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Abstract. Although many techniques have been developed to resolve the classical Gibbs phe-
nomenon, only Gegenbauer reconstruction achieves high resolution recovery of the function up to the
points of discontinuity. Unfortunately, due to the poor conditioning of the Gegenbauer polynomials,
the method suffers both from numerical round-off error and the Runge phenomenon. In some some
cases the method fails to converge, [3] and [9]. Following the work in [14], a more general framework
for reprojection methods is introduced here. From this insight we propose an additional requirement
on the reprojection basis which ameliorates the limitations of Gegenbauer reconstruction. The new
robust Gibbs complementary basis yields a reliable exponentially accurate resolution of the Gibbs
phenomenon up to the discontinuities.
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1. Introduction. Spectral methods using either orthogonal polynomial or Fourier
series expansions yield highly accurate approximations for smooth (and periodic in
the Fourier case) functions. It is in part for this reason that they have become pop-
ular for such applications as partial differential equations as well as signal and image
processing. However, when functions are only piecewise smooth (and/or non-periodic
in the Fourier case), the accuracy of spectral methods is reduced to first order away
from discontinuities, and spurious O(1) oscillations form as the jump discontinuities
are approached. This behavior is the well known Gibbs phenomenon, and its removal
has been the subject of many investigations.

One particularly effective technique for combating the Gibbs phenomenon is the
Gegenbauer reconstruction method, developed in [15] and expanded in a series of
papers (see [13] for references). The method reprojects the original global truncated
series approximation onto the Gegenbauer polynomials in smooth sub-intervals. The
popularity of this method is due to its ability to recover exponential accuracy in the
case of piecewise analytic functions. In particular, unlike classical filters often used
for alleviating the Gibbs oscillations, the Gegenbauer reconstruction method yields
exponential accuracy up to the edges of each smooth sub-interval.

The general theory for obtaining spectral convergence of a piecewise analytic
function from a spectral series expansion can be found in [14], where the requirements
for a new projection basis are given as follows:

1. For a function analytic on the interval [−1, 1], the function’s expansion in the
orthogonal reprojection basis is exponentially convergent.
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2. The projection of the high modes in the original basis on the low modes in
the new basis is exponentially small.

These two requirements define the new projection basis as a Gibbs complement, which
will be discussed further in §2 and §3.

The first requirement is easily motivated and accomplished. Clearly orthogonal
polynomials, such as Chebyshev or Legendre polynomials, are well suited for approxi-
mating analytic functions in an interval (via linear transformation to [−1, 1]), as they
yield exponential convergence for analytic functions. The second requirement mea-
sures the error due to having limited information about the original function, i.e., its
truncated series approximation. Although easily understood, it is this requirement
that causes added complications. As was discovered originally in [15], under certain
conditions the Gegenbauer polynomials satisfy this second requirement, rendering it a
suitable basis for reprojection. However, as indicated in the more general theory given
in [14], the Gegenbauer polynomials serve only as an example of a Gibbs complemen-
tary basis. The purpose of this paper is to study other possible Gibbs complements
that offer advantages over the traditional Gegenbauer reconstruction method. In par-
ticular we seek to address the most notable difficulties in the Gegenbauer reconstruc-
tion method, specifically its extrapalatory nature which causes round-off error and the
generalized Runge phenomenon, as termed in [3]. This is especially problematic when
the proximity of an off-axis singularity is less than 1. Although some compensating
techniques have been successfully applied, [9] and [10], the consequences are that for
some functions spectral accuracy is compromised, and in the most severe cases, the
method will fail to converge when implemented numerically.

Hence in this paper we reject the use of the Gegenbauer polynomials as a re-
projection basis and develop an alternative Gibbs complementary basis that is less
susceptible both to round-off error as well as to the Runge phenomenon. Moreover, we
introduce a generalization of the theory developed in [14] which makes the selection of
a Gibbs’ complement basis more transparent, and as a result allows for an improved
understanding as to how to achieve the desirable properties of a reprojection basis.
This insight suggests the following additional requirement for a Gibbs complement:

3. As the order of the original projection N increases, the weight function of the
reprojection basis converges to a weight function whose associated orthogonal
polynomial family satisfies the first requirement of a Gibbs complement.

We refer to a reprojection basis that satisfies requirements 1 through 3 as a ro-

bust Gibbs complement. The fundamental difference between the Gegenbauer
polynomial basis and a robust Gibbs complement is seen in the limit as the origi-
nal basis projection order N goes to infinity. As discussed in [3], the Gegenbauer
projection approaches the power series expansion, which is guaranteed to converge
for x ∈ [a, b] only when the underlying function is analytic in the complex domain
disk {z : |z − (b + a)/2| ≤ (b − a)/2}. In contrast, it will be shown in §3 that the
convergence properties of a robust Gibbs complementary basis expansion approaches
that of the limiting basis in the third requirement, and by definition this expansion
converges exponentially for any function analytic on the real interval [a, b], [13]. This
fundamental difference indicates that robust Gibbs complements yield the desired ex-
ponential convergence for any piecewise analytic function, whereas the Gegenbauer
reconstruction method is only convergent for a subset of piecewise analytic functions,
even as the limit is approached.

The paper is organized as follows: In §2 we review the Gegenbauer reconstruction
method and determine the causes of the aforementioned difficulties. This discussion
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will motivate the the properties of a new (family of) reprojection bases, the robust
Gibbs complements, which we discuss in §3 and design in §3.2. For simplicity of
presentation, we limit our discussion to the most widely used case where the original
basis is the complex exponentials, i.e., the truncated Fourier series or trigonometric
interpolant, and note that the techniques described here should generalize easily to
other truncated global series approximations. In §4 several numerical examples are
illustrated, including cases where the off-axis singularity proximity to [−1, 1] is less
than 1. Our results are summarized in §5, and future research proposed.

2. The Gegenbauer Reconstruction Method. In order to motivate the rest
of our paper, we describe the Gegenbauer reconstruction method and note its strengths
and weaknesses.

Let f(x) ∈ L2[−1, 1] be a piecewise analytic function, and let [a, b] ⊂ [−1, 1] be
one of the analytic sub-intervals. We wish to approximate f(x) in [a, b] from either
its truncated Fourier series

SNf(x) :=
∑

|k|≤N

f̂ke
iπkx, with f̂k :=

1

2

∫ 1

−1

f(x)e−iπkx, (2.1)

or trigonometric interpolant1

INf(x) :=
∑

|k|≤N

′ f̃ke
iπkx, with f̃k :=

1

2N

N−1
∑

ν=−N

f
( ν

N

)

e−iπkν/N . (2.2)

It is well known that SNf(x) and INf(x) are poor approximations of f(x) in the
smooth sub-interval [a, b] with spurious Gibbs oscillations prevalent near the bound-
aries of the interval and order O( 1

N ) accuracy in the interior of the interval. However,
as was shown in [15] and subsequent papers (see [13] for references), it is possible
to reconstruct f(x) with exponential accuracy in the maximum norm over the re-
gion of smoothness, [a, b], by reprojecting either (2.1) or (2.2) using the Gegenbauer
polynomials defined below.

