
INSTITUTE OF PHYSICS PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 23 (2006) S553–S578 doi:10.1088/0264-9381/23/16/S14

A multi-block infrastructure for three-dimensional
time-dependent numerical relativity

Erik Schnetter1,2, Peter Diener1,3, Ernst Nils Dorband1,3

and Manuel Tiglio1,3

1 Center for Computation and Technology, 302 Johnston Hall, Louisiana State University,
Baton Rouge, LA 70803, USA
2 Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1,
D-14476 Golm, Germany
3 Department of Physics and Astronomy, 202 Nicholson Hall, Louisiana State University,
Baton Rouge, LA 70803, USA

E-mail: schnetter@cct.lsu.edu, diener@cct.lsu.edu, dorband@cct.lsu.edu and tiglio@cct.lsu.edu

Received 20 February 2006, in final form 6 June 2006
Published 27 July 2006
Online at stacks.iop.org/CQG/23/S553

Abstract
We describe a generic infrastructure for time evolution simulations in numerical
relativity using multiple grid patches. After a motivation of this approach, we
discuss the relative advantages of global and patch-local tensor bases. We
describe both our multi-patch infrastructure and our time evolution scheme,
and comment on adaptive time integrators and parallelization. We also
describe various patch system topologies that provide spherical outer and/or
multiple inner boundaries. We employ penalty inter-patch boundary conditions,
and we demonstrate the stability and accuracy of our three-dimensional
implementation. We solve both a scalar wave equation on a stationary rotating
black hole background and the full Einstein equations. For the scalar wave
equation, we compare the effects of global and patch-local tensor bases,
different finite differencing operators and the effect of artificial dissipation
onto stability and accuracy. We show that multi-patch systems can directly
compete with the so-called fixed mesh refinement approach; however, one can
also combine both. For the Einstein equations, we show that using multiple
grid patches with penalty boundary conditions leads to a robustly stable system.
We also show long-term stable and accurate evolutions of a one-dimensional
nonlinear gauge wave. Finally, we evolve weak gravitational waves in three
dimensions and extract accurate waveforms, taking advantage of the spherical
shape of our grid lines.
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1. Introduction

Many of the spacetimes considered in numerical relativity are asymptotically flat. An ideal
kind of domain for these has its boundaries at infinity, and at the same time has to handle
singularities which exist or develop within the domain. In a realistic set-up, the outer boundary
is either placed at infinity, which is topologically a sphere, or one introduces an artificial outer
boundary at some large distance from the origin. In both cases, a sphere is a natural shape for
the boundary.

There are several possible ways to deal with singularities. One of the most promising
is excision, which was first used by Thornburg [1], where he acknowledges W G Unruh for
the idea. Excision means introducing an inner boundary, so that the singularity is not in
the computational domain any more. If done properly, all characteristic modes on this inner
boundary are leaving the domain, so that no physical boundary condition is required. Seidel
and Suen [2] applied this idea for the first time in a spherically symmetric time evolution.

A well-posed initial-boundary value problem requires in general smooth boundaries [3].
Using spherical boundaries satisfies all the above conditions. Spherical boundaries have not yet
been successfully implemented in numerical relativity with Cartesian grids. However, there
were many attempts to approximate spherical boundaries. For example, the Binary Black
Hole Grand Challenge Alliance used blending outer boundary conditions [4, 5], where the
blending zone was approximately a spherical shell on a Cartesian grid. Excision boundaries
often approximate a sphere by having a Lego (or staircase) shape [5–8]. Some of the problems
encountered with excision are attributed to this staircase shape. A spherical boundary would
be smooth in spherical coordinates, but these are undesirable because they have a coordinate
singularity on the z axis. A multi-block scheme allows smooth spherical boundaries without
introducing coordinate singularities.

Using multiple grid patches is a very natural thing to do in general relativity. When one
starts out with a manifold and wants to introduce a coordinate system, then it is a priori not
clear whether a single coordinate system can cover all the interesting parts of the manifold.
One usually introduces a set of overlapping maps, each covering a part of the manifold. After
discretizing the manifold, one naturally arrives at multiple grid patches.

Methods using multiple grid patches in numerical relativity were pioneered in 1987 by
Thornburg [1, 9], where he also introduced excision as inner boundary condition for black
holes. Gómez et al [10] use two overlapping stereographic patches to discretize the angular
direction using the eth formalism. This was later used by Gómez et al [11] to evolve a
single, non-stationary black hole in a stable manner in three dimensions with a characteristic
formulation. Thornburg [12] evolves a stationary Kerr black hole in three dimensions using
multiple grid patches using a Cauchy formulation. Kidder, Pfeiffer and Scheel [13] have
developed a multi-patch pseudo-spectral code to evolve first-order hyperbolic systems on
conforming (neighbouring patches share grid points), touching and overlapping patches.
Scheel et al [14] used this method with multiple radial grid patches to evolve a scalar field on
a Kerr background. Kidder et al [15] used this method with multiple radial grid patches to
evolve a distorted Schwarzschild black hole.

In this paper, we describe a generic infrastructure for time evolution simulations in
numerical relativity using multiple grid patches and we show example applications of this
infrastructure. We begin by defining our notation and terminology in section 2, where we also
discuss various choices that one has to make when using multi-patch systems. We describe
our infrastructure in section 3 and the patch systems we use in section 4. We test our methods
with a scalar wave equation on flat and curved backgrounds and with the full vacuum Einstein
equations in sections 5 and 6. We close with some remarks on future work in section 7.
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(a) (b) (c)

Figure 1. Schematics of the difference between touching and overlapping grids for different inter-
grid relations. The black grid points are evolved in time, the hollow grid points are determined
via a boundary condition. (a) Touching patches, also known as blocks. (b) Touching patches with
additional boundary points. (c) Overlapping patches with boundary points.

2. Multi-patch systems

Our main motivation for multi-patch systems is that they provide smooth boundaries without
introducing coordinate singularities. This allows us to implement symmetric hyperbolic
systems of equations for well-posed initial-boundary value problems. However, multi-patch
systems have three other large advantages when compared to using a uniform Cartesian grid.

No unnecessary resolution. In multi-patch systems the angular resolution does not necessarily
increase with radius. An increasing angular resolution is usually not required, and multi-patch
systems are therefore more efficient by a factor O(n2) when there are O(n3) grid points.

No CFL deterioration for co-rotating coordinates. When a co-rotating coordinate system is
used, the increasing angular resolution in Cartesian grids forces a reduction of the time step
size. Near the outer boundary, the co-rotation speed can even be superluminal. This does not
introduce any fundamental problems, except that the time step size has to be reduced to meet
the CFL criterion. This makes Cartesian grids less efficient by a factor of O(n) for co-rotating
coordinate systems when there are O(n3) grid points.

Convenient radially adaptive resolution. In multi-patch systems, it is possible to vary the
radial resolution without introducing coordinate distortions [12]. This is not possible with
Cartesian coordinates. Fish-eye coordinate transformations [16] lead to distorted coordinate
systems. In practice, there is a limit to how large a fish-eye transformation can be, while there
is no such limit for a radial rescaling in multi-patch systems.

