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Abstract. There are many application that call for the determination of the points at which
a function changes values in a discontinuous fashion and that require knowledge of the change in
the function’s value at such points. In this paper we present some simple examples of concentration
factors. Concentration factors take the Fourier coefficients of a function and return a function that
tends to zero at points of continuity of the original function and that tends to the height of the jumps
at the location of the jumps.

In the analysis of concentration factors, we make use of many elementary results from analysis and
many properties of Fourier series. The material here—except for the last section—can be presented
to anyone with a reasonable knowledge of Fourier series and a decent understanding of the properties
of infinite series. In the final section, we consider the effect that noisy data has on the results of the
schemes we present.
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1. Introduction. Edge detection and the detection of discontinuities is very im-
portant in many fields. In image processing, for example, one often need to determine
the boundaries of the items of which a picture is composed. (For more informa-
tion about edge detection in image processing, see [7].) We consider the problem of
detecting the edges present in a function when given the Fourier coefficients of the
function.

There are numerical methods that estimate the Fourier coefficients of a function of
interest rather than directly estimating the solution. The spectral viscosity method, a
numerical method used to solve nonlinear partial differential equations (PDEs), is an
example of such a method. The method approximates the Fourier coefficients of the
solution of a PDE. The Fourier coefficients are then used to calculate an approximation
to the solution. The accurate reconstruction of the solution requires that the position
of the discontinuities of the solution be known[5]. In this paper we discuss techniques
for using a function’s Fourier coefficients to determine the location and size of the
jump discontinuities of the function.

At first glance the spectral representation of the signal—the Fourier series or
transform associated with the signal—does not seem to be the ideal place to look
for information about discontinuities in the signal. When a signal is discontinuous
the convergence of the Fourier series or transform associated with the signal is not
uniform; in such cases the Gibbs phenomenon[8] appears and truncating the series
after any finite number of terms always leads to O(1) oscillations in the reconstructed
signal.

Considering the question again, however, one realizes that if a discontinuity is
characterized by a “phenomenon,” then the existence of the discontinuity is indeed
encoded in the coefficients. The question becomes how to effectively “decode” the
discontinuity. One does not do this by directly summing the series—one uses the
spectral representation in a somewhat different way to “concentrate” the function
about the discontinuity. In what follows, we explain how this is done. We restrict
ourselves to periodic (or compactly supported) functions and only consider Fourier
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series. (Those interested in seeing a more general theory of concentration factors are
referred to [3, 4].)

Much of the information in this article is well known[3, 4]. The use of the Euler-
Mascheroni constant to improve the performance of the concentration factor in §4 and
the noise analysis in §6 are new to the best of our knowledge.

In the next section we give some of the background necessary for our study. In
the following sections we present the classical method of finding the discontinuities,
we explain its shortcomings, we present a better method and analyze its properties,
and we explore the behavior of the methods in the presence of noise.

2. Some Background.

2.1. The Convergence of the Fourier Series. Let f(t) be a periodic function
with period T . The Fourier coefficients of f(t) are:

cn =
1

T

∫ x+T

x

e−inωtf(t) dt,

where ω = 2π/T , where x is an arbitrary point, and where T is the period of the
function f(t).

In many cases, it is possible to reconstruct a function from its Fourier coefficients.
We consider three different senses in which a function is represented by its Fourier
series. First, consider a piecewise continuous periodic function, f(t). At all points at
which f(t) is continuous we have:

f(t) =

∞
∑

n=−∞

cne
inωt

At points of discontinuity, the convergence is to the mean of the values to which
the function tends from the left and the right of the discontinuity[2]. Thus, we find
that for piecewise continuous functions, the convergence of the Fourier series to the
function is pointwise wherever the function is continuous and is to the average value
of the function at the jumps in the function’s value. This shows that if f(t) is con-
tinuous, then the Fourier series converges to a continuous function—f(t). If f(t) is
discontinuous, then so is the function to which the Fourier series converges.