Definition 2.1. The Gegenbauer polynomials Cλ
n(x) for λ ≥ 0 are the polyno-

mials of degree n with normalization Cλ
n(1) = Γ(n+ 2λ)/n!Γ(2λ) that are orthogonal

with respect to the weighted L2[−1, 1] inner product

∫ 1

−1

(1 − x2)λ− 1
2Cλ

k (x)Cλ
n (x)dx = 0, k 6= n. (2.3)

The weighted norm of Cλ
n(x) is given by

∫ 1

−1

(1 − x2)λ− 1
2Cλ

n(x)Cλ
n (x)dx =

√
πCλ

n(1)
Γ(λ+ 1

2 )

Γ(λ)(n + λ)
=: hλ

n, (2.4)

and we designate the normalized Gegenbauer polynomials as

Φλ
l (x) =

1
√

hλ
l

Cλ
l (x). (2.5)

1The ′ on the summation in equation (2.2) is the standard notation that the first and last elements
in the sum should be divide by 2.
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Before detailing the convergence properties of Gegenbauer series we categorize
analytic functions in terms of their extension into the complex plane. Let f(x) be an
analytic function for x ∈ [−1, 1]. Then there exists some constant 0 ≤ r0 < 1 such that
the function has a unique analytic extension onto the complex plane for the elliptical
region (see e.g. [13])

Dρ := {z : 2z = reiθ + r−1e−iθ, 0 ≤ θ ≤ 2π, r0 ≤ r ≤ 1}. (2.6)

The truncated Gegenbauer series expansion of f(x) is defined as

Gλ
m(f)(x) :=

m
∑

l=0

f̂λ
G(l)Φλ

l (x), (2.7)

where

f̂λ
G(l) :=

∫ 1

−1

(1 − x2)λ− 1
2 Φλ

l (x)f(x)dx. (2.8)

The series converges at the exponential rate

max
x∈[−1,1]

∣

∣f(x) −Gλ
m(f)(x)

∣

∣ ≤ Const ·m
√

m+ λ

m

√

(m+ 2λ)m+2λ

mm(2λ)2λ
rm, (2.9)

where r is as defined in (2.6). This establishes that the Gegenbauer polynomials
satisfy the first Gibbs complement requirement listed in §1.

To apply the local Gegenbauer reprojection of SNf(x) (2.1) in the region of
smoothness [a, b], we make the linear transformation of x ∈ [a, b] to ξ ∈ [−1, 1],

ξ = −1 + 2
x− a

b− a
, (2.10)

and apply the reprojection Gλ
m(SNf)(ξ(x)). We note that a similar reprojection

Gλ
m(INf)(ξ(x)) can be formed when the trigonometric interpolant (2.2) is given, and

is discussed in §3.1.
The error for Gegenbauer reconstruction can be decomposed into two parts,

f(x) −Gλ
m(SNf)(ξ(x)) ≡ f(x) −Gλ

m(f)(ξ(x)) +Gλ
m(f − SNf)(ξ(x)). (2.11)

The first component has already been shown in (2.9) to decay exponentially in m for
any fixed value of λ. The second term can be bounded by [15]

‖Gλ
m(f − SNf)‖L∞(a,b) ≤ Cm,λ ·

(

2(λ− 1)

eπN

)λ−1(

1 +
m

2λ+ 1

)2λ (

1 +
2λ

m− 1

)m− 1
2

(2.12)
where Cm,λ := Const · (m + λ)

√

(2λ− 1)(λ− 1) grows slowly. For λ fixed, this

second error component only decays approximately at the rate ( m2

N )λ. Hence the
Gegenbauer reconstruction can achieve at most a fixed order of accuracy for λ fixed.
Exponential decay of (2.12) in N requires that both the Gegenbauer projection degree
m and weight order λ be selected proportional to N , [15]. Although the second
requirement for the Gibbs complement is now satisfied, such a restriction severely
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inhibits the convergence rate in (2.9). Specifically, it was shown in [13] that to ensure
the exponential convergence of (2.9) with λ = γm ∼ N , it was sufficient to select γ
small enough such that

(1 + 2γ)
1+2γ

2

(2γ)γ
r < 1,

where r is as defined in (2.6). Recently it was demonstrated in [3, 10] that it is in fact
necessary to have γ sufficiently small, otherwise the Gegenbauer series will diverge for
part of the interval [a, b]. Although techniques have been developed in [9] and [10] to
properly select the function dependent Gegenbauer parameters m and λ, the problem
is more fundamental. For the Gegenbauer polynomials to satisfy both requirements
of a Gibbs complement it is necessary to link the parameters λ = γm ∼ N . As a
result, the Gegenbauer series converges to the power series expansion as N approaches
infinity, [3]. This is a direct consequence of the Gegenbauer weight

wλ
G(ξ) := (1 − ξ2)λ− 1

2 (2.13)

becoming increasingly concentrated at the origin, which causes the projection to be-
come more extrapalatory. Consequently, for Gegenbauer reconstruction with λ =
γm ∼ N , in the limit as N ↑ ∞, convergence can only be guaranteed for functions
which are analytic in the complex domain disk {z : |z − (b+ a)/2| ≤ (b− a)/2}.

To summarize the previous discussion, the susceptibility of the Gegenbauer re-
construction method to both round-off error and the Runge phenomenon can dramat-
ically impair its convergence properties. Not only is accuracy reduced, but in some
cases the method fails to converge at all. These weaknesses are attributed to the
weight function for the Gegenbauer reconstruction, (2.13), having the requirement
that λ ∼ N . Figure 2.1(a) displays how this weight function becomes more localized
to the origin as λ increases. The resulting interpolation becomes more extrapalatory,
causing the generalized Runge phenomenon discussed in [3]. In fact, it was proven in
[3] that as the Gegenbauer weight parameter λ increases, the truncated Gegenbauer
expansion approaches the power series approximation which is purely extrapalatory.
An additional consequence, exhibited in Figure 2.1(b), is that the amplitude of the
Gegenbauer polynomials grow rapidly, particularly as the boundaries x = ±1 are ap-
proached. Hence the corresponding Gegenbauer coefficients (2.8) must decrease to
values smaller than machine epsilon. The combination of large amplitude polyno-
mials and extremely small coefficients leads to substantial round-off errors for even
“moderate” values of m and λ, [9].