These advantages are so large that we think that fixed mesh refinement methods may even
be superfluous for many applications in numerical relativity. Mesh refinement can be used
adaptively, e.g. to resolve shock waves in a star. It would be difficult to handle this with adaptive
patch systems. However, mesh refinement is also used statically to have higher resolution in
the centre and right resolution near the outer boundary. This case is very elegantly handled by
multi-patch systems. Multi-patch systems could also be used to track moving features, such
as orbiting black holes.

2.1. Terminology

Methods using multiple grid patches are not yet widely used in numerical relativity, and this
leads to some confusion in terminology.

The notions of multiple patches, multiple blocks or multiple maps are all virtually the
same. In differential geometry, one speaks of maps covering a manifold. In computational
physics, one often speaks of multi-patch systems when the patches overlap and of multi-block
systems if they only touch, i.e. if the blocks only have their boundaries in common. However,
when discretized, there is an ambiguity as to what part of the domain is covered by a grid with
a certain resolution. See figure 1 for an illustration.

In the following, we say that a grid extends from its first to its last grid point. This
is different from Thornburg’s notation [12]: he divides the grid into interior and ghost
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points4. The interior points are evolved in time and a small number of ghost points are
defined through an inter-patch boundary condition, which is interpolation in his case. He
defines the grid extent as ranging from the first to the last interior point, ignoring the ghost
points for that definition. Thus, when there are n ghost points, he calls ‘touching’ what we
would call an ‘overlap of 2n points’. When he speaks of overlapping grids according to his
definition, then there are parts of the domain covered multiple times, and these overlap regions
do not vanish in the continuum limit.

2.2. Coordinates and tensor bases

Although not strictly necessary, it is nevertheless very convenient to have one global coordinate
system covering the whole domain. This makes it very easy to set up initial conditions from
known analytic solutions, and it also makes it possible to visualize the result of a simulation.
While a true physics-based visualization would not rely on coordinates, currently used methods
always display fields with respect to a coordinate system.

Since our calculations concern quantities that are not all scalars, we have to make a choice
as to how to represent these. One elegant solution is to use a tetrad (or triad) formalism, where
one represents vectorial and tensorial quantities by their projections onto the tetrad elements.
However, this still leaves open the choice of tetrad elements.

In a multi-patch environment there are two natural choices for a coordinate basis. One
can either use the global or the patch-local coordinate system. Both have advantages and
disadvantages.

In a way, using a patch-local coordinate basis is the more natural choice. Given that one
presumably knows how to evolve a system on a single patch, it is natural to view a multi-patch
system just as a fancy outer boundary condition for each patch. In this way, one would
continue to use patch-local coordinates everywhere, while the inter-patch boundary conditions
involve the necessary coordinate transformations. It should be noted that these coordinate
transformations mix the evolved variables, because (e.g. for a vector vi) what is v1 on one
patch is generally a linear combination of all vi in the other patches’ coordinate system.

Using a global coordinate basis corresponds to defining a global triad that is smooth over
the entire domain. This simplifies the inter-patch boundary conditions significantly, since
there is no coordinate transformation necessary. Instead, one then has to modify the time
evolution mechanism on the individual patches.

Let the letters a, b, c, . . . denote abstract indices for quantities in the patch-local tensor
basis and letters i, j, k, . . . abstract indices in the global tensor basis. The triad that defines
the global tensor basis is given by ei

a , which is a set of 1-forms ea labelled by a global index
i. A vector field v is denoted as va in the patch-local tensor basis and vi := ei

av
a in the global

tensor basis. Note that vi transforms as a scalar with respect to the patch-local tensor basis, as
a change in the patch-local tensor basis does not change vi .

When one calculates partial derivatives, e.g. through finite differences, one always obtains
these in the patch-local coordinate basis. It is then necessary to transform these to the global
coordinate basis. Since the evolved variables are scalars with respect to the patch-local
coordinate basis, their first derivatives are co-vectors and their transformation behaviour is
straightforward:

∂i = ∂xa

∂xi
∂a (1)

4 Just to demonstrate that terminology can be really confusing, we note that Thornburg’s notion of ‘ghost points’ is
different from what Cactus [17] calls ‘ghost points’.
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where ∂xa/∂xi = (∂xi/∂xa)−1 = (
ei
a

)−1
is the (inverse) Jacobian of the coordinate

transformation. This means that using a global tensor basis effectively changes the system of
evolution equations.

Using a global coordinate basis also has advantages in visualization. Visualization tools
generally expect non-scalar quantities to be given in a global coordinate basis. Often, one
also wants to examine certain components of non-scalar quantities, such as, e.g. the radial
component of the shift vector. When the shift vector is given in different coordinate bases on
each patch, then the visualization tool has to perform a non-trivial calculation.

It should be noted that there are many quantities which have a non-tensorial character,
such as, e.g. the quantities dkij of the formulation introduced in [18] which we use below; dkij

are partial derivatives of the 3-metric. The quantities φ and �̃i of the BSSN formalism [19]
have an even more complex transformation behaviour. φ = ln 12

√
det(γij ) is the logarithm of

a scalar density and �̃i = γ̃ jk�̃i
jk is a partial derivative of a tensor density.

It is also necessary to define the set of characteristic variables at an inter-patch boundary
in an invariant manner. One convenient way to do so is again to refer to a global coordinate
basis. That is, one transforms the elements of the state vector to the global coordinate basis
and can then define the characteristic variables in a unique way.

Last but not least, there is one more compelling argument for using a global coordinate
basis to represent the state vector. Since one, presumably, already knows how to evolve the
system within a single patch, it may be unwise to place all the new complications that a
multi-patch system brings into the inter-patch boundary condition. By changing the evolved
system to use a global coordinate basis, one simplifies the inter-patch boundaries significantly,
and furthermore one can implement and test both steps separately.

3. Infrastructure

We base our code on the Cactus framework [17, 20] using the Carpet infrastructure [21, 22].
Cactus is a framework for scientific computing. As a framework, the core (‘flesh’) of Cactus
itself contains no code that does anything towards solving a physics problem; it contains only
code to manage modules (‘thorns’) and let them interact. Cactus comes with a set of core
thorns for basic tasks in scientific computing, including time integrators and a parallel driver
for uniform grids. (A driver is responsible for memory allocation and load distribution on
parallel machines.)

By replacing and adding thorns, we have extended Cactus’ capabilities for multi-patch
simulations. The mesh refinement driver Carpet can now provide storage, inter-processor
communication, and I/O for multi-patch systems as well, and the multi-patch and mesh
refinement infrastructures can be used at the same time. The definitions of the patch systems
(see below) and the particular inter-patch boundary conditions are handled by additional thorns.

3.1. Infrastructure description

A computation that involves multiple patches requires the implementation of several distinct
features. We decided to split this functionality across multiple modules, where each module
is implemented as a Cactus thorn. These are as follows:
Driver (D). The driver is responsible for memory allocation and load distribution, for
inter-processor communication and for I/O. It also contains the basic time stepping mechanism,
ensuring that the application, e.g. updates the state vector on each patch in turn.

Multi-patch system (MP). The patch system selects how many patches there are and how they
are connected, i.e. which face is connected to which face of which other patch, and whether
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there is a rotation or reflection necessary to make the faces match. The patch system also
knows where the patches are located in the global coordinate space, so that it can map between
patch-local and global coordinates.