Now suppose that f(t) is periodic with period T and square summable—that
f(t) ∈ L2[0, T ]. Square summability is less restrictive than piecewise continuity.
Then the Fourier series converges to the function in L2—which is a weaker form of
convergence than pointwise convergence. Additionally, for square summable functions
Parseval’s equation states that:

∞
∑

−∞

|cn|2 =
1

T

∫ x+T

x

|f(t)|2 dt.

Parseval’s equation says that if a function is square summable, so are the function’s
Fourier coefficients.

Finally, suppose that the Fourier coefficients of f(t) are absolutely summable.
That is, suppose that:

∞
∑

−∞

|cn| <∞.
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As |einωt| = 1, the absolute summability of the Fourier coefficients establishes the
uniform convergence of the Fourier series:

∞
∑

n=−∞

cne
inωt.

As the functions einωt are continuous and we know that the uniform limit of continuous
functions is a continuous function, we find that if the Fourier coefficients are absolutely
summable, then the Fourier series converges to a continuous function. As we have
already seen that the Fourier series of a piecewise continuous function tends to a
continuous function if and only if the function is actually continuous, we find that if
the Fourier coefficients of a piecewise continuous function are absolutely summable,
then the function is continuous.

2.2. Smoothness and Convergence. Two properties of the Fourier coeffi-
cients are important to us in what follows. One property concerns the relation be-
tween the smoothness of f(t) and convergence of the Fourier series associated with
f(t). We treat this question here. The other property concerns the effect that shifting
a function has on the function’s Fourier coefficients and is treated in §2.3.

Let us consider the connection between the smoothness of f(t) and the summabil-
ity of the Fourier series. If a function is continuous and piecewise differentiable, then
the Fourier coefficients of the derivative of the function must be square summable (as
the derivative is itself piecewise continuous). Let t0, t1, . . . , tM−1 be the points in the
interval [0, T ) at which the derivative of f(t) changes in a discontinuous fashion, and
let an be the Fourier coefficients that correspond to f ′(t). Then we find that:

Tan =

∫ T

0

e−inωtf ′(t) dt

=

∫ t0

0

e−inωtf ′(t) dt+ . . .+

∫ tT

tM−1

e−inωtf ′(t) dt

by parts
= e−inωtf(t)

∣

∣

t0

0
+ . . .+ e−inωtf(t)

∣

∣

T

tM−1

+inω

∫ t0

0

e−inωtf(t) dt+ . . .+ inω

∫ tT

tM−1

e−inωtf(t) dt

continuity
= inω

∫ t0

0

e−inωtf(t) dt+ . . .+ inω

∫ tT

tM−1

e−inωtf(t) dt

= inωTcn.

Making use of the Cauchy-Schwarz inequality, we find that:

∞
∑

n=−∞

|cn| =
1

ω

(

−1
∑

n=−∞

1

n
| − inωcn|+ |c0|+

∞
∑

n=1

1

n
| − inωcn|

)

≤

√

√

√

√

−1
∑

n=−∞

1

n2

√

√

√

√

−1
∑

n=−∞

|an|2 + |c0|+

√

√

√

√

∞
∑

n=1

1

n2

√

√

√

√

∞
∑

n=1

|an|2

<∞.

That is, the Fourier coefficients of a continuous and piecewise differentiable function
are absolutely summable. Combining this result with the final result of §2.1, we
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find that a piecewise differentiable function is continuous if and only if its Fourier
coefficients are absolutely summable. Thus, if a piecewise continuous function, f(t),
can be written:

f(t) = fd(t) + fc(t)

where fd(t) and fc(t) are piecewise continuous, fd(t) is discontinuous, and fc(t) is con-
tinuous and piecewise differentiable, then the Fourier coefficients of f(t) can be split
into two parts. The part that corresponds to fd(t) cannot have absolutely summable
Fourier coefficients. The part that corresponds to fc(t) must have absolutely summable
Fourier coefficients.