Since clearly the problems with the Gegenbauer reconstruction method are due
to the localization of the weight function to the origin and subsequent growth of the
Gegenbauer polynomials, it is desirable to develop new reprojection bases. In addition
to the first two requirements for Gibbs complements listed in §1, to alleviate the Runge
phenomenon any new reprojection basis must approach a basis that is exponentially
convergent for any function analytic on [−1, 1], i.e. the third requirement yielding
a robust Gibbs complement on page 2. Such bases will have corresponding weight
functions that are not arbitrarily localized at the center, and consequently generate
polynomials that are well conditioned in terms of their amplitudes.

not admit polynomials with very large amplitudes.
Although we do not know how to obtain the optimal weight function, or even if

there is one, we observe that a natural choice is one that uniformly weights as much
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Fig. 2.1. (a) The Gegenbauer weight (1−ξ2)λ−1/2 becoming increasingly narrow for increasing
λ = 4, 8, and 12. (b) The amplitude of the Gegenbauer polynomials shown as contour lines of
log10 max |Φλ

l (ξ)| for ξ ∈ [−1, 1]. The horizontal axis represents the weight order λ, and the vertical
axis represents the polynomial order l. Note the rapid increase in the polynomial amplitude for both
parameters.

of the region of smoothness as possible. For example, we seek a weight w(ξ) such that
w(ξ) = 1 for a large portion of the interval and then smoothly decays to be nearly
zero at ξ = ±1. This will be quantified in §3, where we introduce a generalization of
the error for a general reprojection as discussed in [14]. We then construct a family
of weights that yield both finite order and root exponential convergence rates. The
family of weights culminates with the construction of an analytic weight, the Freund
weight. We show that the corresponding Freund polynomial basis is a robust Gibbs
complement yielding true exponentially convergent reconstructions.

It is important to note that the Gibbs complementary basis does not have to
be a family of polynomials. However, to simplify the design and analysis of the
reconstruction method, we will consider only polynomial choices.

3. A Robust Gibbs Complementary Basis. Consider a function f(x) ∈
L2[−1, 1] that is analytic on an interval [a, b] ⊂ [−1, 1]. We seek a high resolution
approximation of f(x) for x ∈ [a, b] from either its truncated Fourier series (2.1)
or trigonometric interpolant (2.2). Rather than using Gegenbauer polynomials, we
formulate the reconstruction in terms of a general localized reprojection. To simplify
the exposition we now focus on the recovery from the truncated Fourier series (2.1),
and later in §3.1 we detail the minor modifications required when the given data is
the trigonometric interpolant (2.2).

We consider a family of robust Gibbs complementary bases {Ψn
l }M

l=0 which are
orthonormal for the wn(·) weighted L2[−1, 1] inner product. The truncated series
expansion of a function in terms of a robust Gibbs complementary basis is given by

Pn
M (f)(x) :=

M
∑

l=0

f̂n(l)Ψn
l (x), (3.1)

where

f̂n(l) :=

∫ 1

−1

Ψn
l (x)wn(x)f(x)dx. (3.2)

Using the linear transformation (2.10), we reproject the Fourier series (2.1) to
the local region of smoothness [a, b] to obtain P n

M (SNf)(ξ(x)). The error after the
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reprojection can then be decomposed to separate the effects of the limited informa-
tion in the original spectral projection, SNf(x), and the convergence properties of
the new basis, {Ψn

l (·)}M
l=0. Specifically, by adding and subtracting the truncated

approximation of the exact function in terms of the new basis, we arrive at

Err[a,b](M,N, f, n) := f − P n
M (SNf) = f − P n

Mf + Pn
M (f − SNf)

=: Trun[a,b](M, f, n) +Orth[a,b](M,N, f, n). (3.3)

The first error component, the truncation error, is controlled entirely by the conver-
gence properties of the new basis, not on the degree of the original projectionN . (This
error was originally called the regularization error in [15].) The second component is
a measure of the near orthogonality of the spaces P n

M and I − SN .
To bound the truncation error, recall the first requirement of a Gibbs complement

implies that for every f(·) analytic on [a, b] there exists some ρ(f, n) ≡ ρn > 1 and
C(M,n) such that

∣

∣Trun[a,b](M, f, n)
∣

∣ ≤ max
ξ∈(−1,1)

|f(ξ) − P n
M (f(ξ))| ≤ C(M,n) · ρ−M

n , (3.4)

where C(M,n) is at most O(max(M,n)β) for finite β > 0. Examples of a basis where
this exponential convergence is obtained include the Gegenbauer polynomials for a
fixed weight order λ, or more generally, any basis where Ψn

l (·) is a polynomial of
degree l that is orthogonal under a weight that is strictly positive for all but a set of
measure zero in [−1, 1], i.e., wn(ξ) > 0 a.e., [6].

We now turn to the orthogonality error which quantifies the effects of possessing
only a limited amount of information about the function of concern, f(·). This is
realized by measuring the orthogonality of the reprojection space P n

M and the space
containing the information about the function we seek to recover that is not known,
I −SN , which being small indicates that the reprojection does not attempt to utilize
the unknown information. Hence, the second requirement for a Gibbs complementary
indicates that the orthogonality error will decay exponentially. The technique used
to enforced this decay for a given reprojection weight is to bound the error by

Orth[a,b](M,N, f, n) := P n
M (f − SNf)

=
M
∑

l=0

Ψn
l (ξ)

∫ 1

−1

wn(y)Ψn
l (y)(f(x(y)) − SNf(x(y)))dy

=

M
∑

l=0

∑

|k|>N

f̂kΨn
l (ξ)

∫ 1

−1

eiπkx(y)wn(y)Ψn
l (y)dy (3.5)

where the unacceptably slowly decaying Fourier coefficients, f̂k, are weighted by the
inner product

∫ 1

−1

eiπkx(y)wn(y)Ψn
l (y)dy = eiπk(b+a)/2

∫ 1

−1

ei kπ(b−a)
2 ywn(y)Ψn

l (y)dy. (3.6)

Note that (3.6) is simply the Fourier coefficient of wn(y)Ψn
l (y),

ŵnΨn
l (κ) =

∫ 1

−1

wn(y)Ψn
l (y)e−iπκydy, (3.7)
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where we have defined an effective coefficient number κ := −k b−a
2 , which is k scaled

by the fraction length of the interval, b−a
2 . The orthogonality error is dictated by