Penalty boundaries (P). This thorn applies a penalty boundary condition to the right-hand side
(RHS) of the state vector of one face of one patch. We have described the details in [23]. It
calls other routines to convert the state vector and its RHS on the patch and on its neighbour
to and from their characteristic variables; it is thus independent of the particular evolution
system.

Finite differences (FD). As a helper module, we implemented routines to calculate high-order
finite differences on the patches [23]. These operators use one-sided differencing near the
patch boundaries.

Additionally, we make use of the following features that Cactus provides:

Time integrator (TI). The time integrator calls user-provided routines that evaluate the RHS of
the state vector, advances the state vector in time and calls boundary condition routines.

Boundary conditions (BC). The boundary condition infrastructure keeps track of which
boundary conditions should be applied to which faces and to what variables. It
distinguishes between inter-processor boundaries (which are synchronized by the driver),
physical boundary conditions (where the user applies a condition of his/her choice)
and symmetry boundary conditions (which are determined through a symmetry of the
computational domain, e.g. a reflection symmetry about the equatorial plane). We have
extended the notion of symmetry boundaries to also include inter-patch boundaries, which are
in our case handled by the penalty method.

Together, this allows multi-patch systems to be evolved in Cactus within the existing
infrastructure. Existing codes, which presumably only calculate the right-hand side (RHS)
and apply boundary conditions, can make use of this infrastructure after minimal changes and
after, e.g., adding routines to convert the state vector from and to the characteristic modes.
Existing codes which are not properly modular will need to be restructured before they can
make use of this multi-patch infrastructure.

We use the penalty method to enforce the inter-patch boundary conditions. The penalty
method for finite differences is described in [24–26], and we describe our approach and
notation in [23].

In order to treat systems containing second (or higher) temporal derivatives with our
current infrastructure, one needs to rewrite them to a form where they only contain first
temporal derivatives by introducing auxiliary variables. This is always possible. Strongly
or symmetric hyperbolic systems containing second (or higher) spatial derivatives [27–32]
could in principle also be handled without reducing them to first order. The definition of
the characteristic modes has then to be adapted to such a formulation, and may then contain
derivatives of the evolved variables.

This multi-patch approach is not limited in any way to finite differencing discretizations.
It would equally be possible to use, e.g., spectral methods to discretize the individual patches
(as was done in [14]). It may even make sense to use structured finite element or finite volume
discretizations on the individual patches, using a multi-patch system to describe the overall
topology.

3.2. Initial condition, boundary conditions and time evolution

We now describe how the initial conditions are set up and how the state vector is evolved in
time. This explains in some more detail how the different modules interact and what parts
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of the system have to be provided by a user of this multi-patch infrastructure. Each step is
marked in parentheses (e.g. ‘(MP)’) with the module that performs that step.

Setting up the initial conditions proceeds as follows:

(1) Initialize the patch system (MP). The patch system is selected, and the location and
orientation of the patches is determined depending on run-time parameters. If desired,
the patch system specification is read from a file (see below).

(2) Set up the global coordinates (MP). For all grid points on all patches, the global
coordinates are calculated. At this time we also calculate and store the Jacobian of the
coordinate transformation between the global and the patch-local coordinate systems. If
necessary, we also calculate derivatives of the Jacobian. Derivatives may be required
to transform non-tensorial quantities when a patch-local tensor basis is used. The
Jacobian can be calculated either analytically (if the coordinate transformation is known
analytically) or numerically via finite differences.

(3) Initialize the 3-metric (User code). Even when the evolved system does not contain the
Einstein equations, we decided to use a 3-metric. This is a convenient way to describe
the coordinate system, which—even if the spacetime is flat—is non-trivial in distorted
coordinates. For example, polar-spherical coordinates can be expressed using the 3-metric
γij = diag(1, r2, r2 sin2 θ), and doing so automatically takes care of all geometry terms.

This step is performed by the user code, and it is not necessary to use an explicit
3-metric in order to use this infrastructure. At this time, we initialize the metric at the
grid point locations, specifying its Cartesian components in the global tensor basis.

(4) Initialize the state vector (User code). Here, we initialize the state vector of the evolution
system, also again specifying its Cartesian components in the global tensor basis. When
evolving Einstein’s equations, this step and the previous are combined.

(5) Convert to local tensor basis (if applicable) (User code). It is the choice of the user
code whether the state vector should be evolved in the global or in the patch-local tensor
bases. We have discussed the advantages of either approach above. If the evolution is
to be performed in patch-local coordinates, then we transform the 3-metric and the state
vector at this time. Note that this transformation does not require interpolation, since we
evaluated the initial condition already on the grid points of the individual patches.

At this stage, all necessary variables have been set up, and the state vector is in the correct
tensor basis.

The time evolution steps occur in the following hierarchical manner:

(1) Loop over time steps (D). The driver performs time steps until a termination criterion is
met. At each time step, the time integrator is called.
(a) Loop over substeps (TI). We use explicit time integrators, which evaluate the RHS

multiple times and calculate from these the updated state vector.
(i) Evaluate RHS (User code). The RHS of the state vector is calculated, using, e.g.,

the finite differencing thorn.
(ii) Apply boundary conditions to RHS (BC). We decided to apply boundary

conditions not to the state vector, but instead to its RHS. This is necessary
for penalty boundaries, but is a valid choice for all other boundaries as well. In
our simulations, we do not apply boundary conditions to the state vector itself,
although this would be possible. Both the inter-patch and the outer boundary
conditions are applied via the multi-patch infrastructure in a way we explain
below.

(iii) Update state vector (TI). Calculate the next—or the final—approximation of the
state vector for this time step.
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(iv) Apply boundary conditions to the state vector (User code). In our case, nothing
happens here, since we apply the boundary conditions to the RHS of the state
vector instead.

(b) Analyse simulation state (D). The driver calls various analysis routines, which, e.g.,
evaluate the constraints or calculate the total energy of the system or output quantities
to files.

The multi-patch thorn knows which faces of which patches are inter-patch boundaries and
which are outer boundaries. Inter-processor boundaries are handled by the driver and need not
be considered here. Symmetry boundary conditions (such as, e.g., a reflection symmetry) are
currently not implemented explicitly, but they can be trivially simulated by connecting a patch
face to itself. This applies the symmetry boundary via penalties, which is numerically stable,
but differs on the level of the discretization error from an explicitly symmetry condition.

The boundary conditions are applied in the following way:

(1) Loop over all faces of all patches (MP). Traverse all faces, determining whether this face
is connected to another patch or not. Apply the boundary condition for this face, which
is in our case always a penalty condition.
(a) Apply a penalty to the RHS (P). Apply a penalty term to the RHS of all state vector

elements. This requires calculating the characteristic variables at the patch faces.
(i) Determine characteristic variables (User code). Calculate the characteristic

variables from the state vector on the patch to which the penalty should be applied.
If applying an inter-patch boundary condition, calculate the characteristic
variables from the other patches’ state vector as well. If this is an outer boundary,
then specify characteristic boundary data.

