shaping effects on
the collisionless residual zonal flow were considered. In this
section and the following one, a large aspect ratio circular
tokamak is considered �with the elongation �=1, triangular-
ity �=0, and Shafranov shift �=0�.

The pioneering calculation of R-H �Ref. 6� focused on
ITG mode driven zonal flow in the large wavelength limit
satisfying k��pi�1. However, both experiments21 and
simulations22 show that these zonal flows can have radial
wavelength comparable to the ion poloidal gyroradius.
Moreover, sources of anomalous transport, such as the
trapped electron mode4,5 and electron temperature gradient
mode,11,12 can also drive zonal flows at shorter radial wave-
lengths than the ion gyroradius. Indeed, for ETG turbulence,
wavelengths as short as the electron gyroradius must be con-
sidered. Such short wavelength zonal flows were not consid-
ered by the original R-H calculation. Here we briefly sum-
marize a recent study of the short wavelength effects
collisionless zonal flow damping.9

Before doing so we recall that when the radial wave-
length is much larger than the ion poloidal gyroradius,

FIG. 1. Zonal flow residual dependence on elongation �, for q=1.4, �
=0.1, �=0, �=0. The solid line is the analytical result and the dashed line is
the GS2 simulation result.

FIG. 2. Zonal flow residual dependence on triangularity �, for q=1.4, �
=0.1, �=1.8, �=0. The solid line is the analytical result and the dashed line
is the GS2 simulation result.
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k��pi�1, Eq. �15� leads to the R-H value of the zonal flow
residual,

�k�t = ��
�k�t = 0�

=
1

1 +
q2

�2�

, �24�

with �=1.635�3/2+0.500�2+0.360�5/2 and no dependence
on the radial wave number k�. The higher-order terms re-
tained in the preceding expression make the result more ac-
curate for the finite size � values than the original R-H co-
efficient 1.6�3/2 �Ref. 9�.

When the radial wavelength becomes close to the ion
poloidal gyroradius, the finite poloidal gyroradius effect tries
to increase the residual zonal flow level,

�k�t = ��
�k�t = 0�

=
1

1 +
q2

�2 �� − 2.44�5/2k�
2 �pi

2 �
. �25�

This result is valid for k��i�1 and k��pi approaching unity.9

As the radial wavelength gets even shorter, Eq. �14�
needs to be numerically evaluated to obtain the collisionless
zonal flow residual. When the radial wavelengths are small
compared to an ion gyroradius, but comparable to or less
than a poloidal electron gyroradius, electron polarization be-
comes important. The zonal flow residual first decreases with
k� due to electron neoclassical polarization. Then, the zonal
flow residual recovers and increases due to finite electron
poloidal gyroradius effects. Finally, as the radial wavelengths
become much less than an electron gyroradius, the zonal
flow residual ultimately approaches unity.

The preceding behavior was observed by Jenko et al. in
GS2 simulations for ETG modes,15 but for a slightly differ-
ent driving source function. A careful comparison between
the predictions of Eq. �14� and GS2 for the same source
functions and parameters has now been performed to obtain
the plots shown in Fig. 3. The agreement between these two

independent calculations is excellent and provides a useful
benchmark of the zonal flow residual for arbitrary radial
wavelengths.

Based on this figure, we expect ETG turbulence to satu-
rate at a low level if short wavelength zonal flow is generated
by the parasitic instabilities associated with ETG, ITG,
and/or TEM modes. The high level of ETG turbulence some-
times observed in codes may indicate that the parasitic insta-
bilities associated with ETG modes are not as effective in
generating zonal flow as those associated with ITG and TEM
modes.15,23 Even though ITG and ETG modes are closely
related to lowest order in linear theory �they are often re-
ferred to as isomorphic�, the details of the zonal flows they
ultimately generate are sensitive to the differences that show
up in higher order and nonlinear behavior. For example,
Candy and Waltz have found that the nonadiabatic behavior
of the ions is important to retain,3 and that the zonal flows
generated are sensitive to whether one or both of the ITG
and/or ETG modes are excited.24 Moreover, Kim et al.25 ob-
serve that some of the differing behavior may be due to the
stronger collisional damping of the very short wavelength
poloidal flows of interest for ETG modes.

VI. COLLISIONAL ZONAL FLOW DAMPING FOR
LARGE WAVELENGTH ZONAL FLOW

When the time scale of interest is on the order of the
ion-ion collisional time 
ii, the collisional damping of zonal
flow becomes important. The original H-R calculation7 con-
siders two asymptotic limits: the short-time or weak collision
limit p
ii�1, and the long-time or strong collision limit
p
ii�1, and ignores the need to conserve momentum in like
particle collisions. To obtain an improved estimate of the
decay rate it is desirable to obtain the frequency response of
Eq. �18� for arbitrary values of p
ii. A new method based on
an eigenfunction expansion of the pitch angle scattering op-
erator with a momentum conserving term retained has been
developed to solve this problem.10 It finds that in the large
wavelength limit, Eq. �19� can be approximated by retaining
an additional pole to find

�k�t�
�k�t = 0�

=
�2/q2

1 + �2/q2�1 +
1 − �

� + �2/q2e−�1+�2/q2��/�+�2/q2t/
ii� ,

�26�

where �=0.585�1/2+0.529� and the ion-ion collision time

ii=mi

1/2�2Ti�3/2 /4e4n0 ln �. This analytical result has been
compared to GS2 numerical simulations, as shown in Fig. 4.
If momentum conservation in like particle collisions is not
retained then the damping time changes from approximately

ii� /��2.7�
ii to 4�3/2
ii, and the agreement can be seen to
be rather poor. For small �, such as �=0.1, our analytical
result captures the main feature of the decay curve from the
GS2 simulation. As � becomes larger ��=0.2�, our analytical
result becomes less accurate since it assumes ��1. Because
the analytical formula is based on a multipole decay model
that only retains a single collisional pole, it can only capture
the main feature of the collisional decay,10 and is unable to
recover the very early time and long-time features of the
damping process, as shown in Fig. 4. Even so, the consis-