2.3. Shifts of a Function. The second property we are interested in concerns
the effect that shifting a function has on the function’s Fourier coefficients. Let the
Fourier coefficients of f(t) be denoted by cn. What are the Fourier coefficients, an, of
f(t− τ)? We find that:

an =
1

T

∫ x+T

x

e−inωtf(t− τ) dt

u=t−τ
=

1

T

∫ x−τ+T

x−τ

e−inω(u+τ)f(u) du

= e−inωτ cn.

2.4. An Important Example. Without loss of generality, in the rest of this
exposition we only consider functions that are periodic with period 1. Consider k(t)
defined by:

k(t) ≡ t− 1
2
, 0 ≤ t < 1

in the interval t ∈ [0, 1) and defined elsewhere by periodically extending the function.
The function as defined has a jump of height 1 at every integer.

Let us calculate cn. We find that:

cn =

∫ 1

0

(

t− 1
2

)

e−in2πt dt.

For n = 0, it is clear that this is 0. For n 6= 0, we find that:

cn =

∫ 1

0

(

t− 1
2

)

e−in2πt dt

by parts
=

(

t− 1
2

)

e−in2πt

−in2π

∣

∣

∣

∣

1

t=0

+
1

in2π

∫ 1

0

e−in2πt dt

=
i

n2π
.

We find that the coefficients are square summable—as they must be—but they are
not summable. We find that the Fourier series that corresponds to k(t) is:

−1
∑

n=−∞

i

n2π
ein2πt +

∞
∑

n=1

i

n2π
ein2πt.(2.1)
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2.5. An Interesting Sum. Using Parseval’s equation on the Fourier coefficients
that correspond to k(t) = t− 1/2, we find that:

∫ 1

0

k2(t) dt =

∫ 1

0

(

t− 1
2

)2

dt

=
1

12

=

∞
∑

n=−∞

|cn|2

= 2

∞
∑

n=1

1

4π2n2

=
1

2π2

∞
∑

n=1

1

n2
.

Rearranging terms, we find that:

∞
∑

n=1

1

n2
=

π2

6
.(2.2)

We make use of this sum in §3.
2.6. Decomposing a Function. In the sections to come, we will need to split a

piecewise differentiable function into its continuous and discontinuous parts. We now
consider one way to perform this decomposition. Suppose that one has a function,
f(t), that is piecewise differentiable but has a jump discontinuity of height h at loca-
tion τ . Then the function f(t)− hk(t− τ) is piecewise differentiable and continuous.
Thus, its Fourier coefficients, which we denote by bn, are absolutely summable. Of
course the Fourier coefficients of hk(t − τ) are not absolutely summable. In fact the
Fourier coefficients of hk(t− τ), which we denote by an, are:

an =

{

h ie−in2πτ

n2π n 6= 0
0 n = 0

.

By the linearity of the calculation of the Fourier coefficients, we find that:

cn = an + bn.

That is, the Fourier coefficients of f(t) can be written as the sum of an absolutely
summable set of coefficients and set of coefficients that is not absolutely summable.
In §3 this procedure is extended to functions with multiple jump discontinuities.

3. The Classical Approach—the Hilbert Transform. In order to determine
where the edges of the data are in a “minimally invasive way,” we want to find a
transformation of the Fourier coefficients that changes the Fourier coefficients as little
as possible, but that causes the partial sums of the Fourier series of a discontinuous
function to grow at the discontinuities but not elsewhere. Note that the reason that
the Fourier series (2.1) does not diverge at t = 0 is that at that point the exponentials
corresponding to ±n cancel one another.

Consider the Fourier coefficients of a function that is piecewise continuous but not
continuous. Let us denote its Fourier coefficients by rn. Furthermore, following the
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example of §2.6, let us decompose the function into its discontinuous and continuous
parts, and let us denote their Fourier coefficients by an and bn respectively.