(ii) Apply penalty (P). Apply the penalty correction to the characteristic variables.
(iii) Convert back from characteristic variables (User code). Convert the

characteristic variables back to the RHS of the state vector.

The edges and corners of the patches require some care. In our scheme, the edges and
corners of the patches have their inter-patch condition applied multiple times, once for each
adjoining patch. In the case of penalty boundary conditions, the edge and corner grid points
are penalized multiple times and these penalties are added up. This happens for each patch
which shares the corresponding grid points. We have described this in more detail in [23].

For nonlinear equations, there is an ambiguity in the definitions of the characteristic
variables and characteristic speeds on the inter-patch boundaries. Since we use the penalty
method, the state vector may be different at the boundary points on both sides of the interface.
When the metric is evolved in time, then it is part of the state vector, and it may be discontinuous
across the interface. The definition of the characteristics depends on the state vector in the
nonlinear case. It can thus happen that the characteristic speeds are all positive when calculated
at the boundary point on one side of the interface and all negative when calculated on the other
side of the interface. One has to pay attention to apply the penalty terms in a consistent
manner even if this is the case. In our scheme (as described above), we always calculate
the characteristic information using the state vector on that side of the interface to which the
penalty terms are applied. This scheme does not prefer either side of the interface, but it is not
fully consistent for nonlinear equations.

Instead of using penalty terms to apply boundary conditions, one could also apply
boundary conditions in other ways, e.g. through interpolation from other patches or by
specifying Dirichlet or von Neumann conditions. Our infrastructure is ready to do so, but we
have not performed a systematic study of the relative advantages of, e.g., penalty terms versus
interpolation.
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3.3. Time integration

It is common in numerical relativity to use explicit time integration methods. These limit the
time step size to a certain multiple of the smallest grid spacing in the simulation domain. In
non-uniform coordinate systems, one has to determine the smallest grid spacing explicitly,
since it is the proper distance between neighbouring grid points that matters, not the grid
spacing in the patch-local coordinate systems, and the proper distance can vary widely across
a patch. If the 3-metric, lapse or shift are time dependent, then the proper distances between
the grid points also vary with time.

Furthermore, the maximum ratio between the allowed time step size and the grid spacing
depends not only on the system of evolution equations; it depends also on the spatial
discretization operators that are used, on the amount of artificial dissipation and on the strength
of the penalty terms. While all this can in principle be calculated a priori, it is time consuming
to do so.

Instead, we often use adaptive time stepping, for example using the adaptive step size
control of the Numerical Recipes [33] (chapter 16.2). One can specify a time integration
accuracy that is much higher than the spatial accuracy, and thus obtain the convergence order
according to the spatial discretization. In practice, one would rather specify a time integration
accuracy that is comparable to the spatial accuracy. Adaptive time stepping would also have
the above advantages when used on a single Cartesian grid.

We would like to remark on a certain peculiarity of adaptive time stepping. With a fixed
time step size, instabilities manifest themselves often in such a way that certain quantities
grow without bound in a finite amount of simulation time. Numerically, one notices that these
quantities become infinity or nan (not a number) at some point when IEEE semantics [34]
are used for floating point operations. With an adaptive step size, this often does not happen.
Instead, the step size shrinks to smaller and smaller values, until either the step size is zero up
to floating point round-off error or the time integrator artificially enforces a certain, very small
minimum step size. In both cases, computing time is used without making any progress. This
case needs to be monitored and detected.

3.4. Parallelization

Our current implementation parallelizes a domain by splitting and distributing each patch
separately onto all available processors. This is not optimal, and it would be more efficient to
split patches only if there are more processors than patches or if the patches have very different
sizes. This is a planned future optimization.

We have performed a scaling test on multiple processors. We solve a simple test problem
on a patch system with multiple patches and measure the time it takes to take 100 time steps5.
As we increase the number of processors, we also increase the number of grid points, so
that the load per processor remains approximately constant. This is realistic, because one
chooses the number of processors that one uses for a job typically depending on the problem
size. Figure 2 shows the results of the scaling tests for two such problem sizes. We find that
our implementation scales well up to at least 128 processors and would probably continue to
scale to larger numbers. See [35] for a comparison of other benchmarks using Cactus and
Carpet.

5 This test was performed with a fourth-order Runge–Kutta integrator, the scalar wave equation formulated in a
patch-local tensor basis, a seven-patch system, the D6–5 differencing operators and a Mattsson–Svärd–Nordström
dissipation operator. We varied the number of grid points per patch from 653 to 2533 to keep the load per processor
approximately constant. See section 5.1, where these details are explained.
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Figure 2. Wall clock time versus numbers of processors for 100 time steps of a test problem.
We keep the load of each processor approximately constant at 125 000 and 194 500 grid points,
respectively. Our implementation scales up to at least 128 processors.

It would also be possible to distribute the domain onto the available processors by giving
(at least) one domain to each processor. This would mean that one splits domains when
one adds more processors, introducing additional inter-patch boundary conditions. Penalty
inter-patch boundary conditions are potentially more efficient than using ghost zones, since
they require an overlap of only one single grid point. An nth-order accurate finite differencing
scheme, on the other hand, requires in general an overlap of 2n grid points. Penalty boundary
conditions thus require less communication between the patches. A disadvantage of this
scheme is that the exact result of a calculation then depends on the number of processors. Of
course, these differences are only of the order of the discretization error.

Such differences are commonly accepted when, e.g., elliptic equations are solved. Many
efficient algorithms for solving elliptic equations apply a domain decomposition, assigning
one domain to each processor, and using different methods for solving within a domain and
for coupling the individual domains. The discretization error in the solution depends on the
number of domains. For hyperbolic equations that are solved with explicit time integrators,
it is often customary to not have such differences. On one hand, this may not be necessary
to achieve an efficient implementation, and on the other hand, it simplifies verifying the
correctness of a parallel implementation if the result is independent of the number of processors.
However, there are no fundamental problems in allowing different discretization errors when
solved on different numbers of processors, especially if this may lead to a more efficient
implementation.

4. Patch systems

We have implemented a variety of patch systems, both for testing and for standard application
domains. It is also possible to read patch systems from file.

Simple testing patch systems are important not only while developing the infrastructure
itself, but also while developing applications later on. Since the application has to provide
certain building blocks, such as, e.g. routines that convert to and from the characteristic
representation, it is very convenient to test these in simple situations. Many patches have
distorted local coordinate systems, and it is therefore also convenient to have patches with
simple (one-dimensional) coordinate distortions. This can be used to test the tensor basis
transformations—keeping in mind that some variables will not be tensorial, but will rather
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Figure 3. A cut in the equatorial plane of six patches,
in which four patches are visible. The outer and inner
domain boundaries are spheres. There is one radial
coordinate spanning r = const surfaces and two angular
coordinates perpendicular to that. The radial coordinate
is smooth across patch boundaries.

Figure 4. A cut in the equatorial plane of seven patches,
in which five patches are visible. The outer boundary is
a sphere, the inner patch is a cube. There is again one
radial coordinate, but it does not span r = const surfaces
and it is not smooth across patch boundaries except at
the outer boundary. The two angular coordinates are the
same as in the six-patch system.

be tensor densities or partial derivatives of tensors, with correspondingly more involved
transformation behaviours.