∣

∣Orth[a,b](M,N, f)
∣

∣ ≤
M
∑

l=0

∑

|k|>N

|f̂k| ‖Ψn
l ‖L∞[−1,1]

∣

∣

∣

∣

ŵnΨn
l

(

−k b− a

2

)∣

∣

∣

∣

, (3.8)

where the decay of |ŵnΨn
l (κ)| can be controlled by the smoothness of the underlying

weight function, [11]. As stated in §2, the portion of the Gegenbauer reconstruction
error which corresponds to the orthogonalization error (2.12) only decays exponen-
tially in N if the Gegenbauer weight order n = λ is selected proportional to N . This
is a direct consequence of the finite regularity of the Gegenbauer weight (2.13) when
extended periodically by zero. Hence there is only a finite order decay of (3.7). Un-
fortunately, as a result of λ increasing with N , the Gegenbauer series approaches the
power series, [3]. The overall consequence being that for the Gegenbauer polynomi-
als, the limit of the decay constants in the truncation error (3.4) approaches one, i.e.,
ρλ ↓ 1 as λ ↑ ∞. Moreover, this implies that the Gegenbauer reconstruction method is
only guaranteed to converge in the reprojected interval [a, b] if the function is analytic
in the complex domain disk {z : |z − (b + a)/2| ≤ (b− a)/2}, rather than just being
analytic on the strip [a, b].

To avoid this pitfall we impose an additional constraint in constructing a robust
Gibbs complementary; that is that the non-negative weight functions wn(·) converge
to a weight function w∞ whose associated orthogonal polynomials {Ψ∞

l }M
l=0 form a

basis that satisfies the first requirement of being a Gibbs complement. This require-
ment enforces that the convergence properties of the new reprojection basis converge
to those of polynomials which are orthogonal with respect to the weight w∞, i.e., in
(3.4) we have ρn → ρ∞ > 1. This is easily proven inductively by repeated application
of the dominated convergence theorem, [5]. Relying on the property that every fixed
element of the Gibbs complementary basis and limiting basis is bounded in [−1, 1],
which is a property satisfied by orthogonal polynomial bases. However, the proof
does not hold for the Gegenbauer basis as λ ↑ ∞ since the weights (2.13) approach
a function that is zero almost everywhere. As a result, the limiting weight does not
have an associated set of orthogonal polynomials. Rather, it was shown in [3] that as
λ increases, the Gegenbauer polynomials Φλ

l (x) converge to clx
l for some constant cl,

and the Gegenbauer coefficients f̂λ
G(l) converges to 1

l!cl
f (l)(0). These combined results

show that for increasing λ, the Gegenbauer series expansion of a function converges
to its power series, resulting in the generalized Runge phenomenon.

On the other hand, the convergence properties of a robust Gibbs complementary
basis approach those of the limit basis which does not suffer from the Runge phe-
nomenon. Hence for sufficiently large original projection order N , the reprojection
will yield an accurate approximation of a function once the reprojection polynomial
order M is sufficiently large to resolve it. We compile the properties of a robust Gibbs
complement in the following definition:

Definition 3.1. A robust Gibbs complementary basis satisfies the follow-

ing properties:

1. For a function analytic on the interval [−1, 1], the expansion of the function

in the orthogonal reprojection basis is exponentially convergent.

2. The projection of the high modes in the original basis on the low modes in the

new basis is exponentially small.

3. As the order of the original projection N increases, the weight function of the
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orthogonal reprojection basis converges to a weight whose associated orthogo-

nal polynomial basis satisfy the first requirement.

We note in the third requirement that the weight function has parameters that
depend on the order of original projection terms N . Hence we are really referring to
a family of weight functions rather than one particular weight function.

Before constructing examples of robust Gibbs complements we detail the minor
modification in the analysis when given the trigonometric interpolant (2.2) rather
than the spectral projection (2.1).

3.1. Approximation of a piecewise smooth function from its equidistant

samples. The reprojection method proposed above for the recovery of a function from
its truncated Fourier series works equally well when the given information consists
of equi-distant samples, or equivalently the trigonometric interpolant of the function,
(2.2). The reprojection P n

m(SNf)(x(ξ)) is simply replaced by

Pn
M (INf(x(ξ))) =

M
∑

l=0

ÎNfn
l Ψn

l (x(ξ)), (3.9)

where

ÎNfn
l :=

∫ 1

−1

Ψn
l (ξ)wn(ξ)INf(x(ξ))dξ.

The error is again decomposed into the truncation and orthogonalization error in
the same fashion as (3.3). The truncation error is unchanged, but f̂k is replaced
by f̃k in the orthogonalization error bound (3.8). As before, the fundamental issues
determining the convergence are the convergence properties of the new basis and the
near orthogonality of the spaces P n

M and I − IN ≡ I − SN . In fact, a slightly larger

orthogonality error bound achieved by using |f̂k|, |f̃k| ≤ ‖f‖L1[−1,1],

∣

∣Orth[a,b](M,N, f, n)
∣

∣ ≤ ‖f‖L1[−1,1]

M
∑

l=0

∑

|k|>N

| ‖Ψn
l ‖L∞[−1,1]

∣

∣

∣

∣

ŵnΨn
l

(

−k b− a

2

)∣

∣

∣

∣

,

(3.10)
is valid for either the recovery from the truncated Fourier series or the trigonometric
interpolant. We now turn to constructing an example of a robust Gibbs complement
which suffers little from round-off errors.

3.2. An example of a robust Gibbs complement. Before constructing an
example of a robust Gibbs complement we list two additional desirable properties for
the weight function of a reprojection basis: first, that it utilizes as much of the region
of smoothness as possible, and second, that the maximum amplitude of the associated
low order reprojection polynomials (l = 0, 1, . . . ,M) at most only slowly increases with
the order of the polynomial. The reason for the first property is to incorporate in
the reprojection as much information about the smooth portion of the function as
possible. The second property is selected both to decrease the orthogonality error
in the bound (3.8), as well as to make the reprojection less susceptible to numerical
round-off error. In particular, for the Gegenbauer polynomials it has been shown
that the rapid decay of the coefficients (3.7) is sufficient to overcome the growth
of the Gegenbauer polynomials magnitude, resulting in an exponentially decaying
orthogonality error, [13]. Yet in numerical implementations, round-off error causes
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the decay of (3.7) to be truncated at machine epsilon (see e.g. [9]). This limits
the number of terms available in the reprojection, M , and as a result reduces the
achievable accuracy in the reconstruction. Moreover, as is apparent from Figure
2.1(b), for moderately oscillatory functions the number of terms required to resolve
the function can become large, resulting in the poorly conditioned polynomials due
to λ ∼ N .