We now consider a transformation of the sequence rn. We define sn, the trans-
formed sequence, by the equation:

sn =







−irn n ≥ 1
0 n = 0
irn n ≤ −1

.

This transformation is known as the Hilbert transform[6]. Note that the transformed
version of the bn is still absolutely summable, while the transformed version of the an
is not absolutely summable. Thus, the continuous part of the function is transformed
into a continuous function by the Hilbert transform while the Hilbert transform of
the discontinuous part is still—at the very least—discontinuous. (If the coefficient of
the constant term of the original function is zero, then the Hilbert transform is an l1

isometry. If the coefficient of the constant term is non-zero, the Hilbert transform is
an l1 contraction.)

Let us consider the function that one recovers from the sum using the transformed
coefficients of the discontinuous function k(t − τ). We find that the function one
recovers is:

g(t) =

−1
∑

n=−∞

−1
n2π

ein2π(t−τ) +

∞
∑

n=1

1

n2π
ein2π(t−τ) =

∞
∑

n=1

cos(2πn(t− τ))

nπ
.

Note that at t = τ + k this gives us the harmonic series and g(t + k) diverges (and
at t = τ + k + 1/2 the function g(t) evaluates to the alternating harmonic series and
converges conditionally ln(2)/π).

To proceed with our analysis we must analyze the partial sums:

gN (t) =

N
∑

n=1

cos(2πn(t− τ))

nπ

more carefully. To this end, we consider the properties of the Dirichlet kernel[10],
DN (ξ)—of the sum:

DN (ξ) ≡
N
∑

n=−N

ein2πξ = 1 + 2

N
∑

n=1

cos(n2πξ), ξ ≡ t− τ.

This is a finite geometric series whose sum is:

DN (ξ) =

N
∑

n=−N

ein2πξ

= e−in2πξ
2N
∑

n=0

ein2πξ

= e−in2πξ 1− ei(2N+1)2πξ

1− ei2πξ

=
sin((2N + 1)πξ)

sin(πξ)
6



Clearly

|DN (ξ)| ≤
1

| sin(π(t− τ))| .

Consider the partial sum:

gN (t) =

N
∑

n=1

cos(2πnξ)

nπ
.

again. This sum can be written as:

gN (t) =
cos(2πξ)

π
+

N
∑

n=2

Dn(ξ)−Dn−1(ξ)

2nπ
.

Rewriting this, we find that:

gN (t) =
cos(2πξ)

π
+

DN (ξ)

2Nπ
− 1

2π

N
∑

n=2

Dn−1(ξ)

(

1

n
− 1

n− 1

)

− D1(ξ)

2π

which, using the definition of D1(ξ), can be further simplified to:

gN (t) =
DN (ξ)

Nπ
+
1

2π

N
∑

n=2

1

n(n− 1)Dn−1(ξ)−
1

2π
.

Considering our previous bound on |Dn(ξ)|, we find that:
∣

∣

∣

∣

∣

N
∑

n=1

cos(2πnξ)

nπ

∣

∣

∣

∣

∣

≤ 1

| sin(πξ)|

(

1

Nπ
+
1

2π

∞
∑

n=2

1

n(n− 1)

)

+
1

2π
.

Note that:

∞
∑

n=2

1

n(n− 1) =
∞
∑

n=1

1

n(n+ 1)
<

∞
∑

n=1

1

n2
.

Making use of (2.2) we find that:

|gN (t)| ≤
∣

∣

∣

∣

∣

N
∑

n=1

cos(2πnξ)

nπ

∣

∣

∣

∣

∣

≤ 1

| sin(πξ)|

(

1

2Nπ
+
1

2π

π2

6

)

+
1

2π
.

This shows that as long as ξ is not a whole number—as long as t 6= τ + k, the sum is
bounded, and the dependence of the bound on ξ is known.

This leaves us in the position of knowing that the partial sums diverge like the
harmonic series at t = τ + k and converge elsewhere. We take advantage of this
fact by dividing the partial sum by the (approximate) value of the partial sum of the
(divergent) harmonic series. This causes the partial sum to tend to 1 at the point at
which the discontinuity occurred and to tend to zero elsewhere.

