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Abstract

In this paper we study the dynamics of eigenvalues of the defor-
mation tensor for solutions of the 3D incompressible Euler equations.
Using the evolution equation of the L2 norm of spectra, we deduce
new a priori estimates of the L2 norm of vorticity. As an immediate
corollary of the estimate we obtain a new sufficient condition of L2

norm control of vorticity. We also obtain decay in time estimates of
the ratios of the eigenvalues. In the remarks we discuss what these
estimates suggest in the study of searching initial data leading to a
possible finite time singularities. We find that the dynamical behav-
iors of L2 norm of vorticity are controlled completely by the second
largest eigenvalue of the deformation tensor.
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1 Introduction

We are concerned with the following Euler equations for the homogeneous
incompressible fluid flows in Ω ⊂ R3.

∂v

∂t
+ (v · ∇)v = −∇p, (1.1)

div v = 0, (1.2)

v(x, 0) = v0(x), (1.3)

where v = (v1, v2, v3), vj = vj(x, t), j = 1, 2, 3, is the velocity of the flow,
p = p(x, t) is the scalar pressure, and v0 is the given initial velocity, satisfying
div v0 = 0. For simplicity of presentation we assume Ω = T3, the 3D periodic
box. Most of the results in this paper, however, are valid also in the whole
of R3, or bounded domain with smooth boundary, at least after obvious
modifications. Given m ∈ N ∪ {0}, let Hm(T3) be the standard Sobolev
space on T3,

Hm(T3) = {f ∈ L2(T3) | ‖f‖2
Hm =

∑

|α|≤m

∫

T3

|Dαf(x)|2dx < ∞},

where α = (α1, α2, α3) with |α| = α1 + α2 + α3 is the usual multi-index
notation. We introduce the space of solenoidal vector fields,

Hm
σ = {u ∈ [Hm(T3)]3 | div u = 0}.

Then, for v0 ∈ Hm
σ with m > 5/2, the local in time unique existence of solu-

tion to (1.1)-(1.3), which belongs to C([0, T ];Hm
σ ) for some T = T (‖v0‖Hm),

was established in [17, 22]. This was later extended to the local existence in
various other function spaces by many authors([18, 8, 9, 24, 25, 3, 4, 5, 6]).
The question of finite time blow-up/global regularity of such locally con-
structed solution is one of the most outstanding open problems in the math-
ematical fluid mechanics. For physical meaning and other significance of this
problem as well as many instructive examples of solutions we refer [10, 21].
For a mathematical or numerical test of the actual finite time blow-up of
a given solution, it is important to have a good blow-up criterion. In this
direction there is a celebrated result by Beale-Kato-Majda([2]), now called
the BKM criterion. This criterion is later refined in [19, 6, 9], using refined
versions of logarithmic Sobolev inequalities. As for another approach to the
blow-up criterion, there is a pioneering work on the geometric type of blow-
up criterion due to Constantin-Fefferman-Majda([13])(see also [10]), which
was initiated in [12], and the idea of which was used in the recent works
in [7, 15]. For different type of geometric approach to the blow-up prob-
lem(considering vortex tube initial data) we refer [14]. We also mention a
recent interesting result in [1] for rotating flows, where they discovered that
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rotation has some sense of regularization effect. In this paper we study the
regularity/blow-up problem, using the spectral dynamics of the deformation
tensor for the solution of the Euler equations. Previous spectral approaches
to the singularity problems in the nonlinear partial differential equations are
studied in [20], however their study is not for the real Euler equations, but for
its model equations, avoiding the difficulty of the nonlocality caused by the
Riesz transform appearing in the equations when the pressure is eliminated.
Moreover, their spectrum is for the matrices of the velocity gradient, not for
the deformation tensor, which is the symmetric part of the velocity gradient.
In the next section we derive an evolution equation, in the L2 sense, of the
eigenvalues of the deformation tensor. From this equation we derive new a
priori estimates for the L2 norm of vorticity. The inequality itself already
tells us interesting dynamical mechanism of compression and stretching of in-
finitesimal fluid volume elements leading to possible blow-up. The inequality
immediately leads to very simple and elegant sufficient condition of L2 norm
control of vorticity of the 3D Euler equations. In the section 3 we consider
special classes of initial data. For such initial data we can have better esti-
mates exponential growth/decay of the L2 norm of vorticity. We also deduce
decay estimates in time of a ratio of eigenvalues of the deformation tensor.