These two desirable properties are intimately related, and in addition to satisfy-
ing the third requirement of a robust Gibbs complement, can be achieved by selecting
a weight function for a reprojection basis that will approach χ(−1,1) as the original
projection order N increases. As the weight goes toward χ(−1,1), the convergence
properties of the robust Gibbs complement approaches that of the Legendre polyno-

mials, w
1/2
G = χ(−1,1), which is well known to yield exponential convergent truncated

series approximations for analytic functions on [−1, 1]. As a consequence of this nearly
uniform weight, the corresponding polynomials also maintain a significantly smaller
maximum amplitude than do the Gegenbauer polynomials. Moreover, later we con-
struct a weight where the maximum amplitude for a fixed degree polynomial decreases

as the projection order N increases. This property then suggests that the growth rate
of the reprojection basis, where the degree of the polynomial M grows with N , is
“moderate enough” so that round-off error does not become an inhibiting factor. We
note that although clearly some classical orthogonal polynomials have weights which
nearly uniformly weight the region of smoothness, such as the Legendre polynomials
with weights (2.13) for λ = 1

2 , they do not satisfy the second requirement of being
Gibbs complementary [13]. Rather than use the Legendre weight directly, we develop
a family of weights that converge to the Legendre weight, yet which satisfy the second
property of a Gibbs complement.

3.2.1. Reconstruction bases from finitely regular weight functions. Be-
fore constructing a robust Gibbs complementary basis, we briefly describe how a
family of alternative finite order bases can be developed, i.e., we relax the first re-
quirement of a Gibbs complementary and seek to recover only finite order accuracy.
As mentioned before, although it is attractive to use the Gegenbauer weight (2.13)
and corresponding Gegenbauer polynomials as a family of reprojection bases, they
are not robust in reconstruction. This lack of robustness becomes most striking when
considering the diagonal limit, where the weight and polynomial orders, λ and M
respectively, grow proportionally with the degree of the original projection N [3].
As proposed in [9], this problem can be alleviated by relaxing the second condition
of the Gibbs complement from being exponentially convergent to being only finitely
convergent. The Gegenbauer polynomials are still used in reconstruction, but m and
λ are limited to reduce the effects of round-off error, resulting in fixed finite order
approximations. Although this strategy can be implemented successfully, using the
Gegenbauer reconstruction method for finite order accuracy is computationally in-
efficient. From the discussion above we recognize that other weights can be more
simply constructed and will in addition have the advantage of satisfying the third
requirement of a robust Gibbs complement. The reconstruction methods produced
from these finite order weights are better conditioned and less susceptible to round-off
error than the Gegenbauer weights (2.13). Examples of weights that generate such
finite order robust Gibbs complements are

wc(ξ) :=

{

1, |ξ| ≤ ξ0,
c(ξ), ξ0 < |ξ| ≤ 1,

(3.11)
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with c(·) selected to smoothly connect one for |ξ| ≤ ξ0 to zero for |ξ| > 1. Such
functions have been developed in the construction of classical filters, with the most

common being the raised cosine, crc(ξ) := 1
2

(

1 + cos
(

π ξ−ξ0

1−ξ0

))

, and sharpened raised

cosine, csrc(ξ) := c4rc(ξ)(35− 84crc(ξ)+70c2rc(ξ)− 20c3rc(ξ)). Furthermore, the weight
can be designed to approach χ(−1,1) by selecting the translate ξ0 to approach one as
the original projection order increases, i.e. ξ0 ↑ 1 as N ↑ ∞.

We add that such a reprojection basis designed to recover a finite order ap-
proximation has certain advantages over the classical non-adaptive filtered Fourier
reconstruction. Specifically, the L∞ error will maintain the finite order of the recon-
struction throughout the interval, i.e., the approximation near the end points will not
deteriorate as it does for filtered reconstructions. While there are many applications
where a finite order reconstruction is “good enough”, our goal here is to design weights
to satisfy all of the robust Gibbs complement requirements.

3.2.2. Reconstruction bases from Gevrey regular weight functions. An-
other possible weight function to consider is an infinitely differentiable compactly
supported cutoff function. For example, it was shown in [19] that

wG(ξ) := exp(
ξ2

ξ2 − 1
) (3.12)

has Fourier coefficients that decay at the root exponential rate,

ŵG
k ≤ Const exp(−η

√

|k|), η > 0,

and consequently (3.7) also decays root exponentially. The space of compactly sup-
ported infinitely differentiable functions is usually catalogued in terms of Gevrey reg-
ularity, with (3.12) serving as an example of a Gevrey regular function. Using such
compactly supported weights will only allow an overall root exponential accuracy in
the reprojection, instead of the desired true exponential accuracy which is achiev-
able in theory through Gegenbauer reconstruction. Hence we will not pursue their
construction further. We note, however, that there are certain advantages to us-
ing compactly supported weight functions. In particular, they would allow for more
straight forward mathematical manipulation, i.e., no boundary terms in (3.16). For
completeness the argument for root exponential accuracy of the Gevrey based repro-
jection bases is presented in Appendix §A.

3.2.3. Reconstruction bases from Freund weight functions. We now pro-
ceed with the development of a family of weights which will yield an exponentially
convergent robust Gibbs complement. Following the line of thought in [20], we aban-
don strict compact support, and illustrate how a properly localized analytic weight
allows for true exponential accuracy. Although we are not aware of the optimal weight
for the robust Gibbs complement, we propose a weight that converges to χ(−1,1) and
yields an overall exponential error decay. In this way, not only will the occurence of
the Runge phenomenon be completely removed, but we also hope to limit the growth
of the corresponding polynomials, which will reduce the potential of round-off error.
Throughout the remainder of this paper we focus on the family of Freund weights,

wn
F (ξ) := e−cξ2n

for n ∈ Z+. (3.13)

The orthogonal polynomials resulting from the Freund weights have been exten-
sively studied since the early 1970s when Freund proposed them in [6] as the natural
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extension of Hermite polynomials for n = 1. However they remain much less under-
stood than the Gegenbauer polynomials. In particular, the precise behavior of the
convergence rate constants, ρ(f, wn

F ) in (3.4), and the three term recursion relation-
ships for their iterative construction are not known for general n. Moreover, although
we are considering reprojection bases that are orthonormal over the finite interval, the
Freund polynomials are taken to be orthogonal over the real line. Despite these com-
plications, by properly selecting the parameters c and n of the Freund weights, we can
obtain an orthogonal polynomial basis that satisfies the properties of a robust Gibbs
complementary basis. It is beyond the scope of this paper to fully develop the prop-
erties of the Freund polynomials, instead we seek to illustrate the relevant properties
for moderate order polynomials analytically, and where necessary numerically.