We have currently two types of realistic patch systems implemented:

Six patches. This system consists of six patches that cover a spherical shell, i.e. a region with
rmin � r � rmax. We use the same patch-local coordinates as in [36] and [23]. This system is
useful if the origin is not part of the domain, e.g. for a single black hole. See figure 3 for an
illustration.

Seven patches. This system consists of one cubic patch that covers the region near the origin
and six additional patches that cover the exterior of the cube until a certain radius rmax. We use
the same patch-local coordinates as in [23], which are derived from the six-patch coordinates
above. This system is useful if the origin should be part of the domain, e.g. for a single neutron
star. See figure 4 for an illustration.

In addition to these two types, we have variations thereof, e.g. a system consisting of only
one of the six patches assuming a six-fold reflection symmetry. We have individual patch types
as generic building blocks, and we can glue them together to form arbitrary patch systems.

After seeking input from the computational fluid dynamics community, where multi-block
systems are commonly used to obtain body-fitted coordinate systems, we decided that setting
up patch systems by hand is too tedious and that commercial tools should be used for that
instead6. We therefore implemented a patch system reader that understands the GridPro [37]
data format. This is a straightforward ASCII-based format which is specified in the GridPro
documentation, and support for other data formats could easily be implemented as well.

Using GridPro, we could easily import patch systems with 2 holes and 27 patches (for a
generic binary black hole system, see figure 5) and with, e.g. 30 holes and 865 patches (for
demonstration purposes, see figure 6). Another advantage of a tool-like GridPro is that the
grid points are automatically evenly distributed over the domain, which may be difficult to
ensure if the grid is constructed by hand.

6 We are indebted to our esteemed colleague F Muldoon for teaching us about the state of the art in grid generation.
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Figure 5. A cut in the equatorial plane of the imported binary black hole patch system. The outer
and inner boundaries are spheres. Near the boundaries, the coordinate system is similar to spherical
coordinates, i.e. there is one coordinate direction perpendicular to and two direction tangential to
the boundary.

-100

-50

 0

 50

 100

-100 -50  0  50  100  150

y

x

-20
-15
-10

-5
 0
 5

 10
 15
 20

-10  0  10  20  30  40  50  60  70

y

x

(b)(a)

Figure 6. A cut in the equatorial plane of the imported demonstration patch system with 30
spherical holes in arbitrary positions close to the centre. The resolution in the centre is much
higher than near the outer boundary, demonstrating how to achieve the same effect as fixed mesh
refinement with multiple patches. (a) Whole domain and (b) region near the origin.

5. Tests with the scalar wave equation

We test our multi-patch infrastructure with a scalar wave equation on an arbitrary, time-
independent background. Since we express the coordinate distortions via a generic 3-metric,
there is—from the point of view of the code—no difference between a flat and a curved
spacetime. A stationary black hole background requires non-trivial lapse and shift functions,
but these are desirable even for flat spacetimes: a non-zero shift makes for moving or rotating
coordinate systems (implementing fictitious forces) and a non-unity lapse could be used to
advance different parts of the domain with different speeds in time, which can improve time
integration efficiency (although we did not use it for that purpose).

We use the notation α for the lapse, βi for the shift vector, γij for the 3-metric, γ ij for its
inverse and γ = det(γij ) for its determinant.

We evolve the scalar wave equation

� u = 0 (2)
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by introducing the auxiliary variables

ρ = ∂tu (3)

vi = Diu. (4)

This renders the system into a first-order form, leading to the time evolution equations

∂tu = ρ (5)

∂tρ = βi∂iρ +
α√
γ

∂i

[√
γ

α
(βiρ + α2Hijvj )

]
(6)

∂tvi = ∂iρ (7)

with

Hij = γ ij − βiβj/α2. (8)

If discretized with operators that satisfy summation by parts, this system is numerically stable
with respect to the energy,

E = 1

2

∫ √
γ

α
[ρ2 + α2Hijvivj ] dV, (9)

for |β| < α. In this case, this system is symmetric hyperbolic, and its characteristic variables
and speeds are listed in [36].

We present below evolutions of the scalar wave equation on a flat background with the
seven-patch system and on a Kerr–Schild background with the six-patch system. We compare
the respective benefits of using a global or a patch-local tensor basis, and we study the
behaviour of scalar waves on a Kerr–Schild background as a test problem.

5.1. Comparing global and patch-local tensor bases

We present here time evolutions of the scalar wave equation on a flat background with the
seven-patch system. We compare two formulations, one based on a global, the other based
on a patch-local tensor basis. We also apply a certain amount of artificial dissipation to the
system, which is necessary because our formulation has non-constant coefficients. We use
two different kinds of artificial dissipation, which were introduce by Kreiss and Oliger [38]
and by Mattsson, Svärd and Nordström [39], respectively.

We set the initial condition from an analytic solution of the wave equation, namely a
travelling plane wave. We also impose the analytic solution as penalty boundary condition
on the outer boundaries. This is in the continuum limit equivalent to imposing no boundary
condition onto the outgoing characteristics and imposing the analytic solution as Dirichlet
condition onto the incoming characteristics. The patch system has the outer boundary at
r = 3, and the inner, cubic patch has the extent [−1; +1]. We use the penalty strength δ = 0
at the inter-patch and at the outer boundaries. See [23] for our notation for the penalty terms.

The travelling plane wave is described by

u(t, xi) = A cos[2π(kix
i + ωt)] (10)

with ω2 = δij kikj . We set A = 1 and ki = [0.2, 0.2, 0.2], so that the wavelength is 5/
√

3. We
construct the solutions for ρ and vi from u via their definitions (3) and (4), and evaluate these
at t = 0 to obtain the initial condition. The flat background has α = 1, βi = 0 and γij = δij

in the global tensor basis; the patch-local metric is constructed from that via a coordinate
transformation.
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Figure 7. Comparing global and patch-local tensor bases, and Mattsson–Svärd–Nordström (MSN)
and Kreiss–Oliger (KO) dissipation operators. The graphs show the L∞ norm of the solution
error versus time for a coarse resolution on a seven-patch system. Some artificial dissipation is
necessary to stabilize the system, since it has non-constant coefficients. For this particular value
of the dissipation strength ε, using a global tensor basis is unstable with the MSN dissipation
operators, but stable with the KO operators. With higher values of ε, the system is stable for both
dissipation operators.

We use dissipation operators that are compatible with summation by parts (SBP) finite
difference operators. Introduced by Mattsson, Svärd and Nordström in [39], we call them
‘MSN’ operators. They are constructed according to

AMSN
2p = − ε

22p
h2p−1DT

p BpDp, (11)

where 2p is the order of the interior derivative operator, ε is the dissipation strength, h is the
grid spacing,  is the norm with respect to which the derivative operator satisfies SBP, Dp is
a consistent approximation of a pth derivative and Bp is a diagonal matrix. The scaling with
grid spacing is in contrast to standard Kreiss–Oliger (KO) dissipation operators [38], where
the scaling h2p−1 is used. Experience has shown that with the MSN scaling it is sometimes
necessary to increase the dissipation strength when resolution is increased in order to maintain
stability. For this reason, we have implemented SBP compatible KO dissipation operators
constructed according to

AKO
2p = − ε

22p+2
h2p+1−1DT

p+1BpDp+1, (12)

where as before  is the norm of the 2pth-order accurate SBP derivative operator. This
yields a dissipation operator with KO scaling that has the same accuracy as the SBP derivative
operator near the boundary (and one order higher in the interior). The price is having to use a
slightly wider stencil.