2 Dynamics of eigenvalues of the deformation

tensor

We use the following notations for matrix components.

Vij =
∂vj

∂xi

, Sij =
Vij + Vji

2
, Aij =

Vij − Vji

2
,

where i, j = 1, 2, 3. Then, obviously we have Vij = Sij + Aij. For a given 3D
velocity field v(x, t), describing fluid motions, Sij is called the deformation
tensor, while Aij is related to the vorticity field ω = curl v by

Aij =
1

2

3∑

k=1

εijkωk,

where εijk, the skewsymmetric tensor with the normalization ε123 = 1. For
incompressible fluid we have Tr(S) =

∑3
i=1 Sii = div v = 0. We now state

the theorem on the evolutions of the eigenvalues of the deformation tensor
associated with the solution of the Euler system (1.1)-(1.3).

Theorem 2.1 Let λ1(x, t), λ2(x, t), λ3(x, t) be the eigenvalues of the defor-
mation tensor S = (Sij)

3
i,j=1 associated to the classical solution v(x, t) of
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(1.1)-(1.3). Then, the following equation holds.

d

dt

∫

T3

(λ2
1 + λ2

2 + λ2
3)dx = −4

∫

T3

λ1λ2λ3dx. (2.1)

Proof. We take L2 inner product (1.1) with ∆u, and integrate by part to
derive

1

2

d

dt
‖∇v‖2

L2 =

∫

T3

(v · ∇)v ·∆vdx = −
3∑

i,j,k=1

∫

T3

∂vj

∂xk

∂vk

∂xi

∂vj

∂xi

dx

= −
3∑

i,j,k=1

∫

T3

SkjVikVijdx = −
3∑

i,j,k=1

∫

T3

Skj(Sik + Aik)(Sij + Aij)dx

= −
3∑

i,j,k=1

∫

T3

(SkjAikAij + SkjSikSij)dx

= −1

4

3∑

i,j,k=1

∫

T3

Skj

[
3∑

m=1

δkjωmωm − ωjωk

]
dx−

3∑

i,j,k=1

∫

T3

SkjSikSijdx

=
1

4

3∑

j,k=1

∫

T3

Sjkωjωkdx−
3∑

i,j,k=1

∫

T3

SkjSikSijdx. (2.2)

Next, we consider the vorticity equation for the 3D Euler equations,

∂ω

∂t
+ (v · ∇)ω = (ω · ∇)v, (2.3)

which is obtained from (1.1) by taking curl(·) operation. Taking L2 inner
product (2.3) with ω, we obtain, after integration by part,

1

2

d

dt
‖ω‖2

L2 =

∫

T3

(ω · ∇)v · ωdx =
3∑

j,k=1

∫

T3

Sjkωjωkdx. (2.4)

Since we have the equality,
∫

T3

|∇v|2dx =

∫

T3

|ω|2dx, (2.5)

from (2.2) and (2.4) we obtain

1

4

3∑

j,k=1

∫

T3

Sjkωjωkdx−
3∑

i,j,k=1

∫

T3

SkjSikSijdx =
3∑

j,k=1

∫

T3

Sjkωjωkdx,

Hence,
3∑

j,k=1

∫

T3

Sjkωjωkdx = −4

3

3∑

i,j,k=1

∫

T3

SkjSikSijdx. (2.6)
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We also have the following pointwise equality,

|∇v|2 =
3∑

j,k=1

VjkVjk =
3∑

j,k=1

(Sjk + Ajk)(Sjk + Ajk)