Let us consider the Freund weight (3.13) with parameters

n ≡ n(N) := round

(

√

N
b− a

2
− 2

√
2

)

, and c := − ln(ε). (3.14)

Here ε � 1 is the amplitude of the weight at ±1, and b−a
2 ≤ 1 accounts for the

dilation to the region of smoothness [a, b] to give the effective number of wavelengths
found in the smooth interval. The first requirement that the reprojection basis yield
an exponentially convergent approximation for analytic functions is satisfied due to
the weight being non-negative, [6]. The third requirement is clearly satisfied as the

weights approach the Legendre weight w
1/2
G := χ(−1,1) as N ↑ ∞. Before turning to

the remaining (second) requirement, we illustrate the evolution of the Freund weight
for increasing N in Figure 3.1(a), and show the corresponding growth rate of the
polynomials in Figure 3.1(b). In contrast to the Gegenbauer weight, which becomes
increasingly narrow as N increases, notice that the Freund weight with parameters
(3.14) is increasingly uniform over (−1, 1) and converges to the Legendre weight.
Moreover, for a fixed order polynomial l, the maximum amplitude of its correspond-
ing polynomial decreases as n increases. This self-regularizing property dramatically
reduces the round-off error in numerical implementations.
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Fig. 3.1. (a) The Freund weight exp(−cξ2n) with ε = 10−24 becomes increasingly wider for
increasing n = 2, 4, and 6. (b) Contour lines of log10 max |Ψn

l (ξ)| for ξ ∈ [−1, 1] with horizontal
axis the weight order n and vertical axis the polynomial order l. Note that for l fixed, the maximum
amplitude decreases as n increases.

To establish overall exponential convergence it remains to establish that for suffi-
ciently low order, the Freund polynomials, which will serve as the reprojection basis,
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are nearly orthogonal to the original basis, the complex exponentials {exp(iπkx)}|k|≤N .
More precisely, we must establish that (3.7) is exponentially small for l = 0, 1, . . . ,M
and |k| ≥ N . Unfortunately, the incomplete knowledge about the Freund polynomials
prevents us from proving this result directly. Yet rather than use a Gevrey regular
weight (3.12), which allows a fully rigorous proof of root exponential convergence, or a
finitely regular weight (3.11), which yields a proof of finite order convergence, we sub-
mit both analytical and numerical evidence that strongly suggest the true exponential
decay of (3.7) using the Freund weight (3.13) with properly selected parameters (3.14).

To establish the decay of (3.7) for the Freund weight, we separate the effects of
smoothness and the localization to |ξ| < 1 for the quantity wn

F (ξ)Ψn
l (ξ). First we

consider the integral taken over the real line and apply s consecutive integration by
parts to obtain

∫ ∞

−∞

wn
F (y)Ψn

l (y)e−iπκydy = (−iπκ)−s

∫ ∞

−∞

e−iπκy d
s

dys
(wn

F (y)Ψn
l (y)) dy, (3.15)

where κ = −k b−a
2 has been previously defined. This integral can be bounded by

separating the right hand side into integrals for |y| ≤ 1 and |y| > 1 yielding

(−iπκ)−s

∫ ∞

−∞

e−iπκy d
s

dys
(wn

F (y)Ψn
l (y)) dy = I1 + I2,

where

I1 = (−iπκ)−s

∫

|y|≤1

e−iπκy d
s

dys
(wn

F (y)Ψn
l (y)) dy and

I2 = (−iπκ)−s

∫

|y|>1

e−iπκy d
s

dys
(wn

F (y)Ψn
l (y)) dy.

As explained in Appendix §A, for wn
F (y)Ψn

l (y) analytic, the portion where |y| ≤ 1 can
be controlled by its regularity. Specifically, for η > 0 we have

(−iπκ)−s

∫

|y|≤1

e−iπκy d
s

dys
(wn

F (y)Ψn
l (y)) dy ≤ Const · |κ| 12 e−πη|κ|.

We can then bound (3.15) by

∣

∣

∣

∣

∫ ∞

−∞

wn
F (y)Ψn

l (y)e−iπκydy

∣

∣

∣

∣

≤ Const·|κ| 12 e−πη|κ|+(π|κ|)−s

∫

|y|>1

∣

∣

∣

∣

ds

dys
(wn

F (y)Ψn
l (y))

∣

∣

∣

∣

dy.

Since the left hand side can be bounded from below by

∣

∣

∣

∣

∫ 1

−1

wn
F (y)Ψn

l (y)e−iπκydy

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∫

|y|>1

wn
F (y)Ψn

l (y)e−iπκydy

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ ∞

−∞

wn
F (y)Ψn

l (y)e−iπκydy

∣

∣

∣

∣

,

the final bound for (3.7) is obtained by

∣

∣

∣
ŵn

F Ψn
l (κ)

∣

∣

∣
≤ Const · |κ| 12 e−πη|κ| (3.16)

+Const ·
∫ ∞

y=1

|wn
F (y)Ψn

l (y)| dy + (π|κ|)−smin

∫

|y|>1

∣

∣

∣

∣

dsmin

dysmin
(wn

F (y)Ψn
l (y))

∣

∣

∣

∣

dy.
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Here smin := πη|κ| where η > 0 is determined using (A.1).
Lacking more precise knowledge about the Freund polynomials, such as the three

term recursion relationship coefficients, the authors are not aware of a technique to

bound the decay of wn
F (y)Ψn

l (y) for y > 1, and as a result prove that
∣

∣

∣
ŵn

F Ψn
l (κ)

∣

∣

∣
is

exponentially small for l = 0, 1, . . . ,M and |k| ≥ N . Nevertheless, it is intuitively
clear that for the parameter c in (3.14) sufficiently large compared to the size of M ,
the integrals on the right hand side of (3.16) can be made exponentially small by
connecting parameters c to N . Alternatively, the integrals can be forced to be smaller
than machine epsilon so that they will not interfere with the exponential convergence
in numerical implementations.

To achieve exponential decay for the Truncation error (3.4) we select the number
of terms in the reprojection basis so that M grows with N, where N is the number of
terms in the original basis. Additionally, in order that the spaces P n

M and I −SN are
nearly orthogonal, we incorporate a gap between the wavelengths in I −SN ≡ I − IN
and Pn

M by selecting M ≤ N
4 . Since the reprojection is taken only over the largest

region of smoothness, [a, b], which in general is not of the full interval of the ordinal
projection (typically [−1, 1]), we weight the number of terms in the reprojection as

M :=
N

4
· b− a

2
. (3.17)

This weighting by the fractional length b−a
2 allows for the proper decay of (3.7) for

the polynomial orders l = 0, 1, . . . ,M , and the exponential powers κ := −k b−a
2 for

|k| > N . It should be noted that unlike the Gegenbauer case, the selection of M
here is not function dependent. Hence using the Freund weight based orthogonal
polynomials as the reprojection bases is a “black box” reconstruction algorithm.

We now turn to numerically illustrate that the reprojection basis based on the
Freund weights with parameters (3.14) satisfies the remaining (second) requirement,
that is that the near orthogonality of the reprojection space, P n

M , and the space in
which information about the underlying function is not known, I−SN . Specifically, it
is necessary to show that (3.7) is exponentially small for l = 0, 1, . . . ,M and |k| ≥ N .
Figure 3.2 illustrates the magnitude of (3.7) for the interval [a, b] = [−1, 1] with
N = 64 and 128. The horizontal axis consists of the first N

2 complex exponential

powers beyond those given in the original projection, k = N + 1, N + 2, . . . , 3N
2 , and

the vertical axis consists of the order of the reprojection polynomials, l = 0, 1, . . . ,M
where M = N

4 . We select ε := 10−24 so that the weight smoothly connects to zero,
although we remark that other values moderately below machine epsilon also work
well. Note the rapid (conjectured to be exponential) decay of the magnitude of (3.7),
which decreases by approximately 10−2 as N is doubled.

It is important to realize the essential component of the orthogonality error, the
decay of (3.7), is not dependent on the function being recovered, so that the Freund
polynomial bases have no function dependent parameters to be estimated by the user.
As noted previously, this is a significant advantage over Gegenbauer reconstruction,
where its success is heavily reliant on the proper selection of both its weight parameter
λ and reprojection order M [10].

4. Numerical examples. Lacking the three term recursion relationship of the
Freund polynomials, we rely on a numerical technique to construct the reprojection
bases. Specifically, we utilize the Stieltjes procedure outlined in [8] to generate ap-
proximations to the recursion relationships where the weight is taken over [−1, 1]. A
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Fig. 3.2. The magnitude of the inner product (3.7) for the interval [a, b] = [−1, 1] with (a)
N = 64 and (b) N = 128. The horizontal axis consists of the first N

2
complex exponential powers

beyond those given in the original projection, k = N +1, N +2, . . . , 3N
2

, and the vertical axis consists

of the order of the reprojection polynomials, l = 0, 1, . . . , M , where M = N
4

. We select the parameter

ε := 10−24 so that the weight smoothly connects to zero.

brief description of the Stieltjes procedure is outlined in Appendix §B, but we point
the interested reader to the comprehensive text [8] where the algorithm is discussed
in detail and a computer code is provided.

Before presenting the numerics we also address an important practical considera-
tion, that of a function being fully resolved within machine accuracy with fewer than
the designated order of polynomials, l = 0, 1, . . . ,Mlim for some Mlim < M . With the
number of terms in the original projection increasing, the number of terms available in
the reprojection basis will inevitably be more than is necessary to resolve the function
numerically. Once this happens, due to round-off error, the reprojection coefficients

ŜNfn(l) will become limited to near machine epsilon. Combining these artificially
large (machine epsilon) coefficients with polynomials of increasing magnitude results
in the degradation of the approximation quality. To overcome this practical numer-
ical concern, we additionally limit the number of terms in the reprojection basis at
the first occurrence where the average of three consecutive coefficients is below some
tolerance, Tol. Specifically, if we let

Ŝave(l) :=
1

3
(ŜNfn(l − 1) + ŜNfn(l) + ŜNfn(l + 1)) (4.1)

we can define Mn
lim as

Mn
lim := min

(

M,min{l such that Ŝave(l) < Tol}
)

. (4.2)

In the following numerical examples we contrast Gegenbauer reconstruction with
parameters λ = N

8 · b−a
2 and the Freund robust Gibbs complement with parameters

(3.14) where ε = 10−24. For both reprojection bases, the number of terms M is
selected as in (3.17), with the above limiting where Tol := 10−14. As a result, accuracy
beyond this threshold can not be expected. Standard trapezoidal quadrature with

spacing 1
2N was used in computing ŜNfn(l) whereas ÎNfn(l) was computed using

the trapezoidal quadrature with only the given equidistant sample, {f( ν
N )}N−1

ν=−N .
This rather course quadrature is permissible due to the exponential accuracy of the
trapezoidal sum (see e.g. [4, 11]).
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One of the primary motivations for the development of the robust Gibbs comple-
ments was to find a reprojection basis that, rather than be extrapalatory utilizes as
much of the region of smoothness as possible while still satisfying the second require-
ment of a Gibbs complement. In doing so, the robust Gibbs complement also avoids
the Runge phenomenon, allowing the recovery of all piecewise analytic functions once
N is sufficiently large to resolve them. As the following examples illustrate, not only
is the Runge phenomenon eliminated, but the effects of round-off error are clearly
reduced.

We begin by considering the reconstruction of a function suggested in [3] to mea-
sure the Runge phenomenon,

fsymm,pole(x, zs) := [=(zs)]
2

{

1

[=(zs)]
2
+ (x −<(zs))2

+
1

[=(zs)]
2

+ (x+ <(zs))2

}

,

(4.3)
where zs is taken to be a fixed constant and f symm,pole is a function of x with a
pole at zs. We then measure the ability of the Gegenbauer and Freund reprojection
bases to recover f symm,pole depending on the location of the pole zs. Figure 4.1(a-
c) illustrates that the region of failed convergence due to Runge phenomenon is not
decreasing for the Gegenbauer weight λ = N

8 , which was selected according to both
theoretical and numerical considerations from [9, 10]. However, Figure 4.1(d-f) shows
that the region of convergence consistently increases for the Freund bases. In fact, the
Runge phenomenon is not apparent at all. Rather, the region of failed convergence is a
result of the function not being fully resolved with the limited amount of information
in the known Fourier coefficients, {f̂symm,pole

k }|k|≤N . This example emphasizes how
critical the choice of parameters is to the Gegenbauer reconstruction. Specifically, we
note the degradation of results from Figure 4.1(b) to Figure 4.1(c). As was shown
in [3, 10], the reprojection polynomial degree M and weight order λ must become
increasingly smaller proportional to N as the off-axis singularity shrinks to the origin.