When t = τ + k the partial sum is:

gN (t) =

N
∑

n=1

1

nπ
=
1

π

N
∑

n=1

1

n
.
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We would like to develop a closed form estimate of this sum. We note that:

∫ n+1

n

1

x
dx ≤ 1

n
≤
∫ n

n−1

1

x
dx.

Thus:

1 +

∫ N+1

2

1

x
dx ≤

N
∑

n=1

1

n
≤ 1 +

∫ N

1

1

x
dx.

We find that:

1 + ln(N + 1)− ln(2) ≤
N
∑

n=1

1

n
≤ 1 + ln(N)

Dividing both sides by ln(N) and taking the limit as N →∞, we find that:
∑N

n=1
1
n

ln(N)
→ 1.

If the Fourier coefficients of the function whose edges we would like to find are cn,
then the sum that we consider is:

edge1(t;N) ≡
π

ln(N)

(

−1
∑

n=−N

icne
iωnt +

N
∑

n=1

−icne
iωnt

)

.

This sum is our first edge detector, and it has two important properties. As N →∞
the value of the sum tends to the height of the jumps in the original function at the
points at which the jumps occur. At all other points, the sum tends to zero.

To prove this, consider a piecewise differentiable function v(t) with m jumps at
the locations t1, . . . , tm with the heights h1, . . . , hm. Clearly the function:

w(t) = v(t)−
m
∑

n=1

hnk(t− tn)

is continuous and piecewise differentiable, and:

v(t) = w(t) +

m
∑

n=1

hnk(t− tn).

Let bn be the Fourier coefficients of w(t). Let ai,j be the Fourier coefficients of
hik(t − ti), i = 1, . . . ,m. Note that in what follows we make use of the fact that
such a decomposition is possible. We do not need to actually decompose the function
ourselves; the linearity of the edge detector takes care of that for us.

Because of the linearity of all the operations we perform, we can consider the
effect of the operation on each set of Fourier coefficients. As the bn are absolutely
convergent, it is clear that:

π

ln(N)

(

−1
∑

n=−N

ibne
iωnt +

N
∑

n=1

−ibne
iωnt

)

= O

(

1

ln(N)

)

.
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For any fixed i the set of coefficients ai,j are just the coefficients that correspond to
hik(t− ti). We have seen that for this function the normalized partial sums converge
to hi at ti and to zero (like O(1/ ln(N))) elsewhere.

We find that after properly normalizing the Hilbert transform of a discontinuous
function, the heights and locations of the jumps become clear. We note, however,
that the convergence is O(1/ ln(N)).

4. Shortcoming of the Technique. Consider the function k(t) = t− 1/2 and
let us see how well our edge detector, edge1(t;N), works. In Figure 4.1, k(t) is
approximated using the Fourier series with N = 1000, and in Figure 4.2 we see the
output of edge1(t; 1000).

Upon looking at Figure 4.2, two points are immediately obvious . First of all, the
measured value of the jumps—which should be exactly 1—is about 1.08. Second of
all, even though N is rather large, the points away from the jump are not particularly
close to zero.

The second point is the fundamental problem with this method. Because we
divide a finite number by ln(N), and because ln(N) does not increase quickly, we
need a very large value of N in order to force the points away from the jumps to zero.

The first problem, however, is curable. Let us consider the partial sums that
correspond to the harmonic series again. We substituted ln(N) for the partial sum.
It is well known that:

lim
N→∞

((

N
∑

k=1

1

k

)

− ln(N)
)

≡ γ = 0.577215 . . . .

Furthermore, it has been shown[9] that:

1

2(N + 1)
<

(

N
∑

k=1

1

k

)

− ln(N)− γ <
1

2N
.