=
3∑

j,k=1

(
SjkSjk +

1

4

3∑
m,n

εjkmεjknωmωn

)

=
3∑

j,k=1

SjkSjk +
1

2
|ω|2. (2.7)

Integrating (2.7) over T3, and using (2.5), we obtain

∫

T3

|ω|2dx = 2
3∑

j,k=1

∫

T3

SjkSjkdx = 2

∫

T3

(λ2
1 + λ2

2 + λ2
3)dx. (2.8)

We also observe,

3∑

i,j,k=1

SkjSikSij = λ3
1 + λ3

2 + λ3
3 = 3λ1λ2λ3, (2.9)

which follows from the following algebra, using λ1 + λ2 + λ3 = 0,

0 = (λ1 + λ2 + λ3)
3

= λ3
1 + λ3

2 + λ3
3 + 3λ2

1(λ2 + λ3) + 3λ2
2(λ1 + λ3) + 3λ3(λ1 + λ2) + 6λ1λ2λ3

= λ3
1 + λ3

2 + λ3
3 − 3(λ3

1 + λ3
2 + λ3

3) + 6λ1λ2λ3.

Substituting (2.8) and (2.6), combined with (2.9), into (2.4), we have (2.1).
¤

The following is a new a priori estimate for the L2 norm of vorticity for
the 3D incompressible Euler equations.

Theorem 2.2 Let v(t) ∈ C([0, T );Hm
σ ), m > 5/2 be the local classical so-

lution of the 3D Euler equations with initial data v0 ∈ Hm
σ . Let λ1(x, t) ≥

λ2(x, t) ≥ λ3(x, t) are the eigenvalues of the deformation tensor Sij(v) =
1
2
(

∂vj

∂xi
+ ∂vi

∂xj
). We denote λ+

2 (x, t) = max{λ2(x, t), 0}, and λ−2 (x, t) = min{λ2(x, t), 0}.
Then, the following (a priori) estimates hold.

‖ω0‖L2 exp

[∫ t

0

(
1

2
inf

x∈T3
λ+

2 (x, t)− sup
x∈T3

|λ−2 (x, t)|
)

dt

]
≤ ‖ω(t)‖L2

≤ ‖ω0‖L2 exp

[∫ t

0

(
sup
x∈T3

λ+
2 (x, t)− 1

2
inf

x∈T3
|λ−2 (x, t)|

)
dt

]

(2.10)

for all t ∈ (0, T ).
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Remark 2.1 The above estimate says, for example, that if we have the
following comparability conditions,

sup
x∈T3

λ+
2 (x, t) ' inf

x∈T3
|λ−2 (x, t)| ' g(t)

for some time interval [0, T ], then

‖ω(t)‖L2 . O

(
exp

[
C

∫ t

0

g(s)ds

])
∀t ∈ [0, T ]

for some constant C.

Remark 2.2 We note that λ+
2 (x, t) > 0 implies we have stretching of in-

finitesimal fluid volume in two directions and compression in the other one
direction(planar stretching) at (x, t), while |λ−2 (x, t)| > 0 implies stretch-
ing in one direction and compressions in two directions(linear stretching).
The above estimate says that the dominance competition between planar
stretching and linear stretching is an important mechanism controlling the
growth/decay in time of the L2 norm of vorticity.