We use 21 grid points in the angular and in the radial directions. The central patch also
has 21 grid points in each direction. This is a very coarse resolution. We use the D6–5 stencil
of [23], which is globally sixth-order accurate, and add compatible artificial dissipation to the
system of both MSN and KO type as described above. We choose a dissipation coefficient
ε = 3.0. We use a transition region that is 0.3 times the size of the patch. The overall system
is then sixth-order accurate.

With a patch-local tensor basis and diagonal norm operators the system is strictly stable,
i.e., the numerical error is at any given resolution bounded (up to boundary terms) by a constant
(see also [23]), while with a global tensor basis, a small amount of artificial dissipation is
required. However, since we are using restricted full norm operators for this test, dissipation
is required for both the patch-local and patch-global cases.
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Figure 8. This figure shows typical solution error shapes across a block. It shows the error along
the a coordinate line of the + x patch of a seven-patch system. This coordinate line corresponds
to a φ coordinate line in spherical coordinates, but has a kink at the patch interface; see figure 4.
This figure shows two resolutions which differ by a factor of two, and the coarse error is scaled
according to 6th order convergence. The error is largest near the block boundary. Because the SBP
stencils of the D6–5 operator are modified on 7 grid points near each boundary, convergence near
the boundary is not obvious from this graph. We show 6th order convergence for this case in [23].

Figure 7 shows the L∞ norm of the solution error versus time up to t = 50. The
discretization using MSN dissipation is unstable for ε = 3.0 when a global tensor basis is
used, but it is stable when a local tensor basis is used. Larger values of ε also stabilize the
global tensor basis discretization. For the KO dissipation, a dissipation strength ε = 3.0 is
sufficient to stabilize both the local and global tensor basis formulations. Note that the error
levels are very similar in all cases, showing that the main difference between the patch-local
and patch-global tensor basis implementations is that more dissipation is necessary in order to
stabilize the system.

Finally, we show a typical shape for solution errors in figure 8. This shows the solution
errors in the quantity u across the + x block for two different resolutions. The simulation
started with a Gaussian pulse as initial condition. The graph shows the errors at the time
t = 25 along the a coordinate line for b = 0, c = 0; this coordinate line is approximately
the φ coordinate line, except that it has a kink at the block interfaces. (See figure 4 for an
illustration.) b = 0 places the coordinate line into the equatorial plane and c = 0 chooses the
centre of the block in the radial direction. The coarse block had 17×17×141 grid points with
the outer boundary at R = 15 and the fine block had twice this resolution. The simulation
was run with the D6–5 operator, and we expect sixth-order convergence. We have intentionally
chosen rather coarse resolutions in the angular direction. Because the SBP stencils of the D6–5

operator are modified on 7 grid points near each boundary, convergence at the boundary is not
obvious from this graph. However, we show in [23] that this system indeed converges to the
sixth order.

5.2. Scalar wave equation on a Kerr–Schild background

We also present time evolutions of the scalar wave equation on a Kerr–Schild [40, section 3.3]
background with six patches, which we use to excise the singularity. We choose the mass
M = 1 and the spin a = 0.9 for the background. We place the inner boundary at r = 1.4 and
the outer boundary at r = 201.4.
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Figure 9. The patch system and the scalar wave configuration at t = 92.2, also enlarging the
region near the excision boundary inside the horizon. The background is a rotating black hole with
a = 0.9, the initial condition is an � = 2, m = 2 multipole. Note the large scale difference between
the outer and the inner boundary, which is handled ‘naturally’ and without mesh refinement. There
are no artefacts visible at the inter-patch boundaries.

We use as initial condition u(0, xi) = 0, vi(0, xi) = 0 and a modulated Gaussian pulse

ρ(0, xi) = Y�mA exp

[
− (r − R)2

W 2

]
, (13)

where we choose the multipole � = 2,m = 2, the amplitude A = 1, the radius R = 20 and
the width W = 1. We use conventions such that

Y22 =
√

15

32π
sin2 θ(cos2 φ − sin2 φ). (14)

We impose u = 0, ρ = 0 and vi = 0 with the penalty method as outer boundary conditions.
This means that this condition is imposed onto the incoming characteristic modes. Since the
inner boundary is an outflow boundary, no boundary condition is imposed there. At the outer
boundary, ρ is indistinguishably close to zero at t = 0 (much closer than the floating point
round-off error), so that there is no noticeable discontinuity to the initial condition. We again
use the penalty strength δ = 0 for both inter-patch and outer boundaries.

We use the patch-local tensor basis for this example. We use 21 grid points in the
angular directions and 1001 grid points in the radial direction. We use here—for no particular
reason—different discretization parameters. It is our experience that the stability of the system
does not depend on the particular choice of stencil, as long as it satisfies summation by parts
[23]. We use here the D8–4 stencil, which is globally fifth-order accurate, and add compatible
MSN artificial dissipation to the system. We choose a dissipation coefficient ε = 0.2, and
we do not scale the dissipation with the grid spacing h. The overall system is then fifth-order
accurate. We use a fixed time step size �t = 0.05 with a fourth-order accurate Runge–Kutta
integrator.

Figure 9 shows a snapshot of the simulation at t = 92.2. At that time, the wave pulse has
travelled approximately half the distance to the outer boundary. The inter-patch boundaries
are smooth, although the configuration is not axisymmetric. Figure 10 shows extracted wave
forms from this simulation for the � = 2,m = 2 and for the � = 4,m = 2 modes. The
� = 2 mode is present in the initial condition. The � = 4 mode is excited through mode–mode
coupling. Its amplitude is 103 times smaller than the � = 2 mode at this time. The � = 4
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Figure 10. (a) The � = 2,m = 2 and (b) the � = 4, m = 2 modes, extracted at r = 40. The
� = 4,m = 2 mode is excited through mode–mode coupling. Its amplitude is 103 times smaller
than the � = 2, m = 2 mode. All other modes with � � 4 are zero up to floating point round-off
error.

Table 1. Comparison of the scalar quasi-normal frequencies obtained with the multi-block method
using a global and local tensor basis and the values predicted by perturbative methods [41, 42].
The given error estimates for the numerical values come from the uncertainty induced by the fitting
procedure. Details about that can be found in [43].

Mode Spin ωperturbation ωnumerical

l = 2,m = 2 0.9 0.781 638 − 0.069 2893i 0.796 527(030) − 0.068 0891(010)i
l = 2,m = −2 0.9 0.387 710 − 0.093 5902i 0.387 678(001) − 0.093 4718(100)i
l = 2,m = 0 0.5 0.491 962 − 0.094 630i 0.491 824(100) − 0.094 6523(200)i (local)
l = 2,m = 0 0.5 0.491 962 − 0.094 630i 0.492 432(001) − 0.094 4723(300)i (global)

mode has converged at this resolution, i.e. it does not change noticeably when the resolution
is changed.

We have also simulated initial data consisting of an � = 2,m = 0 mode. In this case, both
the � = 0,m = 0 and the � = 4,m = 0 modes are excited through mode–mode coupling. As
expected, the mode–mode coupling vanishes when the spin of the background spacetime is
set to zero.

We determine the complex quasi-normal frequency ω = ωR +iωI from the extracted wave
form of the � = 2,m = 2 mode. We fit the wave seen by an observer at radius r = 5 to a
function

f (t) = A sin(ωRt − φ) exp(ωI t). (15)

This fit is performed for the real and imaginary parts of the complex frequency as well as for the
amplitude A and a phase φ. Table 1 shows the frequencies we obtain from our simulations for
the � = 2,m = 2 and m = −2 modes and we compare the predictions made by perturbation
theory [41, 42]. A detailed study of quasi-normal mode frequencies and excitation coefficients
of scalar perturbations of Kerr black holes is in preparation [43].

For reasons of comparison between a code using the global tensor basis and one using the
patch-local tensor basis, we evolved a similar physical system using both of these methods. We
now choose a spin of a = 0.5 and initial data with an � = 2,m = 0 angular dependency. The
frequencies obtained by both codes, together with the predictions from perturbation theory,
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are shown in table 1. We find that the choice of tensor basis has little influence on the accuracy
of the results.

6. Evolving the vacuum Einstein equations

We evolve the vacuum Einstein equations using the symmetric hyperbolic formulation
introduced in [18]. It includes as variables the 3-metric gij , the extrinsic curvature Kij ,
the lapse α and extra variables denoted by dkij and Ai . When all the constraints are satisfied,
these are related to the 3-metric and lapse by dkij = ∂kgij and Ak = ∂k ln α. The formulation
admits any of the Bona–Masso slicing conditions while still being symmetric hyperbolic. The
shift has to be specified in advance as an arbitrary function of the spacetime coordinates t and
xi . In the tests below, we use a time harmonic slicing condition and a time-independent shift.
The characteristic modes and speeds are listed in [18].

Previous 3D black hole simulations using this formulation were presented in [44], using
a low-order Cartesian code and cubic excision. In [45], constraint-preserving boundary
conditions for this formulation were constructed; this paper then studies the well posedness
of the resulting initial-boundary value problem and tests a numerical implementation of those
boundary conditions in fully nonlinear 3D scenarios as well, again with a Cartesian code.

After some initial (and quite lengthy) experiments with a patch-local tensor basis, we
decided to use a global tensor basis instead7. We find that patch-local tensor bases increase
the complexity of the inter-patch boundary conditions very much, because the characteristic
decomposition of the field variables needs to be combined with the tensor basis transformation
at the patch boundaries. Converting the partial derivatives into the global tensor basis is trivial
in comparison. In addition to that, analysing and visualizing the output of a simulation is also
made much easier when a global tensor basis is used.

6.1. Robust stability test

The robust stability test in numerical relativity consists of evolving featureless initial conditions
to which random noise has been added. This test was initially suggested in [46, 47] and later
refined in the so-called Mexico tests [48], see also [49]. The first stage of this test has a domain
that is periodic in all directions, i.e. has a T 3 topology. The most difficult stage of the test has
a spherical outer boundary through which noise is injected.

We implement the T 3 topology with a single patch, using penalty inter-patch boundary
conditions to give the system a toroidal topology. We also use a six-patch topology and set
the incoming modes to Minkowski on both the inner and outer boundaries. The single patches
have outer boundaries at xi ∈ [−1; +1], the six-patch system has the inner boundary at r = 1.9
and the outer boundary at r = 11.9. We use a Minkowski spacetime as background and add
random noise with an amplitude of 10−8 to all variables. Since the Minkowski spacetime
has no intrinsic scale, this amplitude should be compared to our floating point accuracy of
approximately 10−16. Terms that are quadratic in the noise amplitude have then the same
order of magnitude as floating point inaccuracies.

In the runs shown below, we choose the penalty parameter δ = 0.5. We discretize the
domain with 213, 413 and 813 grid points per patch. We use the D8–4 derivative operator and
its associated KO dissipation with a parameter ε = 0.5. We also use an adaptive Runge–Kutta
time integrator. For comparison, we also show results using a six-patch system with the D6–5

operator, using the same dissipation parameter.

7 We are grateful to O Sarbach for suggesting and insisting on this.
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Figure 11. Robust stability test for the Einstein equations. This graph compares three different
resolutions of a single patch and the six-patch system. Random noise is initially added to all
variables. At late times, the Hamiltonian constraint does not grow with time; the system is strictly
stable. The two runs marked n = 81 and 6p n = 21 have the highest resolutions; we aborted them
before they reached t = 2000, which corresponds to 1000 crossing times for the single patch.

Figure 11 shows the L∞ norm of the Hamiltonian constraint as a function of time. The
constraints remain essentially constant. Note that the constraints do not converge to zero
with increasing resolution, since the random data are different for each run and do not have a
continuum limit.

6.2. One-dimensional gauge wave

One of the most difficult of the Mexico tests [48, 49] is the gauge wave test. This is a
one-dimensional nonlinear gauge wave, i.e. flat space in a non-trivial coordinate system. This
set-up lives in a T 1 domain, i.e. it has again periodic boundaries, which we implement either
as manifestly periodic boundary conditions or as penalty inter-patch boundary conditions. We
use the slightly modified gauge wave which has the line element

ds2 = −H dt2 + H dx2 + dy2 + dz2 (16)

with

H = exp

[
A sin

(
2π(x − t)

L

)]
. (17)

We choose the wave length L to be the size of our domain and set the amplitude A to 0.5.
Our domain is one-dimensional with x ∈ [−1; +1]. Unlike [48], we place grid points

onto the boundaries. We use either 41 or 81 grid points. Figure 12 compares the shape of
the wave form at late times to its initial shape. Our system is stable and very accurate even
after 1000 crossing times when we use manifestly periodic boundary conditions. When we
impose periodicity via penalties, the system is less accurate, and these inaccuracies lead to a
drift which finally leads to a negative g11, which is unstable. With 81 grid points per wave
length, however, our system is both stable and very accurate after 1000 crossing times even
with penalty boundaries.

Standard lore says that a second-order discretization requires one to use at least 20 grid
points per wave length. This would seem to make it excessive to use 81 grid points per
wave length with our fifth-order scheme. However, this is not so. According to Kreiss and
Oliger [38], using 20 grid points per wave length introduces a 10% error for each crossing
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Figure 12. Results for the gauge wave test case, comparing differencing operators and resolutions.
(a) With manifestly periodic boundaries, the system is both stable and highly accurate after 1000
crossing times. (b) With periodicity imposed via penalty boundary conditions, the system is less
accurate and right resolutions are finally unstable after g11 becomes negative. However, with
sufficient resolution and high-order derivatives, our system is still highly accurate after 1000
crossing times.

time, making it impossible to evolve meaningfully for 1000 crossing times. Achieving a 1%
error after 1000 crossing time requires about 2000 grid points for a second-order scheme and
approximately 73 grid points for a fourth-order scheme. Given these numbers, using 81 grid
points for our fifth-order scheme is appropriate.