The constant γ is known as the Euler-Mascheroni constant. Rather than dividing the
sum by ln(N), divide it by ln(N)+γ. This defines a second, improved, edge detector,
edge2(t;N):

edge2(t;N) ≡
1

ln(N) + γ

N
∑

n=−N

sne
iωnt.

The improved edge detector returns Figure 4.3. Here the jump is indeed measured as
one unit, but the convergence away from the jumps is still very slow.

5. A Better and Simpler Technique. If one’s goal is to determine the location
of the discontinuities of a function, there is no reason to require that the processing of
the Fourier coefficients only minimally affect the coefficients. The problem with the
previous method was that we were dividing a bounded function that we wanted to
force to zero by ln(N). This caused the decrease towards zero away from the jumps
to be very slow. It would be better to divide the bounded part by something larger,
if possible.

Let us consider the following method of transforming the Fourier coefficients of
our data. If rn are the coefficients of the function, let the transformed coefficients,
sn, be:

sn = −inrn.
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Fig. 4.1. The function k(t) as reproduced from its Fourier series with N = 1000.
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Fig. 4.2. The edges of the function as detected by edge
1
(t; 1000).
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Fig. 4.3. The edges of the function as detected by edge
2
(t; 1000).

10



Let us consider the function that one recovers when one starts with the coefficients
that correspond to the shifted sawtooth wave:

cn =

{

ie−in2πτ

n2π n 6= 0
0 n = 0

.

We find that the partial sums of the transformed coefficients are:

gN (t) =

∞
∑

n=−∞

sne
in2πt =

1

π

N
∑

n=1

cos(2πn(t− τ)).

Considering the partial sums, gN (t), one finds that:

gN (t) =
1

π

DN (ξ)− 1
2

=
sin((2N + 1)πξ)

2π sin(πξ)
− 1

2π
.

We see that the partial sum are bounded as long as ξ is not an integer. When ξ is an
integer, the sums equals N/π.

Note that the transformation performed on the coefficients causes the series as-
sociated with the discontinuous part to diverge like N/π. The coefficients of the
continuous part, on the other hand, will not diverge as quickly. In fact, using argu-
ments similar to those of §2 it is easy to show that for a sufficiently smooth continuous
part the sum will be absolutely and uniformly convergent.

Therefore, we can produce an effective edge detector by considering:

edge3(t;N) ≡
π

N

N
∑

n=−N

sne
in2πt.

The discontinuous piece contributes a component that converges to the height of the
jump at the location of the jump and tends to zero like 1/N away from the jump. The,
continuous piece, if it is smooth enough, will decay as 1/N as well. This technique
is superior to the preceding one (except insofar as it requires that the l1 norm of the
coefficients be greatly altered). In Figure 5.1 we see the output of edge3(t; 100) for
k(t) = t − 1/2, and in Figure 5.2 we see the output of edge3(t; 1000) for the same
input. The latter detector performs just as one would hope, and even the former gives
reasonable results.

6. Performance in Noise. The edge detectors that we have constructed can
be thought of as filters that affect each input frequency in a particular way. If rk
is the Fourier coefficient of e−2πikt at the input to the edge detector—at the input
to the filter—and hk is the value by which the filter multiplies rk, then the Fourier
coefficient of e−2πikt at the output of the filter is hkrk. Parseval’s equation says that
the power in the input at the frequency k is |rk|2 and the power at the output of the
filter is |hk|2|rk|2. The total power is the sum of the power at each frequency.

All this is easy to prove when the input is a periodic deterministic signal. In the
case of a periodic stationary random signal, the proof is a bit more involved and the
usual way the result is presented is a bit different. Let vk be the power at frequency
k at the input to filter and wk be the power at frequency k at the output of the filter.
Then:

wk = |hk|2vk.
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Fig. 5.1. The edges of the function as detected by edge
3
(t; 100).
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Fig. 5.2. The edges of the function as detected by edge
3
(t; 1000).

Because we are (by assumption) dealing with a stationary random input, we consider
the expected value of the the power in the signal. A simple calculation shows that:

E

(

1

T

∫ T

0

f2(t) dt

)

=
1

T

∫ T

0

E(f2(t)) dt
stationarity
=

1

T

∫ T

0

E(f2(0)) dt = E(f2(0)).

The expected value of the power is just the expected value of the square of the signal.

It is interesting to consider the effects of white noise on the filters we have de-
signed. White noise, by definition, has the same power at each frequency (just as
white light has the same power at each frequency). Let us take vk = η.

Let us consider our original filter first. There, the coefficients of the filter are:

hk =
−iπsgn(k)

ln(N) + γ
, |k| ≤ N
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and zero otherwise. Thus,

wk =
ηπ2

(ln(N) + γ)2
, |k| ≤ N, k 6= 0,

and wk = 0 otherwise. As the power in the noise is just the sum of the power at each
frequency, we find that the power in the noise is:

power = E((noise contribution)2) =
2Nηπ2

(ln(N) + γ)2
.

The RMS amplitude of the noise is the square root of the power (or the standard
deviation of the noise contribution):

RMS amplitude =

√
2Nηπ

ln(N) + γ
.

This means that the amplitude of the contribution due to noise grows as
√
N/ ln(N).

Now let us consider our the improved filter. There, the coefficients of the filter
are:

hk = −
πik

N
, |k| ≤ N

and zero otherwise. As the input to the system is white noise, vk = η. Thus, rk =
π2k2η/N2, |k| ≤ N, k 6= 0, and rk = 0 otherwise. As the power in the noise is the sum
of the coefficients, we find that the power in the noise is just:

power ≈ 2π
2N3η

3N2
.

The RMS amplitude of the noise is:

RMS amplitude ≈
√
2Nηπ

3
.

Note that as N grows the contribution of the noise—in either scheme—grows
without bound. Suppose that our input has several jumps. Then as N grows the
output of the filter due to the signal tends to the jump heights at the locations at
which the jumps take place and tends to zero elsewhere. The contribution due to the
noise grows without bound for either filter. Thus, if the signal is corrupted by white
noise, it is important not to choose too large a value of N . Large values of N allow
the noise contribution to grow without materially improving the output due to the
signal.

Considering the effect noise has on the output of the two filters, we find that
for large values of N the edge2(t;N) is marginally better than edge3(t;N). In the
case of edge2(t;N), the contribution due to the noise grows as

√
N/ ln(N), while in

the improved technique, edge3(t;N), the noise contribution grows as
√
N . This is a

second advantage (albeit a minor one) of the original technique over the “improved”
technique. For a different technique for handling noise when using concentration
factors, see [1].

In Figure 6.1, we consider the output of edge3(t;N) for N = 10, 100 and ,1000
when the input to the edge detector is k(t) corrupted by white noise. When N = 10,

13
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Fig. 6.1. The effect of noise on edge
3
(t;N) for N = 10, 100, and 1000.

the output of the edge detector is almost unaffected by noise. However, because N
is small, the output of the edge detector is not close to the ideal output of an edge
detector. The output is large in a large region near the location of the jump, and it
does not stay near zero far from the jump either. When N = 100 the output of the
edge detector due to the jump is, as seen in Figure 5.1, nearly ideal. In Figure 6.1 we
see that when in addition to the jump there is noise, the output is not as nearly ideal,
but the location and size of the jump are still clearly visible in the edge detector’s
output. When N = 1000, the output of edge3(t;N) when the input is “pure signal”
is, as seen in Figure 5.2, very nearly perfect. In the presence of white noise, however,
the output of the edge detector is useless. We find that it is counterproductive to take
N to be too large.

The value of N one should use depends on the size of the jumps that one would
like to detect and the amount of noise present in the signal. In Figure 6.1 the noise
level is high and N must be kept small. In cases where there is less noise, N can be
larger, and the accuracy with which the height and location of jumps in the signal
can be known is greater.
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