Proof of Theorem 2.2 Since λ1 + λ2 + λ3 = 0, and λ1 ≥ λ2 ≥ λ3, we have
λ1 ≥ 0, λ3 ≤ 0, and

|λ2| ≤ min{λ1, |λ3|}. (2.11)

We first observe that from (2.8),
∫

T3

|ω|2dx = 2

∫

T3

(λ2
1 + λ2

2 + λ2
3)dx

= 4

∫

T3

(λ2
1 + λ1λ2 + λ2

2)dx (λ3 = −λ1 − λ2)

= 4

∫

T3

(λ2
2 + λ2λ3 + λ2

3)dx (λ1 = −λ2 − λ3) (2.12)

We estimate the ‘vortex stretching term’ as

−4

∫

T3

λ1λ2λ3dx = −4

∫

T3

λ+
2 λ1λ3dx− 4

∫

T3

λ−2 λ1λ3dx

= 4

∫

T3

λ+
2 λ1(λ1 + λ2)dx− 4

∫

T3

|λ−2 |(λ2 + λ3)λ3dx

= 4

∫

T3

λ+
2 (λ2

1 + λ1λ2)dx− 2

∫

T3

|λ−2 |(2λ2λ3 + 2λ2
3)dx

≤ 4 sup
x∈T3

λ+
2 (x, t)

∫

T3

(λ2
1 + λ1λ2 + λ2

2)dx

−2 inf
x∈T3

|λ−2 (x, t)|
∫

T3

(λ2
2 + λ2λ3 + λ2

3)dx
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= 4 sup
x∈T3

λ+
2 (x, t)

∫

T3

(λ2
1 + λ1λ2 + λ2

2)dx

−2 inf
x∈T3

|λ−2 (x, t)|
∫

T3

(λ2
1 + λ1λ2 + λ2

2)dx, (2.13)

where we used (2.11) and (2.12). This, combined with (2.1) and (2.12), yields

d

dt

∫

T3

|ω(x, t)|2dx ≤
[
2 sup

x∈T3

λ+
2 (x, t)− inf

x∈T3
|λ−2 (x, t)|

] ∫

T3

|ω(x, t)|2dx.

(2.14)
Applying the Gronwall lemma, we have the second inequality of (2.10). In
order to prove the first inequality of (2.10) we estimate from below starting
from equality part of (2.13)

−4

∫

T3

λ1λ2λ3dx = 4

∫

T3

λ+
2 λ1(λ1 + λ2)dx− 4

∫

T3

|λ−2 |(λ2 + λ3)λ3dx

= 2

∫

T3

λ+
2 (2λ2

1 + 2λ1λ2)dx− 4

∫

T3

|λ−2 |(λ2λ3 + λ2
3)dx

≥ 2

∫

T3

λ+
2 (λ2

1 + λ1λ2 + λ2
2)dx− 4

∫

T3

|λ−2 |(λ2
2 + λ2λ3 + λ2

3)dx

≥ 2 inf
x∈T3

λ+
2 (x, t)

∫

T3

(λ2
1 + λ1λ2 + λ2

2)dx

−4 sup
x∈T3

|λ−2 (x, t)|
∫

T3

(λ2
2 + λ2λ3 + λ2

3)dx, (2.15)

where we used (2.11) again. Similarly to the above, combining this with (2.1)
and (2.12), yields

d

dt

∫

T3

|ω(x, t)|2dx ≥
[

inf
x∈T3

λ+
2 (x, t)− 2 sup

x∈T3

|λ−2 (x, t)|
] ∫

T3

|ω(x, t)|2dx,

(2.16)
and, applying the Gronwall lemma we finish the first inequality of (2.10). ¤

Corollary 2.1 Let v0 ∈ Hm
σ be given, and λ1(x, t), λ2(x, t), λ3(x, t) are as in

Theorem 2.2. Suppose

lim sup
t→T∗

‖ω(t)‖L2 = ∞. (2.17)

Then, necessarily ∫ T∗

0

‖λ+
2 (t)‖L∞dt = ∞. (2.18)

Proof. We just observe that from (2.10), we have immediately

‖ω(t)‖L2 ≤ ‖ω0‖L2 exp

(∫ t

0

‖λ+
2 (s)‖L∞ds

)
.
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This implies the corollary. ¤

Remark 2.3 The above corollary says that if singularity happens in the L2

norm of vorticity, then it should be caused by the uncontrollable intensifica-
tion of planar stretching.

Remark 2.4 In the 3D Navier-Stokes equations the L2 norm singularity of
vorticity is equivalent to the that of any high norms in Sobolev space(see e.g.
[23, 11]). Hence, the above corollary says that the regularity/singularity of
the 3D Navier-Stokes equations are controlled by the integral,

∫ t

0
‖λ+

2 (s)‖L∞ds.

Remark 2.5 In [16] the author also investigated another sufficient condition
for the singularity of L2 norm of vorticity of the 3D Euler equations, using
simultaneously the eigenvector and eigenvalues of the deformation tensor and
the hessian of the pressure. Our condition is completely different from it, and
has direct physical interpretation.

3 Applications for some classes of initial data

In order to state our theorem in this section we introduce some defini-
tions. Given a differentiable vector field f = (f1, f2, f3) on T3, we de-
note by the scalar field λi(f), i=1,2,3, the eigenvalues of the deformation
tensor associated with f . Below we always assume the ordering, λ1(f) ≥
λ2(f) ≥ λ3(f). We also fix m > 5/2 below. We recall that if f ∈ Hm

σ , then
λ1(f) + λ2(f) + λ3(f) = 0, which is another representation of div f = 0.

Let us begin with introduction of admissible classes A± defined by

A+ = {f ∈ Hm
σ (T3) | inf

x∈T3
λ2(f)(x) > 0 },

and
A− = {f ∈ Hm

σ (T3) | sup
x∈T3

λ2(f)(x) < 0 }.

Physically A+ consists of solenoidal vector fields with planar stretching(see
Remark 2.2) everywhere, while A− consists of everywhere linear stretching
vector fields. Although they do not represent real physical flows, they might
be useful in the study of searching initial data leading to finite time singu-
larity for the 3D Euler equations.

Given v0 ∈ Hm
σ , let T∗(v0) be the maximal time of unique existence of

solution in Hm
σ for the system (1.1)-(1.3). Let St : Hm

σ → Hm
σ be the solution

operator, mapping from initial data to the solution v(t). Given f ∈ A+, we
define the first zero touching time of λ2(f) as

T (f) = inf{t ∈ (0, T∗(v0)) | ∃x ∈ T3 such that λ2(Stf)(x) < 0}.
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Similarly for f ∈ A−, we define

T (f) = inf{t ∈ (0, T∗(v0)) | ∃x ∈ T3 such that λ2(Stf)(x) > 0}.
The following theorem is actually an immediate corollary of Theorem 2.2,
combined with the above definition of A± and T (f). We just observe that
for v0 ∈ A+(resp. A−) we have λ−2 = 0, λ+

2 = λ2(resp. λ+
2 = 0, λ−2 = λ2) on

T3 × (0, T (v0)).

Theorem 3.1 Let v0 ∈ A± be given. We set λ1(x, t) ≥ λ2(x, t) ≥ λ3(x, t) as
the eigenvalues of the deformation tensor associated with v(x, t) = (Stv0)(x)
defined t ∈ (0, T (v0)). Then, for all t ∈ (0, T (v0)) we have the following
estimates:
(i) If v0 ∈ A+, then

exp

(
1

2

∫ t

0

inf
x∈T3

|λ2(x, s)|ds

)
≤ ‖ω(t)‖L2

‖ω0‖L2

≤ exp

(∫ t

0

sup
x∈T3

|λ2(x, s)|ds

)
.

(3.1)
(ii) If v0 ∈ A−, then

exp

(
−

∫ t

0

sup
x∈T3

|λ2(x, s)|ds

)
≤ ‖ω(t)‖L2

‖ω0‖L2

≤ exp

(
−1

2

∫ t

0

inf
x∈T3

|λ2(x, s)|ds

)
.

(3.2)

Remark 3.1 If we have the comparability conditions,

inf
x∈T3

|λ2(x, t)| ' sup
x∈T3

|λ2(x, t)| ' g(t) ∀t ∈ (0, T (v0)),

which is the case for sufficiently small box T3, then we have

‖ω(t)‖L2

‖ω0‖L2

'





exp

(∫ t

0

g(s)ds

)
if v0 ∈ A+

exp

(
−

∫ t

0

g(s)ds

)
if v0 ∈ A−

for t ∈ (0, T (v0)). In particular, if we could find v0 ∈ A+ such that

inf
x∈T3

|λ2(x, t)| & O

(
1

t∗ − t

)
(3.3)

for time interval near t∗, then such data would lead to singularity at t∗.
Below we have some decay in time estimates for some ratio of eigenvalues.

Theorem 3.2 Let v0 ∈ A± be given, and we set λ1(x, t) ≥ λ2(x, t) ≥ λ3(x, t)
as in Theorem 3.1. We define

ε(x, t) =
|λ2(x, t)|
λ(x, t)

∀(x, t) ∈ T3 × (0, T (v0)), (3.4)
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where we set

λ(x, t) =

{
λ1(x, t) if v0 ∈ A+

−λ3(x, t) if v0 ∈ A−.

Then, there exists a constant C = C(v0, |Ω|), with |Ω| denoting the volume
of the box Ω = T3, such that

inf
(x,s)∈T3×(0,t)

ε(x, s) <
C√
t

∀t ∈ (0, T (v0)). (3.5)

Remark 3.2 Regarding the problem of searching a finite time blowing up
solution, again, the proof of the above theorem, in particular, the estimate
(3.10) below, combined with Remark 2.3, suggests the following, :
Given δ > 0, let us suppose we could find v0 ∈ A+ such that for the associated
solution v(x, t) = (Stv0)(x) the estimate

inf
(x,s)∈T3×(0,t)

ε(x, s) & O

(
1

t
1
2
+δ

)
, (3.6)

holds true, for sufficiently large time t. Then such v0 will lead to the finite
time singularity. In order to check the behavior (3.6) for a given solution we
need a sharper and/or localized version of the equation (2.1) for the dynam-
ics of eigenvalues of the deformation tensor.

Proof of Theorem 3.2 We divide the proof the into two separate cases.

(i) The case v0 ∈ A+:

We parameterize the eigenvalues of the deformation tensor of the solution
v(x, t) of (1.1)-(1.3) by

λ1(x, t) = λ(x, t) > 0, λ2 = ε(x, t)λ(x, t) > 0, λ3(x, t) = −(1+ε(x, t))λ(x, t) < 0.

for all (x, t) ∈ T3 × (0, T ). We observe that

0 < ε(x, t) ≤ 1 ∀(x, t) ∈ T3 × [0, T (v0)). (3.7)

The equation (2.1) can be written as

d

dt

∫

T3

λ2(ε2 + ε + 1)dx = 2

∫

T3

λ3(ε2 + ε)dx ∀t ∈ (0, T (v0)). (3.8)

From the estimate∫

T3

λ2(ε2 + ε + 1)dx =

∫

T3

λ2(ε2 + ε)
2
3
(ε2 + ε + 1)

(ε2 + ε)
2
3

dx

≤
[∫

T3

λ3(ε2 + ε)dx

] 2
3
[∫

T3

(ε2 + ε + 1)3

(ε2 + ε)2
dx

] 1
3

≤ 3
3
√

4

[∫

T3

1

ε4
dx

] 1
3
[∫

T3

λ3(ε2 + ε)dx

] 2
3

,

10



where we used (3.7), we have

∫

T3

λ3(ε2 + ε)dx ≥ 2√
27

[∫

T3

1

ε4
dx

]− 1
2
[∫

T3

λ2(ε2 + ε + 1)dx

] 3
2

dx,

which, combined with (3.8), yields

d

dt

∫

T3

λ2(ε2 +ε+1)dx ≥ 4√
27

[∫

T3

1

ε4
dx

]− 1
2
[∫

T3

λ2(ε2 + ε + 1)dx

] 3
2

. (3.9)

Setting

y(t) =

[∫

T3

λ2(ε2 + ε + 1)dx

] 1
2

,

we have
dy

dt
≥ 2√

27

[∫

T3

1

ε4
dx

]− 1
2

y2.

Solving the differential inequality, we have

y(t) ≥ y0

1− 2y0√
27

∫ t

0

[∫
T3

1
ε4 dx

]− 1
2 ds

.

Since y2(t) = 1
2
‖ω(t)‖2

L2 , we have just derived

‖ω(t)‖L2 ≥
√

2‖ω0‖L2

√
2− 2‖ω0‖L2√

27

∫ t

0

[∫
T3

1
ε4 dx

]− 1
2 ds

∀t ∈ [0, T (v0)).

Since the denominator should be positive for all t ∈ [0, T (v0)], we obtain that

2‖ω0‖L2√
27

∫ t

0

[∫

T3

1

ε4
dx

]− 1
2

ds <
√

2.

Estimating from below the left hand side, we are lead to the inequality

t inf
(x,s)∈T3×(0,t)

ε2(x, s) ≤ |Ω| 12
∫ t

0

[∫

T3

1

ε4
dx

]− 1
2

ds <

√
27|Ω| 12√
2‖ω0‖L2

, (3.10)

which implies (3.5) for the case v0 ∈ A+.

(ii) The case v0 ∈ A−:

In this case parameterize the eigenvalues as

λ1(x, t) = (1 + ε(x, t))λ(x, t) > 0, λ2 = −ε(x, t)λ(x, t) > 0
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λ3(x, t) = −λ(x, t) > 0,

where as previously we have 0 < ε(x, t) ≤ 1 for all (x, t) ∈ T3 × (0, T (v0)).
The equation (2.1) can now be written as

d

dt

∫

T3

λ2(ε2 + ε + 1)dx = −2

∫

T3

λ3(ε2 + ε)dx. (3.11)

Similarly to the above, we obtain

d

dt

∫

T3

λ2(ε2 + ε + 1)dx ≤ − 2√
27

[∫

T3

1

ε4
dx

]− 1
2
[∫

T3

λ2(ε2 + ε + 1)dx

] 3
2

.

(3.12)
Hence, by similar procedure to the previous case, we have

‖ω(t)‖L2 ≤
√

2‖ω0‖L2

√
2 +

2‖ω0‖L2√
27

∫ t

0

[∫
T3

1
ε4 dx

]− 1
2 ds

. (3.13)

Now we recall the helicity conservation(see e.g. [21]),

H(t) =

∫

T3

v(x, t) · ω(x, t)dx =

∫

T3

v0(x) · ω0(x)dx = H0,

which implies

H0 ≤ ‖v(t)‖L2‖ω(t)‖L2 = ‖v0‖L2‖ω(t)‖L2 =
√

2E0‖ω(t)‖L2 , (3.14)

where we used the energy conservation

E(t) =
1

2
‖v(t)‖2

L2 =
1

2
‖v0‖2

L2 = E0.

Combining (3.13) with (3.14), we have

H0√
2E0

≤
√

2‖ω0‖L2

√
2 +

2‖ω0‖L2√
27

∫ t

0

[∫
T3

1
ε4 dx

]− 1
2 ds

,

from which we derive
∫ t

0

[∫

T3

1

ε4
dx

]− 1
2

ds ≤
√

27

(√
E0

H0

− 1√
2‖ω0‖L2

)
. (3.15)

Estimating from below the left hand side of (3.15), we deduce

t inf
(x,s)∈T3×[0,s]

ε2(x, s) ≤
√

27|Ω| 12
(√

E0

H0

− 1√
2‖ω0‖L2

)
(3.16)

for all t ∈ (0, T (v0)). This finishes the proof of (3.5) for v0 ∈ A−. ¤
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