6.3. Weak gravitational waves

We now consider perturbations of a flat spacetime, using the Regge–Wheeler (RW)
perturbation theory [50], to construct an exact solution to the linearized constraints of Einstein’s
equations, which we evolve with the fully nonlinear equations. We linearize about the
Minkowski spacetime, i.e. we choose a background spacetime with the ADM mass M = 0.

For simplicity, we consider an � = 2,m = 0 odd parity perturbation. The resulting metric
in the Regge–Wheeler gauge and in spherical coordinates is

ds2 = −dt2 + dr2 + r2(sin2 θ dθ2 + dφ2) − 6δr�̇ sin2 θ cos θ dr dφ

− 6δ(� + r� ′) sin2 θ cos θ dt dφ, (18)

where a prime denotes derivative with respect to r and δ is a parameter that determines
the ‘strength’ of the perturbation (not to be confused with the penalty term, for which we
use the same symbol). This metric satisfies the linearized constraints for any functions
�(t = 0, r) and �̇(t = 0, r), and satisfies all the linearized Einstein equations if � satisfies the
Regge–Wheeler equation

�̈ = � ′′ − 6

r2
�. (19)

It is simple to construct a purely outgoing, exact solution to the previous equation:

�(u, r) = d2F

du2
+

3

r

dF

du
+

3

r2
F, (20)

where F(u) is an arbitrary function of u = r − t . The above metric is very similar to the one
in [51], except that ours is in the Regge–Wheeler gauge.
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Figure 14. Hamiltonian constraint violation in the L2
norm as a function of the amplitude of the perturbation for
the highest resolution. This shows the expected quadratic
dependence on the amplitude.

However, we use a different coordinate condition for our evolutions. We construct from
the previous metric initial conditions in Cartesian coordinates for gij ,Kij and dkij . We set the
initial lapse to one and evolve it through the time harmonic slicing condition, and set the shift
to zero at all times.

We now want to check at what point nonlinear effects begin to have an effect on the
constraints. That is, we want to find out what resolutions are required to see that the full,
nonlinear constraints do not actually converge to zero. As initial condition for the function �

and its time derivative we choose

�(t = 0, r) = A exp

(
− (r − r0)

2

σ 2

)
(21)

�̇(t = 0, r) = −2
(r − r0)

σ 2
B exp

(
− (r − r0)

2

σ 2

)
. (22)

The nonlinear constraint violations should have an approximate quadratic dependence on the
amplitude parameter (called A below). Figure 13 quantifies this violation. It displays the L2

and L∞ norms of the nonlinear Hamiltonian constraint, measured in local coordinates, for
different families of initial conditions as a function of resolution. We use the seven-patch
system described in section 4 with the outer boundary at r = 6, while the inner, cubic patch
has an extent of ±1. The initial condition parameters are B = −A, σ = 0.6 and r0 = 3, with
amplitudes δ = 10−1, 10−2, 10−3 and 10−4. We use the D6–5 derivative with N3 grid points
on each patch for N = 21, 41, 81, 161. At the highest resolution, the numerical constraints
reach their non-zero continuum values. This highest resolution corresponds to 24 grid points
per σ in the radial direction. This number is comparable to the coarsest resolutions that we
use in the simulations presented below. This means that those simulations use constraint-
violating initial conditions and cannot expect the constraints to decrease with increasing
resolution.

The nonlinear constraint violation should be approximately a quadratic function of the
amplitude of the perturbation δ, at least for small values of δ. Figure 14 shows that this is



S574 E Schnetter et al

Figure 15. Evolution of weak gravitational waves. This shows the component Kxx of the extrinsic
curvature in the equatorial plane at t = 9.06. The gravitational wave packet started as a spherical
shell approximately in the middle between the inner and outer boundaries and has then split into
two packets which travel outwards and inwards, respectively.
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Figure 16. The left panel shows the Regge–Wheeler function � versus time, comparing the
numerical and the exact solution at r = 40. The agreement is excellent, especially for a three-
dimensional, fully nonlinear code. The right panel shows the scaled differences to the exact solution
for two resolutions with 16×16×1001 and 22×22×1401 grid points. This demonstrates fifth-order
convergence, as should be the case for the D8–4 operator.

indeed the case. It displays the Hamiltonian constraint violation in the L2 norm for the highest
resolution of the previous figure as a function of the amplitude δ. The measured slope is
2.0002. Figure 15 shows a sample evolution of this odd parity initial condition family, using
the six-patch geometry.

In order to evaluate the accuracy of our code, we now choose an initial condition
corresponding to an exact solution of the outgoing type described above. We do so by
choosing

F(u) = exp

(
− (r − r0)

2

σ 2

)
. (23)

In these evolutions, the parameters that determine the initial condition are σ = 1, r0 = 30 and
amplitude δ = 10−3, with inner and outer boundaries at r = 10 and r = 60, respectively.
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We extract the wave forms from the numerical results by calculating the Regge–Wheeler
function at each grid point. We then average over one radial shell. There is no need for
interpolating to a sphere, which simplifies the extraction procedure greatly and probably also
improves its accuracy. Figure 16 shows the numerically extracted �e at r = 40, and compared
to its exact value �, for an evolution using the D8–4 derivative, with the dissipation parameter
ε = 0.05. We used two resolutions with 16 × 16 × 1001 and 22 × 22 × 1401 grid points on
each patch. The agreement is excellent.

7. Conclusions

We have motivated the use of multi-patch systems in general relativity and have described
a generic infrastructure for multi-patch time evolutions. Their main advantages are smooth
boundaries and constant angular resolution, which makes them very efficient for representing
systems requiring high resolution in the centre and having a radiative zone far away. They
may even render fixed mesh refinement unnecessary in many cases.

We use the penalty method for inter-patch boundary conditions. It would equally be
possible to use, e.g. interpolation between the patches. A direct comparison of these different
approaches would be very interesting. Our evolution systems are first-order symmetric
hyperbolic, but second-order systems could be used as well. We use this infrastructure with
high-order finite differencing operators, but other discretizations such as, e.g., pseudo-spectral
collocation methods can also be used. Our infrastructure is based on Cactus and Carpet and
runs efficiently in parallel.

We have discussed the relative advantages of using global and patch-local tensor bases
and we have compared the accuracy and stability of both approaches. We suggest that using
a global basis is substantially more convenient, both in the implementation of the code and in
the post-processing of the generated output.

We have tested this infrastructure with a scalar wave equation on a fixed, stationary
background and with a symmetric hyperbolic formulation of the Einstein equations. We have
shown that our multi-patch system with penalty boundary conditions is robustly stable and
can also very accurately reproduce the nonlinear gauge wave of the Apples with Apples tests,
which has been the most difficult of these tests for other codes.

Finally, we have simulated three-dimensional weak gravitational waves in three
dimensions, using the same nonlinear code, and have accurately extracted the gravitational
radiation. The latter is made especially simple since the wave extraction spheres are aligned
with the numerical grid.

We believe that multi-patch systems, which provide smooth boundaries, will be an
essential ingredient for discretizing well-posed initial-boundary value problems.
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