FIG. 3. The zonal flow residual �k�t=�� /�k�t=0� varies with normalized
radial wavelength k��i. The discrete shapes are from GS2 simulation. The
solid lines are based on Eq. �14� as taken from Ref. 9.
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tency with the GS2 simulations shows that this simple ana-
lytical formula �that gives a decay time about twice that of
H-R� can be readily applied to benchmark other numerical
codes.

VII. DISCUSSION AND CONCLUSION

This paper provides a systematic review of the R-H col-
lisionless and H-R collisional zonal flow damping and their
recent extensions in three different directions. These three
important extensions have been carefully tested by GS2
simulation. First, in the collisionless regime, the analytic
scaling of shaping effects due to elongation and triangularity
have been confirmed by GS2 simulation. Elongation, or the
increase of poloidal field, is seen to substantially increase the
zonal flow residual and may have important consequences in
regulating turbulence. Next, short wavelength effects on the
zonal flow residual as evaluated analytically and by GS2
simulation were found to be in agreement to remarkable ac-
curacy. The increase of zonal flow residual for short wave-

lengths may indicate there is a strong impact on ETG turbu-
lence when secondary instabilities produce the same amount
of zonal flow as the ITG and TEM modes.24 Finally, we
investigated the collisional damping of zonal flow by com-
paring the GS2 simulation and the analytical result from a
new eigenfunction expansion approach that improves on the
H-R result. Quite good agreement is obtained in the large
aspect ratio limit with a relatively simple approximation to
the collisional response provided momentum conservation in
like particle collisions is retained.

ACKNOWLEDGMENT

This work was supported by U.S. Department of Energy
Grant No. DE-FG02-91ER-54109 at the Massachusetts Insti-
tute of Technology and by the Center for Multiscale Plasma
Dynamics.

1W. Dorland and G. Hammett, Phys. Fluids B 5, 812 �1993�.
2Z. Lin, T. Hahm, W. Lee, W. Tang, and R. White, Science 281, 1835
�1998�.

3J. Candy and R. Waltz, Phys. Rev. Lett. 91, 045001 �2003�.
4D. R. Ernst, P. T. Bonoli, and P. J. Catto, Phys. Plasmas 11, 2637 �2004�.
5B. Coppi and G. Rewoldt, Phys. Rev. Lett. 33, 1329 �1974�.
6M. Rosenbluth and F. Hinton, Phys. Rev. Lett. 80, 724 �1998�.
7F. Hinton and M. Rosenbluth, Plasma Phys. Controlled Fusion 41, A653
�1999�.

8Y. Xiao and P. Catto, Phys. Plasmas 13, 082307 �2006�.
9Y. Xiao and P. Catto, Phys. Plasmas 13, 102311 �2006�.

10Y. Xiao, P. Catto, and K. Molvig, Phys. Plasmas 14, 032302 �2007�.
11W. Dorland, F. Jenko, M. Kotschenruther, and B. Rogers, Phys. Rev. Lett.

85, 5579 �2000�.
12Y. Lee, J. Dong, P. Guzdar, and C. Liu, Phys. Fluids 30, 1331 �1987�.
13M. Kotschenreuther, G. Rewoldt, and W. Tang, Comput. Phys. Commun.

88, 128 �1991�.
14A. M. Dimits, G. Bateman, and M. A. Beer, Phys. Plasmas 7, 969 �2000�.
15F. Jenko, W. Dorland, M. Kotschenreuther, and B. Rogers, Phys. Plasmas

7, 1904 �2000�.
16E. Belli, Ph.D. dissertation, Princeton University, 2006.
17P. Catto, W. Tang, and D. Baldwin, Plasma Phys. 23, 639 �1981�.
18P. Catto and K. Tsang, Phys. Fluids 20, 396 �1977�.
19R. Miller, M. Chu, J. Greene, Y. Lin-Liu, and R. Waltz, Phys. Plasmas 5,

973 �1998�.
20S. Zheng, A. Wootton, and E. Solano, Phys. Plasmas 3, 1176 �1996�.
21G. R. McKee, F. J. Fonck, and M. Jakubowski, Phys. Plasmas 10, 1712

�2003�.
22T. L. Rhodes, J.-N. Leboeuf, and R. D. Sydora, Phys. Plasmas 9, 2141

�2002�.
23R. Waltz �private communication�.
24R. E. Waltz, J. Candy, and M. Fahey, Phys. Plasmas 14, 056116 �2007�.
25E. Kim, C. Holland, and P. Diamond, Phys. Rev. Lett. 91, 075003 �2003�.

FIG. 4. Comparison between the analytical formula �continuous curves� and
GS2 simulations �discrete shapes� of the collisional residual zonal flow
damping for �=0.1 and 0.2. The solid and dashed curves are taken from Eq.
�26�. The dash-dotted curve is for �=0.1 and retains pitch angle scattering
with full energy dependence �Ref. 10�, but without momentum conservation
for ion-ion collisions.

055910-6 Xiao, Catto, and Dorland Phys. Plasmas 14, 055910 �2007�

Downloaded 17 Jan 2008 to 128.8.80.201. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp


