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Abstract. The central scheme of Nessyahu and Tadmor [J. Comput. Phys, 87 (1990)] solves hyper-
bolic conservation laws on a staggered mesh and avoids solving Riemann problems across cell bound-
aries. To overcome the difficulty of excessive numerical dissipation for small time steps, the recent work
of Kurganov and Tadmor [J. Comput. Phys, 160 (2000)] employs a variable control volume, which in
turn yields a semi-discrete non-staggered central scheme. Another approach, which we advocate here,
is to view the staggered meshes as a collection of overlapping cells and to realize the computed solution
by its overlapping cell averages. This leads to a simple technique to avoid the excessive numerical
dissipation for small time steps [Y. Liu; J. Comput. Phys, 209 (2005)]. At the heart of the proposed
approach is the evolution of two pieces of information per cell, instead of one cell average which charac-
terizes all central and upwind Godunov-type finite volume schemes. Overlapping cells lend themselves
to the development of a central-type discontinuous Galerkin (DG) method, following the series of work
by Cockburn and Shu [J. Comput. Phys. 141 (1998)] and the references therein.

In this paper we develop a central DG technique for hyperbolic conservation laws, where we take
advantage of the redundant representation of the solution on overlapping cells. The use of redundant
overlapping cells opens new possibilities, beyond those of Godunov-type schemes. In particular, the
central DG is coupled with a novel reconstruction procedure which post-processes the central DG
solution to remove spurious oscillations in the presence of shocks. This reconstruction is motivated
by the moments limiter of Biswas, Devine and Flaherty [Appl. Numer. Math. 14 (1994)], but is
otherwise different in its hierarchical approach. The new hierarchical reconstruction involves a MUSCL
or a second order ENO reconstruction in each stage of a multi-layer reconstruction process without
characteristic decomposition. It is compact, easy to implement over arbitrary meshes and retains the
overall pre-processed order of accuracy while effectively removes spurious oscillations around shocks.
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1. Introduction

The first-order Godunov and Lax-Friedrichs (LxF) schemes are, respectively, the forerunners for the
large classes of upwind and central high-resolution schemes for nonlinear conservation laws and related
equations. The Godunov scheme captures shock waves monotonically in narrow transition layers. It is
based on evolving a piece-wise cell average representation of the solution, by evaluating the fluxes at the
boundaries of each cell which are obtained from the solution of (approximate) Riemann problems along
the boundary interfaces. Various higher-order generalizations of Godunov scheme have been developed
since the mid 70s. They employ higher-order piece-wise polynomials which are reconstructed from the
evolving cell averages ‘in the direction of smoothness’. We mention here the notable examples of the
high-resolution upwind FCT, MUSCL, TVD, PPM, ENO, and WENO schemes [6, 42, 17, 14, 18, 29]
and this list is far from being complete. The use of intricate Riemann solvers can be avoided at the
expense of using the more diffusive LxF scheme. The excessive numerical dissipation can be reduced
significantly, however, when higher order piece-wise polynomial reconstructions are used in conjunction
with the staggered formulation of the LxF scheme. The central scheme of Nessyahu and Tadmor (NT)
[33] provides such a second-order generalization of the staggered LxF scheme. It is based on the
same piece-wise linear reconstructions of cell averages used with upwind schemes, yet the solution of
(approximate) Riemann problems is avoided. High resolution generalizations of the NT scheme were
developed since the 90s as the class of central schemes in e.g. [36, 2, 20, 19, 30, 4, 22, 1, 23, 24, 27],
and here too, the list is far from being complete. The relaxation scheme of Jin and Xin [21] provides
another approach which leads to a staggered central stencil for solving nonlinear conservation laws.

Being free of the (eigen-structure of –) the underlying Riemann problems, central schemes provide
black-box type methods for the approximate solution of nonlinear hyperbolic conservation laws and
other closely related equations [3]. Essentially, one only needs to supply the flux functions. But the
staggered high-order central schemes of order, say, r > 1, still share one disadvantage with the original
LxF scheme, namely, the amplitude of their numerical viscosity of order O((∆x)r+1/∆t). It excludes
the use of small time-steps, ∆t, which are too small relative to the spatial grid size ∆x. The problem
lies with the space-time control volumes which are staggered ‘∆x/2- away’ from each other. (Similar
difficulties occur with the two dimensional conservative front tracking method which was overcome
by Glimm et al. in [15], using space-time cells instead of rezoning). This problem was addressed
by Kurganov and Tadmor who introduced, in [24], a new type of central schemes whose numerical
viscosity is independent of O(1/∆t)). This was achieved by using variable control volumes so that
cells are staggered only ‘O(∆t)-away’ from each other. It allows implementation of central scheme
with arbitrarily small time-step, and in particular, it yields their semi-discrete formulation which can
be conveniently integrated by ODE solvers, e.g., the Strong Stability Preserving (SSP) Runge-Kutta
methods of [38], consult e.g., [16]. Similar advantages of a semi-discrete formulation can be achieved
when a local Lax-Friedrichs building block is used over non-staggered meshes, see e.g. Shu and Osher
[38, 39] and Liu and Osher [28]. The upwind and central schemes mentioned so far, share one thing
in common — they evolve one piece of information per cell, that is, the cell average. Upwind schemes
use Riemann solvers while central schemes use simpler quadrature rules. For higher accuracy, they
both employ piece-wise polynomial representation of the solution which is reconstructed from these
cell averages.

In [31], Y. Liu introduced an alternative technique to control the numerical dissipation of central
schemes. The main idea is to evolve the solution over overlapping cells. That is, two sets of cell-
averages are realized over interlacing grids. The solution is then represented as a convex combination
– an ‘O(∆t)-weighted’ combination of these overlapping cell averages. The resulting scheme has a
numerical viscosity which is independent of O(1/∆t) and as such, it admits a semi-discrete formulation
which can be integrated using SSP methods. The use of overlapping cells, however, is fundamentally
different in that it evolves two independent quantities for each given cell, that is, the two overlapping
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sub-cell averages. The use of overlapping cells opens many new possibilities. For example, instead
of the usual reconstructions such as MUSCL and (W)ENO, overlapping cells offer a more efficient
approach for high-resolution: by adding the two subcell averages, we recover the evolution of a full
cell average, where by taking their difference, we independently evolve an approximate slope, rather
than reconstructing it from neighboring averages. This makes feasible the use of central discontinuous
Galerkin (DG) approach over overlapping cell, following the series of works of Cockburn and Shu
[11, 12, 13]. Thus, in particular, the use of overlapping cells yields the versatility of finite element
(Galerkin) methods which can be easily formulated on general unstructured meshes with any formal
order, since no reconstruction is involved. In this paper, we develop the staggered central DG method
for solving hyperbolic conservation laws. Numerical tests are performed up to third order accuracy
on uniform staggered meshes in one and two dimensions. Stability analysis and error estimates, and
extension of the method for time dependent and steady state convection-diffusion equations, constitute
ongoing work and will be reported in the future. Here, one does not reconstruct a piecewise-polynomial
representation of the solution, but rather it is part of the evolution of higher-moments. Still, a nonlinear
limiting procedure is necessary to reduce spurious oscillations for high order methods. We introduce
here such a general non-oscillatory procedure, so-called hierarchical reconstruction interesting for its
own sake, which is closely related to the moment limiters of Biswas et al. [5] and to the earlier work
of Cockburn and Shu [11]. Since this limiting procedure requires only linear reconstructions using
information from adjacent cells without characteristic decomposition, it can be easily implemented
for any shapes of the cells and hence is practical also for unstructured meshes or even dynamically
moving meshes (e.g. Tang and Tang [40]), although we do not pursue it in this paper. We refer the
reader to [2] and the reference therein for a systematic study of central schemes on unstructured grids
using the framework of discontinuous finite elements.

This paper is organized as follows. In Sec. 2, we briefly describe the central finite volume scheme on
overlapping cells as the background. The natural extension to central DG scheme on overlapping cells
is discussed in Sec. 3. In subsection 3.1 we study the numerical convergence rate for a number of linear
and nonlinear equations having smooth solutions. In Sec. 4, we introduce a general non-oscillatory
hierarchical reconstruction procedure and use it as a post-processing limiter for the central DG scheme
on overlapping cells to control spurious oscillations in the presence of shocks. Numerical results testing
the accuracy of the proposed schemes are included in Sections 3 and 4. Additional numerical results
are presented in Sec. 5. Concluding remarks and a plan for future work are included in Sec. 6.

2. Central Schemes on Overlapping Cells

Consider the scalar one dimensional conservation law

∂u

∂t
+
∂f(u)
∂x

= 0, (x, t) ∈ R× (0, T ).(2.1)

Set {xi := x0 + i∆x}, let Ci+1/2 := [xi, xi+1) be a uniform partition of R and let {Un
i+1/2} denote

the set of approximate cell averages Un
i+1/2 ≈ (1/∆x)

∫
Ci+1/2

u(x, tn)dx. Similarly, we set Di :=

[xi−1/2, xi+1/2) as the dual partition and let {V n
i } denote the corresponding set of approximate cell

average V n
i ≈ (1/∆x)

∫
Di
u(x, tn)dx. Starting with these two piecewise-constant approximation1,

∑

i

U
n
i+1/21Ci+1/2

(x) and
∑

i

V
n
i 1Di(x)

1Here and below, 1Ω(x) denotes the characteristic function of Ω
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we proceed to compute our approximate solution at the next time level, tn+1 := tn + ∆tn. To this
end, we reconstruct two higher-order non-oscillatory piecewise-polynomial approximations,

Un(x) =
∑

i

Ui+1/2(x)1Ci+1/2
(x) and V n(x) =

∑

i

Vi(x)1Di(x)

with breakpoints at xi, i = 0,±1,±2, · · · , and respectively, at xi+1/2, i = 0,±1,±2, · · · . These
piecewise-polynomials should be conservative in the sense that

∫
Cj+1/2

Un(x)dx = ∆xUn
j+1/2 and

∫
Dj
V n(x)dx = ∆xV n

j for all j’s. There are large libraries for such conservative, accurate and non-
oscillatory reconstructions; we refer, for example, to the second-order example of MUSCL [41], the
third-order example of [30], the well-known class of high-order (W)ENO reconstructions [18, 37], etc.
Following Nessyahu and Tadmor [33], the central scheme associated with these piecewise-polynomials
reads

V
n+1
i =

1
∆x

∫

Di

Un(x)dx− ∆tn

∆x

[
f(Un+ 1

2 (xi+1/2)) − f(Un+ 1
2 (xi−1/2))

]
,(2.2a)

U
n+1
i+1/2 =

1
∆x

∫

Ci+1/2

V n(x)dx− ∆tn

∆x

[
f(V n+ 1

2 (xi+1))− f(V n+ 1
2 (xi))

]
.(2.2b)

To guarantee second-order accuracy, the right-hand-sides of (2.2a), (2.2b) require the approximate
values of Un+ 1

2 (xj+1/2) ≈ u(xj+1/2, t
n+ 1

2 ) and V n+ 1
2 (xj) ≈ u(xj , t

n+ 1
2 ) to be evaluated at the midpoint

t + ∆tn/2. Replacing the midpoint rule with higher order quadratures, yields higher order accuracy,
e.g., [30, 4].

The central Nessyahu-Tadmor (NT) scheme (2.2) and its higher-order generalizations provide ef-
fective high-resolution “black-box” solvers to a wide variety of nonlinear conservation laws. When ∆t
is very small, however, e.g., with ∆t = O

(
(∆x)2

)
as required by the CFL condition for convection-

diffusion equations for example, the numerical dissipation of the NT schemes becomes excessively
large. The excessive dissipation is due to the staggered grids where at each time-step, cell averages
are shifted ∆x/2-away from each other: indeed, at the extreme of f(u) ≡ 0, the central scheme (2.2)
is reduced to re-averaging at every time step. To address this difficulty, Kurganov and Tadmor, [24],
suggested to remove this excessive dissipation by using staggered grids which are shifted only O(∆t)-
away from each other. This amounts to using control volumes of width O(∆t) so that the resulting
schemes admits semi-discrete limit as ∆t → 0, the so called “central-upwind” schemes introduced in
[24] and further generalized in [23]. Liu [31] introduced another modification of the NT scheme which
removes its O(1/∆t) dependency of numerical dissipation. In this approach, one takes advantage of
the redundant representation of the solution over overlapping cells, V n

i and U
n
i+1/2. The idea is

to use a O(∆t)-dependent weighted average of Un
i+1/2 and V

n
i . In fact the difference between them

is the local dissipation error. To simplify our discussion, we momentarily give up on second-order
accuracy in time, setting Un+ 1

2 = Un and V n+ 1
2 = V n in (2.2a) and (2.2b). The resulting first-order

forward-Euler formulation of the new central scheme, consult figure 1, reads

V
n+1
i = θ

( 1
∆x

∫

Di

Un(x)dx
)

+ (1− θ)V n
i − ∆tn

∆x

[
f(Un(xi+1/2)) − f(Un(xi−1/2))

]
,(2.3a)

U
n+1
i+1/2 = θ

( 1
∆x

∫

Ci+1/2

V n(x)dx
)

+ (1 − θ)Un
i+1/2 −

∆tn

∆x

[
f(V n(xi+1)) − f(V n(xi))

]
.(2.3b)

Here θ := ∆tn/∆τn where ∆τn is an upper bound for the time step, dictated by the CFL condition.
Note that when θ = 1, (2.3a), (2.3b) is reduced to the first-order, forward-Euler-based version of the
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A B C

Figure 1: (A) NT scheme; (B) 1D overlapping cells; (C) overlapping cells create self similarity for the
grid over time and allow a convex combination of the overlapping cell averages to control the numerical
dissipation.

NT scheme (2.2a), (2.2b). Moreover, writing

θ
( 1

∆x

∫

Di

Un(x)dx
)

+ (1 − θ)V n
i = V

n
i +

∆tn

∆τn

( 1
∆x

∫

Di

Un(x)dx− V
n
i

)
,

and recalling that ∆τn = O(∆x) due to the CFL restriction, it follows that the local dissipative error
now has a pre-factor of order, ∆tn, and hence the cumulative error will be independent of O(∆t). The
reduced dissipation allows us to pass to a semi-discrete formulation: subtracting V n

i and Un
i+1/2 from

both sides, multiplying by 1
∆tn , and then passing to the limit as ∆tn → 0 we end up with

d

dt
V i(tn) =

1
∆τn

(
1

∆x

∫

Di

Un(x)dx− V
n
i

)
− 1

∆x
[
f(Un(xi+1/2)) − f(Un(xi−1/2))

]
,(2.4a)

d

dt
U i+1/2(t

n) =
1

∆τn

(
1

∆x

∫

Ci+1/2

V n(x)dx− U
n
i+1/2

)
− 1

∆x
[
f(V n(xi+1)) − f(V n(xi))

]
.(2.4b)

The spatial accuracy of the semi-discrete central scheme (2.4) is dictated by the order the reconstruc-
tion Un(x) and V n(x). The SSP Runge-Kutta methods yield the matching high-order discretization
in time.

We conclude this section by quoting [31] regarding the non-oscillatory behavior of the central scheme
(2.4), which is quantified here in terms of the Total-Variation-Diminishing (TVD) property, e.g., [17].

Theorem 1. Consider the central schemes (2.2) and (2.3) which are set with the same initial values
V

n
i and Un

i+1/2 at t = tn. If the NT scheme is TVD, then so is the central scheme (2.3).

There are two reconstruction procedures for overlapping cells: one is the standard procedure to
reconstruct the two classes of cell averages {V n

i : i = 0,±1,±2, · · ·} and {Un
i+1/2 : i = 0,±1,±2, · · ·};

the other couples these two classes for reconstruction of the final representation of the solution. Thus,
this approach is redundant. At the same time, numerical examples in [31] have shown that by coupling
the reconstructions, redundancy does provides improved resolution when compared with the one-cell
average evolution approach of Godunov-type schemes.

3. A Central Discontinuous Galerkin Method on Overlapping Cells for
Conservation Laws

Following the general strategy of the discontinuous Galerkin (DG) methods, see e.g. Lesaint
and Raviart ([26]), Cockburn ([8]), Cockburn and Shu ([11, 13]) etc., the central-type discontinuous
Galerkin (DG) method on overlapping cells can be derived [32]. Consider the system of conservation
laws

∂uk

∂t
+ ∇x · fk(u) = 0, (x, t) ∈ Rd × (0, T ), k = 1, . . . , m,(3.1)
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x

y

Figure 2: 2D overlapping cells by collapsing the staggered dual cells on two adjacent time levels to
one time level.

where u = (u1, . . . , um)>. For simplicity, assume a uniform staggered rectangular mesh depicted in
figure 2 for the 2D case, and we note that the similar formulation for irregular staggered meshes, e.g.,
the Voronoi mesh consisting of a triangular mesh and its dual.

Let {CI+1/2}, I = (i1, i2, · · · , id) be a partition of Rd into uniform square cells depicted by solid
lines in figure 2 and tagged by their cell centroids at the half integers, xI+1/2 := (I + 1/2)∆x. Let M
denote the set of piece-wise polynomials of degree r on the cells {CI+1/2}; no continuity is assumed
across cell boundaries. Let {DI} be the dual mesh which consists of a ∆x/2- shift of the CI+1/2’s
depicted by dash lines in figure 2. Let xI be the cell centroid of the cell DI and let N denote the set
of piece-wise polynomials of degree r over the cells {DI}; again, no continuity assumed across the cell
boundary. The weak formulation of (3.1) over these cells reads

d

dt

∫

CI+1/2

ukφdx =
∫

CI+1/2

fk · ∇xφdx−
∫

∂CI+1/2

(fk · n)φds, ∀φ ∈ M, k = 1, · · · , m,(3.2a)

d

dt

∫

DI

ukψdx =
∫

DI

fk · ∇xψdx−
∫

∂DI

(fk · n)ψds, ∀ψ ∈ N , k = 1, · · · , m,(3.2b)

where n is the unit outer normal of the corresponding cell and ψ and ψ are test functions. As in the
one-dimensional setup, we let

Un(x) =
∑

I+1/2

Un
I+1/2(x)1CI+1/2

(x) ∈ M and Vn(x) =
∑

I

Vn
I (x)1DI

(x) ∈ N

denote two representations of the numerical solution, approximating u(·, tn) over the two overlapping
grids, {CI+1/2} and {DI}. Observe that each of the two vector functions, Un with smooth pieces
supported on the CI+1/2’s and Vn with smooth pieces supported on the DI ’s, consist of m components

Un(x) = (Un
1 (x), . . . , Un

m(x))> and Vn(x) = (V n
1 (x), . . . , V n

m(x))>.

Given these conservative, accurate and non-oscillatory approximations at tn we proceed to compute
the approximate solution at the next time level, tn+1 = tn + ∆tn. To this end, the exact solution of
the right hand side of (3.2a), is replaced by Vn(x) = (V n

1 , . . . , V
n
m)>; similarly, for the right-hand-side

of (3.2b) we use the approximate solution Un(x) = (Un
1 , . . . , U

n
m)>. Further, time derivatives on the

left are replaced by Forward Euler time differencing where we use the same type of θ-weighting of the
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Un’s and the Vn’s as in (2.3a), (2.3b). In the resulting central discontinuous Galerkin method one
seeks piece-wise polynomials {Un+1

I+1/2
} ∈ M and {Vn+1

I } ∈ N such that for all I ’s,
∫

CI+1/2

Un+1
k (x)φ(x)dx = θ

∫

CI+1/2

V n
k (x)φ(x)dx+ (1− θ)

∫

CI+1/2

Un
k (x)φ(x)dx

+∆tn
∫

CI+1/2

fk(Vn(x)) · ∇xφdx(3.3a)

−∆tn
∫

∂CI+1/2

(fk(Vn(x)) · n)φ(x)ds, ∀φ ∈ M, k = 1, · · · , m,

∫

DI

V n+1
k (x)ψ(x)dx = θ

∫

DI

Un
k (x)ψ(x)dx+ (1− θ)

∫

DI

V n
k (x)ψ(x)dx

+∆tn
∫

DI

fk(Un(x)) · ∇xψ(x)dx(3.3b)

−∆tn
∫

∂DI

(fk(Un(x)) · n)ψ(x)ds, ∀ψ ∈ N , k = 1, · · · , m.

Here θ = ∆tn/∆τn ≤ 1, ∆τn is the maximum time step size determined by the CFL restriction,
∆tn = tn+1 − tn is the current time step size. The resulting central DG is the two-dimensional
analogue of the one-dimensional central scheme (2.4). And as in the one-dimensional case, semi-
discrete version of (3.3) can be obtained; higher order Runge-Kutta time discretization can be used
to match the high-order accuracy of the spatial reconstructions. We conclude with the semi-discrete
central DG approximation of (3.1) such that for all admissible test functions φ and ψ and all I ’s,

d

dt

∫

CI+1/2

Ukφdx|tn =
1

∆τn

∫

CI+1/2

(V n
k (x)− Un

k (x))φ(x)dx

+
∫

CI+1/2

fk(Vn(x)) · ∇xφdx(3.4a)

−
∫

∂CI+1/2

(fk(Vn(x)) · n)φ(x)ds, ∀φ ∈ M, k = 1, · · · , m,

d

dt

∫

DI

Vkψdx|tn =
1

∆τn

∫

DI

(Un
k (x)− V n

k (x))ψ(x)dx

+
∫

DI

fk(Un(x)) · ∇xψ(x)dx(3.4b)

−
∫

∂DI

(fk(Un(x)) · n)ψ(x)ds, ∀ψ ∈ N , k = 1, · · · , m.

3.1. Numerical Errors For Smooth Solutions. In this subsection we study the convergence rate
for a number of equations having smooth solutions. Let us start with the following linear transport
equation with periodic boundary conditions

ut + ux = 0, (x, t) ∈ (0, 2)× (0, 2)
(3.5)

u(x, 0) = 1 + sin(πx), x ∈ (0, 2),
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∆x 1/20 1/40 1/80 1/160 1/320
L1 error 8.91E-3 2.25E-3 5.66E-4 1.42E-4 3.54E-5
order - 1.99 1.99 1.99 2.00

L∞ error 5.92E-3 1.55E-3 3.96E-4 1.00E-4 2.51E-5
order - 1.93 1.97 1.99 1.99

Table 1. P 1 version of the central DG scheme (3.4) for the linear convection equation
(3.5).

∆x 1/2 1/4 1/8 1/16 1/32
L1 error 6.69E-2 3.29E-2 5.04E-3 1.66E-3 3.88E-4
order - 1.02 2.70 1.60 2.10

L∞ error 3.85E-2 2.05E-2 7.69E-3 1.19E-3 2.75E-4
order - 0.91 1.41 2.69 2.11

Table 2. P 1 version of the central DG scheme (3.4) for the 2D Burgers’ equation.

∆x 1/20 1/40 1/80 1/160 1/320
L1 error 6.50E-5 8.12E-6 1.02E-6 1.27E-7 1.59E-8
order - 3.00 2.99 3.01 3.00

L∞ error 4.68E-5 5.90E-6 7.40E-7 9.27E-8 1.16E-8
order - 2.99 3.00 3.00 3.00

Table 3. P 2 version of the central DG scheme (3.4) for the linear convection equation
(3.5).

The test results at T = 2 for the P 1 (piece-wise linear) version of the central DG scheme on
overlapping cells (3.4) are listed in Table 1, with second order Runge-Kutta time discretization. The
CFL factor is 0.4 for choosing ∆τ and the actual time step size ∆t is chosen with θ = 0.9.

It can be seen that the expected second order accuracy is achieved. We also conduct a convergence
test for the P 1 version of the scheme (3.4) on a 2D problem [10] which is the Burgers’ equation with
periodic initial data: ut +(1

2u
2)x +(1

2u
2)y = 0 on [−1, 1]× [−1, 1], u(x, y, 0) = 1

4 + 1
2 sin(π(x+y)). The

numerical solutions are computed at the final time T = 0.1 when the exact solution is still smooth.
The CFL factor is 0.4 for choosing ∆τ and the actual time step size ∆t is chosen with θ = 0.9. The
errors are shown in Table 2. Again we observe the expected second order accuracy. The results for
the P 2 (piece-wise quadratic) version of the scheme (3.4) for the linear convection equation (3.5) are
listed in Table 3, with a third order TVD Runge-Kutta time discretization [38]. We can see that the
expected third order accuracy is achieved.

We also test the scheme for the Burgers’ equation ut + (1
2u

2)x = 0, u(x, 0) = 1
4 + 1

2 sin(πx). The
errors are shown in Table 4 at the final time T = 0.1 when the solution is still smooth. Further we test
the scheme for the 2D Burgers’ equation ut + (1

2u
2)x + (1

2u
2)y = 0, u(x, 0) = 1

4 + 1
2 sin(π(x+ y)). The

errors are shown in Table 5 at the final time T = 0.1. The solution of the 2D Burgers’ equation may
contain linear waves, hence we also test the scheme on another 2D equation ut + (1

2u
2)x + (1

4u
4)y = 0,

u(x, 0) = 1
4 + 1

2 sin(π(x+y)). The accuracy of the numerical solution is shown at T = 0.1 in Table 6. It
seems that for all these cases the expected third order accuracy is achieved, at least for the L1 errors.
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∆x 1/10 1/20 1/40 1/80 1/160
L1 error 2.72E-5 3.41E-6 4.29E-7 5.37E-8 6.78E-9
order - 3.00 2.99 3.00 2.99

L∞ error 4.00E-5 7.06E-6 8.27E-7 1.04E-7 1.31E-8
order - 2.50 3.09 2.99 2.99

Table 4. P 2 version of the central DG scheme (3.4) for the 1D Burgers’ equation.

∆x 1/4 1/8 1/16 1/32 1/64
L1 error 8.33E-3 9.58E-4 1.36E-4 1.65E-5 2.14E-6
order - 3.12 2.82 3.04 2.95

L∞ error 4.56E-3 8.20E-4 1.48E-4 1.95E-5 2.58E-6
order - 2.48 2.47 2.92 2.92

Table 5. P 2 version of the central DG scheme (3.4) for the 2D Burgers’ equation.

∆x 1/4 1/8 1/16 1/32 1/64
L1 error 5.35E-3 5.75E-4 6.80E-5 7.81E-6 9.77E-7
order - 3.22 3.08 3.12 3.00

L∞ error 2.57E-3 3.16E-4 8.00E-5 1.10E-5 1.53E-6
order - 3.02 1.98 2.86 2.85

Table 6. P 2 version of the central DG scheme (3.4) for the 2D nonlinear equation.

4. A General Non-Oscillatory Hierarchical Reconstruction Procedure

Compared to finite volume schemes which evolve only cell averages over time, discontinuous Galerkin
methods compute and evolve a high order polynomial in each cell. How to take advantage of the extra
information provided by the DG method in each cell and use it in the limiting process where the
solution is non-smooth is a challenge. The first idea is given by Cockburn and Shu [11] for the DG
method which limits the variation between a cell edge value and its cell average by the differences
between the cell averages of the current and neighboring cells. The higher Legendre moments are
truncated in a cell if non-smoothness is detected. This process is shown to be total variation bounded
in the means. A generalization is introduced in Biswas et al. [5], which detects the non-smoothness
in higher degree moments and applies the limiting when necessary from higher to lower moments.
In Qiu and Shu [35, 34], a high order WENO reconstruction is used as a limiter for the so-called
“trouble” cells, where the polynomial defined at Gaussian points is reconstructed from a WENO
procedure and is projected back to the finite element space to replace the one computed by the DG
method. In [34], the Hermite WENO reconstruction takes not only cell averages of a function, but
also cell averages of its first order derivatives in order to obtain a compact reconstruction. A similar
strategy is used in our non-oscillatory hierarchical reconstruction, where cell averages of various orders
of derivatives of a function are to be calculated and used in the reconstruction of linear polynomials
in each stage. Our limiting procedure is closely related to [5]. Our departure from [5] begins with a
different point of view, where the approximation in each cell is viewed as a high degree polynomial,
instead of the combination of orthogonal Legendre polynomials advocated in [5]. Instead of a limiting
procedure which is trying to set an acceptable range for the coefficient of the Legendre moments
(by using the coefficients of lower-degree moments), we reconstruct the complete set of coefficients
of the m-degree polynomial terms, using a non-oscillatory conservative reconstruction which involves
previous reconstructed terms of degrees above m. The resulting, so-called hierarchical reconstruction
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algorithm is easy to implement in a multi-dimensional setting and there is no need to transform an
irregular mesh cell into a rectangular one or use a dimension-by-dimension extension of a 1D limiter.
It is essentially independent of the shapes of mesh cells and is compact because of the conservative
non-oscillatory linear reconstruction (such as the MUSCL or second order ENO reconstruction) used
in each stage. We now give the details of this reconstruction procedure. For simplicity we only discuss
the scalar case. For systems a component-by-component extension is applied without characteristic
decomposition.

From scheme (3.4) with the SSP Runge-Kutta methods, we obtain numerical solutions Un(x) and
V n(x) at the time tn. To simplify the notation we drop the superscript n and write

U(x) =
∑

I+1/2

UI+1/2(x− xI+1/2)1CI+1/2
(x) ∈ M and V (x) =

∑

I

VI(x− xI)1DI
(x) ∈ N ,

recalling that xI+1/2 and xI are centroids of cell CI+1/2 and DI respectively; UI+1/2(x− xI+1/2) and
VI(x − xI) are the polynomials (of degree r) in cells CI+1/2 and DI respectively2. The task is to
reconstruct a ’limited’ version of these polynomials, retaining high-resolution and removing spurious
oscillations. In the following, we discuss a hierarchical reconstruction procedure to recompute the
polynomial UI+1/2(x− xI+1/2) by using polynomials in cells adjacent to cell CI+1/2. For convenience
these adjacent cells are renamed as the set {CJ} (which contain cell CI+1/2, DI etc), and the poly-
nomials (of degree r) supported on them are thus renamed as {UJ(x− xJ)} respectively, where xJ is
the cell centroid of cell CJ . We write UI+1/2(x− xI+1/2) in terms of its Taylor expansion,

UI+1/2(x− xI+1/2) =
r∑

m=0

∑

|m|=m

1
m!

U
(m)
I+1/2

(0)(x− xI+1/2)
m,

where
1
m!

U
(m)
I+1/2

(0) are the coefficients which participate in its typical m-degree terms,

∑

|m|=m

1
m!

U
(m)
I+1/2(0)(x− xI+1/2)

m, |m| = 0, . . . , r.

The following hierarchical reconstruction describes a procedure to compute the new coefficients
1
m!

Ũ
(m)
I+1/2(0), m = r, r− 1, . . . , 0

in UI+1/2(x− xI+1/2), iterating from the highest to the lowest degree terms.

4.1. An Example for Piece-wise Quadratic Finite Element Space in 1D. Suppose Uj(x −
xj) = Uj(0)+U ′

j(0)(x−xj)+ 1
2U

′′
j (0)(x−xj)2, j = 1, 2, 3, are given at cells C1, C2 and C3 respectively

(see figure 3 left), where xj is the center of cell Cj . These polynomials could be oscillatory if located
near a discontinuity of the weak solution. The following algorithm computes a new coefficient for each
coefficient in the polynomial defined on cell C2, in order to reduce the oscillation while keeping the
accuracy (in smooth area) and resolution.

First take the first derivative for them to obtain Lj(x−xj) = U ′
j(0)+U ′′

j (0)(x−xj). Then calculate
the cell average of Lj(x − xj) on cell Cj to obtain Lj = U ′

j(0), j = 1, 2, 3. With the three cell
averages one can apply a MUSCL or second order ENO procedure to reconstruct a non-oscillatory
linear polynomial in cell C2. For the MUSCL reconstruction with the minmod limiter, we obtain a
new coefficient for U ′′

2 (0), denoted by

Ũ ′′
2 (0) = minmod

{
L2 − L1

x2 − x1
,
L3 − L2

x3 − x2

}
,

2These polynomials could be oscillatory. There could be other methods to compute these polynomials such as a finite
volume reconstruction from cell averages.
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4 5

Figure 3: Left: 1D non-oscillatory hierarchical reconstruction for cell 2 involves only overlapping cells
1, 2 and 3. Right: 2D non-oscillatory hierarchical reconstruction for cell 3 involves only overlapping
cells 1, 2, 3, 4 and 5.

where

minmod{c1, c2, · · · , cm} =





min{c1, c2, · · · , cm}, if c1, c2, · · · , cm > 0,
max{c1, c2, · · · , cm}, if c1, c2, · · · , cm < 0,
0, otherwise.

For the second order ENO reconstruction,

Ũ ′′
2 (0) = minmod2

{
L2 − L1

x2 − x1
,
L3 − L2

x3 − x2

}
,

where
minmod2{c1, c2, · · · , cm} = cj , if |cj| = min{|c1|, |c2|, · · · , |cm|}.

In order to find a new coefficient Ũ ′
2(0) for U ′

2(0), we first compute the cell average of Uj(x−xj) on cell
Cj to obtain Uj , and then compute the cell average of the polynomial R̃2(x−x2) = 1

2 Ũ
′′
2 (0)(x−x2)2 on

cell Cj to obtain Rj , j = 1, 2, 3. Redefine Lj = Uj −Rj , j = 1, 2, 3. A similar MUSCL or second order
ENO procedure can be applied to the three cell averages L1, L2 and L3 to find Ũ ′

2(0). For example,
by using the MUSCL reconstruction, we obtain

Ũ ′
2(0) = minmod

{
L2 − L1

x2 − x1
,
L3 − L2

x3 − x2

}
.

Finally, let Ũ2(0) = L2.
The convergence test results with Algorithm 1 for the same problem as that in Table 4 can be found

in Tables 7 and 8. We observe that the order of accuracy is maintained, although (as expected for any
limiter) the magnitude of the error is increased for the same mesh.

4.2. Hierarchical Reconstruction – General Description. In the following, we discuss a hierar-
chical reconstruction procedure to recompute the polynomial UI+1/2(x−xI+1/2) by using polynomials
in cells adjacent to cell CI+1/2. Recall that these adjacent cells are renamed as the set {CJ} and the
polynomials (of degree r) supported on them are thus renamed as {UJ(x − xJ)} respectively. The
following hierarchical reconstruction describes a procedure to compute the new coefficients

1
m!

Ũ
(m)
I+1/2(0), m = r, r− 1, . . . , 0

in UI+1/2(x− xI+1/2), iterating from the highest to the lowest degree terms.
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To reconstruct Ũ (m)
I+1/2(0), we first compute many candidates of U (m)

I+1/2(0) (sometimes still denoted

as Ũ (m)
I+1/2(0) with specification), and we then let the new coefficient for U (m)

I+1/2(0) be

Ũ
(m)
I+1/2

(0) = F
(

candidates of U (m)
I+1/2

(0)
)
,

where F is a convex limiter of its arguments, e.g., the minmod function.
In order to find these candidates of U (m)

I+1/2(0), |m| = m, we take a (m−1)-th order partial derivative
of UI+1/2(x− xI+1/2), and denote it by

∂m−1UI+1/2(x− xI+1/2) = LI+1/2(x− xI+1/2) +RI+1/2(x− xI+1/2),

where LI+1/2 is the linear part and RI+1/2 contains all second and higher degree terms of ∂m−1UI+1/2(x−
xI+1/2). Clearly, every coefficient in the first degree terms of LI+1/2 is in the set {U (m)

I+1/2(0) : |m| = m}.
And for every m subject to |m| = m, one can always take some (m− 1)-th order partial derivatives
of UI+1/2(x − xI+1/2) so that U (m)

I+1/2
(0) is a coefficient in the first degree terms of LI+1/2. Thus, a

‘candidate’ for a coefficient in the first degree terms of LI+1/2 is the candidate for the corresponding

U
(m)
I+1/2

(0).
In order to find the candidates for all the coefficients in the first degree terms of LI+1/2(x−xI+1/2),

we only need to know the new approximate cell averages ofLI+1/2(x−xI+1/2) on d+1 distinct mesh cells
adjacent to cell CI+1/2, recalling that d is the spatial dimension. Assume CJ0 , CJ1 , · · · , CJd

∈ {CJ}
are these cells and LJ0 , LJ1 , · · · , LJd

are the corresponding new approximate cell averages. The set of
these d+ 1 cells with given new approximate cell averages is called a stencil. Let a linear polynomial
L̃I+1/2(x− xI+1/2) be determined by

1
|CJl

|

∫

CJl

L̃I+1/2(x− xI+1/2)dx = LJl
, l = 0, 1, · · · , d.(4.1)

Then the coefficients in the first degree terms of L̃I+1/2(x − xI+1/2) will be the candidates for the
corresponding coefficients of LI+1/2(x − xI+1/2). Therefore, a stencil located near cell CI+1/2 will
determine a set of candidates for all coefficients in the first degree terms of LI+1/2(x− xI+1/2). The
key is to determine the new approximate cell averages of LI+1/2(x − xI+1/2) on the cells of {CJ},
which is outlined by the following algorithm.

Algorithm 1. Step 1. Suppose r ≥ 2. For m = r, r− 1, · · · , 2, do the following:
(a) Take a (m − 1)-th order partial derivative for each of {UJ (x − xJ)} to obtain polynomials

{∂m−1UJ(x−xJ)} respectively. In particular, denote ∂m−1UI+1/2(x−xI+1/2) = LI+1/2(x−xI+1/2)+
RI+1/2(x − xI+1/2), where LI+1/2(x − xI+1/2) is the linear part of ∂m−1UI+1/2(x − xI+1/2) and
RI+1/2(x− xI+1/2) is the remainder.

(b) Calculate the cell averages of {∂m−1UJ(x−xJ)} on cells {CJ} to obtain {∂m−1UJ} respectively.
(c) Let R̃I+1/2(x−xI+1/2) be the RI+1/2(x−xI+1/2) with its coefficients replaced by the corresponding

new coefficients. Calculate the cell averages of R̃I+1/2(x − xI+1/2) on cells {CJ} to obtain {RJ}
respectively.

(d) Let LJ = ∂m−1UJ −RJ for all J.
(e) Form stencils out of the new approximate cell averages {LJ} by using a non-oscillatory finite

volume MUSCL or second order ENO strategy. Each stencil will determine a set of candidates for
the coefficients in the first degree terms of LI+1/2(x − xI+1/2), which are also candidates for the

corresponding U (m)
I+1/2

(0)’s, |m| = m.
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(f) Repeat from (a) to (e) until all possible combinations of the (m− 1)-th order partial derivatives
are taken. Then the candidates for all coefficients in the m-th degree terms of UI+1/2(x − xI+1/2)

have been computed. For each of these coefficients, say 1
m!U

(m)
I+1/2(0), |m| = m, let the new coefficient

Ũ
(m)
I+1/2(0) = F

(
candidates of U (m)

I+1/2(0)
)
.

Step 2. In order to find the new coefficients in the zero-th and first degree terms of UI+1/2(x −
xI+1/2), we perform the procedure of Step 1 (a)-(f) with m = 1, and make sure that the new
approximate cell average LI+1/2 is in each of the stencils, which ensures that the cell average of
UI+1/2(x − xI+1/2) on cell CI+1/2 is not changed with new coefficients. The new coefficient in the
zero-th degree term of UI+1/2(x− xI+1/2) is LI+1/2.

Remarks. 1. The coefficients of the polynomials can be updated after Algorithm 1 has been applied
to all mesh cells, or at the m-th stage when all new coefficients for those in the m-th degree terms of
all polynomials have been computed (in this case, {∂0UJ} used in Step 2 should be the cell averages
of the original polynomials to ensure that they are invariant). The latter case is supposed to be more
diffusive. In numerical experiments we find their results are about the same. All numerical results
presented in this paper are performed with the former implementation.

2. One motivation for us to develop this hierarchical reconstruction is that the limiting for the DG
scheme on non-staggered meshes is different from that for scheme (3.4). Because for the usual DG
scheme the time evolution of the cell averages is completely determined by the fluxes. However in
(3.4), cell interior values are also involved. We find in numerical experiments that the moment limiter
[5] does not work as robustly for scheme (3.4) as it does for DG scheme on non-staggered meshes. The
proposed hierarchical reconstruction process is quite general and could be useful for conventional DG
or even finite volume schemes. These will be explored in the future.

3. Scheme (3.4) with Algorithm 1 and with piece-wise linear elements is identical to the second
order central scheme on overlapping cells [31].

4. It is more efficient to apply the hierarchical reconstruction process only at places where it is
needed by using non-smoothness detectors (see e.g. [35, 7]). This will be explored in the future.

The most important point is that, even though the linear reconstruction used in Algorithm 1 is only
second order accurate, the approximation order of accuracy of a polynomial in a cell is unaffected by
the algorithm and we have the following theorem.

Condition 1. Let {xJ0 ,xJ1, · · · ,xJd
} be the d + 1 cell centroids of a stencil. Then there is a point

among them, say xJ0, such that the matrix A = 1
∆x [xJ1 −xJ0 ,xJ2−xJ0 , · · · ,xJd

−xJ0 ] is non singular.
Further, there is a constant α > 0 independent of ∆x such that ||A−1|| ≤ α.

Theorem 2. Suppose {UJ(x − xJ)} in Algorithm 1 approximate a Cr+1 function u(x) with point-
wise error O

(
(∆x)r+1

)
within their respective cell {CJ}, and all cells in {CJ} are contained in a circle

centered at xI+1/2 with radius O(∆x). Let the d+1 cell centroids in every stencil used in Algorithm 1
satisfy Condition 1. Then after the application of Algorithm 1, the polynomial ŨI+1/2(x−xI+1/2), i.e.
UI+1/2(x−xI+1/2) with its coefficients replaced by the corresponding new coefficients also approximates
the function u(x) with point-wise error O

(
(∆x)r+1

)
within cell CI+1/2. The cell average of ŨI+1/2(x−

xI+1/2) on cell CI+1/2 is the same as that of UI+1/2(x− xI+1/2).

Proof. From the assumption we know that the coefficients in the m-th degree terms of UI+1/2(x−
xI+1/2), 0 ≤ m ≤ r, are the (r −m + 1)-th order approximation to the corresponding coefficients of
the Taylor expansion of u(x) at xI+1/2.

Assume that when starting to compute new coefficients for coefficients of the m-th degree terms
of UI+1/2(x − xI+1/2), 1 ≤ m ≤ r, all computed new coefficients (if there is any) for coefficients
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∆x 1/10 1/20 1/40 1/80 1/160
L1 error 4.24E-4 5.33E-5 6.71E-6 8.44E-7 1.07E-7
order - 2.99 2.99 2.99 2.98

L∞ error 5.13E-4 6.20E-5 7.38E-6 1.29E-6 2.66E-7
order - 3.05 3.07 2.52 2.28

Table 7. P 2 version of the central DG scheme (3.4) with the hierarchical reconstruc-
tion Algorithm 1 for the Burgers’ equation. MUSCL is used in Algorithm 1.

of the l-th degree terms (m < l ≤ r, if they exist) of UI+1/2(x − xI+1/2) are their (r − l + 1)-th
order approximations. In fact, when m = r, there is no new coefficients been computed at Step 1
(a). However, the following argument will show that the new coefficients computed at Step 1 (f) for
coefficients of the r-th degree terms of UI+1/2(x− xI+1/2) are their first order approximations.

Let LI+1/2(x−xI+1/2) = c0+c1 ·(x−xI+1/2) in Step 1 (a) and let L̂(x) = ĉ0+ĉ1 ·(x−xI+1/2) be the
corresponding linear part in the Taylor expansion of the same ( as for UJ ) (m−1)-th partial derivative
of u(x) at xI+1/2. Therefore c0 and c1 approximate ĉ0 and ĉ1 to the order of O

(
(∆x)r−m+2

)
and

O
(
(∆x)r−m+1

)
respectively. Also from the above assumptions it is easy to see that LJ = ∂m−1UJ −RJ

in Step 1 (d) approximates the cell average of L̂(x) on cell CJ to the order of O(∆xr−m+2), for all cell
CJ adjacent to cell CI+1/2.

Reconstructing L̃I+1/2(x− xI+1/2) = c̃0 + c̃1 · (x− xI+1/2) from a stencil CJ0 , CJ1 , · · · , CJd
∈ {CJ}

is to find c̃0 and c̃1 satisfying the following equations (see (4.1)),

1
|CJl

|

∫

CJl

(c̃0 + c̃1 · (x− xI+1/2))dx = c̃0 + c̃1 · (xJl
− xI+1/2)(4.2)

= LJl
= ĉ0 + ĉ1 · (xJl

− xI+1/2) + O
(
(∆x)r−m+2

)
,

where xJl
is the cell centroid of cell CJl

, l = 0, · · · , d. The solutions are candidates for c0 and c1

respectively. Subtracting the first equation (l = 0) from the rest of the equations in (4.2) we can
obtain

AT (c̃1 − ĉ1) = O
(
(∆x)r−m+1

)
,

where A = 1
∆x [xJ1 −xJ0 ,xJ2 −xJ0 , · · · ,xJd

−xJ0 ]. From Condition 1, ||A−1|| is bounded independent
of ∆x. We conclude that the candidate

c̃1 = ĉ1 + O
(
(∆x)r−m+1

)
.(4.3)

Also since ||xJl
− xI+1/2|| = O(∆x), l = 0, 1, · · · , d, by substituting the estimate of the candidate c̃1

back into one of the equations of (4.2) we obtain that the candidate

c̃0 = ĉ0 + O
(
(∆x)r−m+2

)
.(4.4)

Since the function F used in Step 1 (f) is a convex combination of its arguments, it does not change
the approximation order of its arguments. Therefore estimate (4.3) implies that the new coefficients
for coefficients of the m-th degree terms of UI+1/2(x− xI+1/2) are their (r−m+ 1)-th order approx-
imations. Estimate (4.3) moves the induction till m = 1 and estimate (4.4) implies that in Step 2,
the new coefficient for the coefficient of the zero-th degree term of UI+1/2(x−xI+1/2) is its O(∆xr+1)
approximation. Step 2 clearly insures that the cell average of UI+1/2(x − xI+1/2) on cell CI+1/2 is
unchanged with new coefficients. The proof is complete.
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∆x 1/10 1/20 1/40 1/80 1/160
L1 error 4.51E-4 5.36E-5 6.85E-6 8.54E-7 1.08E-7
order - 3.07 2.97 3.00 2.98

L∞ error 5.24E-4 6.17E-5 1.03E-5 1.81E-6 3.27E-7
order - 3.09 2.58 2.51 2.47

Table 8. P 2 version of the central DG scheme (3.4) with the hierarchical reconstruc-
tion Algorithm 1 for the Burgers’ equation. Second order ENO is used in Algorithm 1.

∆x 1/4 1/8 1/16 1/32 1/64
L1 error 8.00E-2 1.24E-2 1.58E-3 1.92E-4 2.40E-5
order - 2.69 2.97 3.04 3.00

L∞ error 4.90E-2 9.85E-3 1.68E-3 2.01E-4 2.68E-5
order - 2.31 2.55 3.06 2.91

Table 9. P 2 version of the central DG scheme (3.4) with the hierarchical reconstruc-
tion Algorithm 1 for the 2D Burgers’ equation. Second order ENO is used in Algo-
rithm 1.

4.3. Implementation for Piece-wise Quadratic Finite Element Space in 2D. Suppose on cell
Cj (see figure 3 right), a quadratic polynomial is given as

Uj(x− xj , y − yj) = Uj(0, 0) + ∂xUj(0, 0)(x− xj) + ∂yUj(0, 0)(y− yj) +
1
2
∂xxUj(0, 0)(x− xj)2 + ∂xyUj(0, 0)(x− xj)(y − yj) +

1
2
∂yyUj(0, 0)(y− yj)2,

where (xj , yj) is the cell centroid of cell Cj , j = 1, 2, · · · , 5.
According to Step 1 of Algorithm 1, take the first partial derivative with respect to x for them

to obtain Lj(x − xj , y − yj) = ∂xUj(0, 0) + ∂xxUj(0, 0)(x− xj) + ∂xyUj(0, 0)(y− yj), j = 1, 2, · · · , 5.
Calculate the cell average of Lj(x − xj , y − yj) on cell Cj to obtain Lj = ∂xUj(0, 0), j = 1, 2, · · · , 5
(note that R3(x−x3, y− y3) ≡ 0). With the five new approximate cell averages {Lj : j = 1, 2, · · · , 5},
one can apply a MUSCL or a second order ENO procedure to reconstruct a non-oscillatory linear
polynomial

L̃3(x− x3, y − y3) = ∂xŨ3(0, 0) + ∂xxŨ3(0, 0)(x− x3) + ∂xyŨ3(0, 0)(y− y3)

in cell C3. For example, one can form four stencils {C3, C1, C2}, {C3, C2, C5}, {C3, C5, C4} and
{C3, C4, C1}. For the first stencil, solve the following equations for ∂xxŨ3(0, 0) and ∂xyŨ3(0, 0)

1
|Cj |

∫

Cj

L̃3(x− x3, y − y3)dxdy = L3 + ∂xxŨ3(0, 0)(xj − x3) + ∂xyŨ3(0, 0)(yj − y3)

= Lj ,

j = 1, 2, similarly for other stencils. We obtain two sets of candidates for ∂xxU3(0, 0) and ∂xyU3(0, 0)
respectively. By taking the first partial derivative with respect to y for Uj(x−xj, y−yj), j = 1, 2, · · · , 5,
we similarly obtain a set of candidates for ∂yyU3(0, 0) and enlarge the set of candidates for ∂xyU3(0, 0).
Putting all candidates for ∂xxU3(0, 0) into the arguments of the minmod (or minmod2) function, we
obtain the new coefficient ∂xxŨ3(0, 0) for ∂xxU3(0, 0). Applying the same procedure to obtain new
coefficients ∂xyŨ3(0, 0) and ∂yyŨ3(0, 0).
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According to Step 2 of Algorithm 1, we compute the cell average of Uj(x− xj , y− yj) on cell Cj to
obtain Uj , j = 1, 2, · · · , 5; and compute cell averages of the polynomial

R̃3(x− x3, y − y3) =
1
2
∂xxŨ3(0, 0)(x− x3)2 + ∂xyŨ3(0, 0)(x− x3)(y − y3) +

1
2
∂yyŨ3(0, 0)(y− y3)2

on cell C1, C2, · · · , C5 to obtain R1, R2, · · · , R5 respectively. Redefine Lj = Uj − Rj , j = 1, 2, · · · , 5.
The same MUSCL or second order ENO procedure as described previously can be applied to the five
cell averages {Lj : j = 1, 2, · · · , 5} to obtain new coefficients ∂xŨ3(0, 0) and ∂yŨ3(0, 0). Finally let the
new coefficient Ũ3(0, 0) = L3.

The convergence test results with Algorithm 1 for the same problem as that in Table 5 can be found
in Table 9. We again observe that the order of accuracy is maintained, although (as expected for any
limiter) the magnitude of the error is increased for the same mesh.

5. Additional Numerical Examples

Scheme (3.4) with the piece-wise r-th degree polynomial space is referred to as CO-DG-(r + 1).
When the hierarchical reconstruction Algorithm 1 is applied, it is referred to as CO-DG-hr1-(r + 1).
To specify whether a linear MUSCL (with the minmod limiter) or ENO (with the minmod2 limiter)
reconstruction is used in Algorithm 1, we refer it as CO-DG-hr1m-(r + 1) or CO-DG-hr1e-(r + 1)
respectively.

The corresponding (up to third order) TVD Runge-Kutta time discretization methods [38] are
applied to the above schemes. Only the solution in one class of the overlapping cells is shown in the
graphs throughout this section. For systems of equations, the component-wise extensions of the scalar
schemes (without characteristic decomposition) have been used in all the computations.

Example 1. We compute the Euler equation with Lax’s initial data. ut + f(u)x = 0 with u =
(ρ, ρv, E)T, f(u) = (ρv, ρv2 + p, v(E + p))T , p = (γ − 1)(E − 1

2ρv
2), γ = 1.4. Initially, the density

ρ, momentum ρv and total energy E are 0.445, 0.311 and 8.928 in (0, 0.5); and are 0.5, 0 and 1.4275
in (0.5, 1). The computed results by CO-DG-hr1e-3 and CO-DG-hr1m-3 are shown at T = 0.16 in
figure 4, with ∆x = 1/200, ∆τn chosen with a CFL factor 0.4, ∆tn = 0.5∆τn. We observe that the
resolution is quite good with very small over/undershoots, perhaps among the best within the results
obtained by component-wise limiters. The only concern is that the contact discontinuity is much
more smeared than that of the regular third order DG scheme with a TVB limiter (Figure 20 in [9]).
We hope to improve this performance by reducing the usage of the reconstruction limiter through a
troubled-cell indicator in future work.

Example 2. The Woodward and Colella blast wave problem [43] for the Euler equation computed
by CO-DG-hr1e-3. Initially, the density, momentum, total energy are 1, 0, 2500 in (0, 0.1); 1, 0, 0.025
in (0.1, 0.9); and 1, 0, 250 in (0.9, 1). The density, velocity and pressure profiles are plotted in figure 5
for T = 0.01 and T = 0.038. The solid line reference solutions are computed by a 3rd order central
scheme on overlapping cells [31] on a much refined mesh (∆x = 1/2000). ∆τn is chosen with a CFL
factor 0.4, ∆tn = 1

2∆τn. We observe stable results with good resolution for this very demanding
problem in terms of numerical stability.

Example 3. Shu-Osher problem [39]. It is the Euler equation with an initial data

(ρ, v, p) = (3.857143, 2.629369, 10.333333), for x < −4,
(ρ, v, p) = (1 + 0.2 sin(5x), 0, 1), for x ≥ −4.

The density profiles are plotted at T = 1.8, with ∆x = 1/40, see figure 6. ∆τn is chosen with a CFL
factor 0.5, ∆tn = 0.5∆τn. We observe very good resolution for this example.
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Figure 4: Lax’s Problem. ∆x = 1/200. From left to right, top to bottom, (1) density (CO-DG-hr1e-3);
(2) velocity (CO-DG-hr1e-3); (3) pressure (CO-DG-hr1e-3); (4) density (CO-DG-hr1m-3).

Example 4. 2D Riemann problem [25] for the Euler equation computed by CO-DG-hr1e-3. The
2D Euler equation can be written as

ut + f(u)x + g(u)y = 0, u = (ρ, ρu, ρv,E)T , p = (γ − 1)(E − 1
2ρ(u

2 + v2))
f(u) = (ρu, ρu2 + p, ρuv, u(E+ p))T , g(u) = (ρv, ρuv, ρv2 + p, v(E + p))T ,

where γ = 1.4. The computational domain is [0, 1] × [0, 1]. The initial states are constants within
each of the 4 quadrants. Counter-clock-wisely from the upper right quadrant, they are labeled as
(ρi, ui, vi, pi), i = 1, 2, 3, 4. Initially, ρ1 = 1.1, u1 = 0, v1 = 0, p1 = 1.1; ρ2 = 0.5065, u2 = 0.8939,
v2 = 0, p2 = 0.35; ρ3 = 1.1, u3 = 0.8939, v3 = 0.8939, p3 = 1.1; and ρ4 = 0.5065, u4 = 0, v4 = 0.8939,
p4 = 0.35. The density and pressure profiles are plotted at T = 0.25 in figure 7, with 100 equally
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Figure 5: Woodward and Colella blast wave problem computed by CO-DG-hr1e-3. ∆x = 1/400. Top:
density; middle: velocity; bottom: pressure. Left: T = 0.01; right: T = 0.038.

spaced contours. The numerical resolution is quite good for this problem. The density profile along
y = 1/3 is plotted in figure 8. There is no oscillation near the discontinuities.

Example 5. Double Mach reflection [43] computed by CO-DG-hr1e-3. A planar Mach 10 shock is
incident on an oblique wedge at a π/3 angle. The air in front of the shock has density 1.4, pressure
1 and velocity 0. The boundary condition is described in [43]. The density and pressure profiles are
plotted at T = 0.2 in figure 9, with 30 equally spaced contours. ∆x = ∆y = 1/120, ∆τn chosen with
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Figure 6: Shu-Osher Problem, ∆x = 1/40. Left: CO-DG-dr1m-3. Right: CO-DG-hr1e-3.
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Figure 7: A 2D Riemann problem [25] computed by CO-DG-hr1e-3. ∆x = ∆y = 1/200, Left: density.
Right: pressure.

a CFL factor 0.4, ∆tn = 0.99∆τn. We can see in the lower graph (the cross-section density profile
along y = 1/3) that the computed result is non-oscillatory.

6. Concluding Remarks and a Plan for Future Work

In this paper we have developed a central discontinuous Galerkin method based on staggered over-
lapping cells, with a numerical viscosity which stays bounded when the time step size goes to zero.
Time discretization is via the standard TVD Runge-Kutta method. We have also developed a multi-
layer hierarchical reconstruction procedure and used it as a post-processing limiter for our central
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Figure 8: A 2D Riemann problem [25]. Density profile along y = 1/3.
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Figure 9: Double Mach reflection computed by CO-DG-hr1e-3. ∆x = ∆y = 1/120. Top: density
contours; Middle: pressure contours; Bottom: density cut along the line y = 1/3.

DG scheme. The limiter is able to maintain the original order of accuracy and can effectively con-
trol spurious oscillations for discontinuous solutions. In future work we will generalize the method
to convection diffusion equations, improve the limiter by applying troubled-cell indicators, and also
study further the hierarchical reconstruction procedure as a limiter for the regular DG methods and
finite volume schemes. A stability analysis and error estimates for the central DG scheme as well as
a comparison between the regular DG and central DG schemes will also be performed.
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