Having established the advantages of the robust Gibbs complement in overcoming
the Runge phenomenon, we now compute an approximation of another test function
put forth in [19] as a challenging function due to its sharp peak and the different
regularity constants for the left and right regions:

f2(x) =

{

(2e2π(x+1) − 1 − eπ)/(eπ − 1) x ∈ [−1,−1/2)
− sin(2πx/3 + π/3) x ∈ [−1/2, 1)

. . (4.4)
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Figure 4.2 shows the behavior of both the Gegenbauer and Freund polynomial
reconstructions in each region of smoothness. For the region (−1,− 1

2 ), both recon-
structions continue to converge in similar fashions due to the region not being fully
resolved below machine epsilon for N ≤ 256. However for the interval (− 1

2 , 1), both
methods have enough terms to fully resolve the function. Unfortunately, after the
Gegenbauer method has nearly resolved the function with N = 128, it continues to
increase the weight parameter, λ ∼ N , causing the reconstruction to become more
extrapalatory. As a result, the error in the Gegenbauer reconstruction increases due
to the round-off errors and inherently poor conditioning of the Gegenbauer polynomi-
als (Figure 2.1(b)). Methods have been developed in [9] which attempt to overcome
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Fig. 4.1. The log10 of the L∞[−1, 1] error in recovering fsymm,pole for zs in the upper right
quadrant of the complex plane, i.e., [=(zs)], [<(zs)] ∈ (0, 1], from its truncated Fourier coefficients,
with N = 64 (a,d), N = 128 (b,e), and N = 256 (c,f). <(zs) and =(zs) make up the respective
horizontal and vertical axes. Results are from the Gegenbauer reprojection basis with λ = N/8 (left)
and the Freund robust Gibbs complement (right) with parameters (3.14) where ε = 10−24. In each
plot the thick contour line designating error of unit amplitude can be viewed as separating the region
where an approximation is recovered from the region where the reconstruction fails. Note that the
region for which the Gegenbauer reprojection fails to converge does not decrease with increasing N ,
whereas the Freund reprojection yields not only an increasingly accurate reconstruction, but also the
region where the function is fully resolved from the given information is also increasing.
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this effect by properly selecting the Gegenbauer weight parameter λ. The increasingly
poor conditioning can be ameliorated by limiting λ, but only by accepting a reduced
rate of convergence. This is evident in Figure 4.2(a) for x ∈ (−1/2, 1), where the
accuracy of the Gegenbauer reconstruction visibly decreases as the original projection
order N increases. On the other hand, as is evident in Figure 3.1(b), the Freund
robust Gibbs complement actually provides increasingly better conditioned bases as
N increases, rather than just limiting the poor conditioning. This is further exhib-
ited in Figure 4.2(b), where it is clear that in contrast to to the increasing error in
the Gegenbauer reconstruction, the Freund basis yields increasing accuracy in both
regions of smoothness. This effect is further illustrated in Table 4.1 where the maxi-
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Fig. 4.2. The error in recovering f2 using the (a) Gegenbauer and (b) Freund reprojection

bases with the same parameters as in Figure 4.1, except for the scaling by b−a
2

due to the length of

the two intervals of smoothness, (−1,− 1

2
) and (− 1

2
, 1). The given data were the global, taken over

[−1, 1], Fourier series, with N = 64 (upper solid), 128 (dotted), and 256 (lower solid).

mum L∞ error, excluding the discontinuities x = −1,− 1
2 , and 1, are measured. The

Freund basis resolves the function and then maintains the accuracy at the size of
the user selected Tol, whereas the Gegenbauer weight becomes more extrapalatory.
The resulting poorly conditioned Gegenbauer polynomials cause the overall error to
increase after the function is fully resolved.

N Gegenbauer Freund

32 6.05(-1) 8.90(-1)
64 5.73(-1) 1.37(-1)
128 1.34(-4) 1.84(-4)
256 1.52(-6) 1.01(-7)
512 2.16(-9) 9.33(-13)
1024 1.43(-7) 5.27(-13)
2048 8.99(-7) 5.23(-14)
4096 1.23(-6) 6.59(-14)

Table 4.1

The L∞ error for the approximation of f2(x). Here we use the notation z(−r) := z × 10−r.
The Gegenbauer reprojection bases becomes increasingly extrapalatory, resulting in increasing round-
off error for N > 512. In contrast, the Freund robust Gibbs complement resolves the function by
N = 512, and automatically maintains the accuracy at about the user defined limiting tolerance
level, Tol.
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5. Summary and Future Work. Gegenbauer reconstruction with suitably se-
lected weight parameter λ and reprojection order M has been shown to recover a
function from its (pseudo-)spectral data with exponential accuracy up to the discon-
tinuities. Unfortunately, as a result of the function dependent parameters λ and M ,
Gegenbauer reconstruction suffers both from numericaly round-off errors as well as the
Runge phenomenon [3, 10]. Fortunately, this limitation is not due to the underlying
approach of using a Gibbs complementary basis from the available (pseudo-)spectral
data. Rather, these problems come directly from using the Gegenbauer polynomials
as the Gibbs complement.

Here we introduced a more general alternative error decomposition which make
the desirable traits in a Gibbs complement more transparent. This insight allows the
proposition of an additional requirement for the Gibbs complement. Specifically, we
impose that the weight of the new orthogonal reprojection basis approaches a weight
whose associated orthogonal polynomials yield exponentially convergent series expan-
sions of functions analytic on [−1, 1]. We refer to such reprojection bases as robust

Gibbs complements. The Freund weights as defined in (3.13) satisfy this requirement,
and have the additional desirable property of converging to χ(−1,1). As a result, the
convergence properties of their corresponding polynomials approach those of the more
familiar Legendre polynomials for the reconstruction of smooth functions in [−1, 1],
i.e., they yield spectral convergence.

By satisfying this additional property, the reprojection bases are better condi-
tioned in the sense that the amplitude of the polynomials does not grow too rapidly.
Moreover, the weight more uniformly utilizes the region of smoothness, and the re-
sulting reprojection basis approaching the Legendre polynomials which are orthog-

onal under the limiting weight w
1/2
G = χ(−1,1). Although the optimal robust Gibbs

complement is not known, we propose the properly selected Freund polynomials to
illustrate the advantages of robust Gibbs complements over the Gegenbauer polyno-
mials. Unfortunately, although the Freund polynomials have been studied extensively
since the early 1970’s, [7], many of their properties are not known for general param-
eter n. As a consequence we are so far unable to determine the optimal parameters
for the Freund weight, (3.13). Nevertheless, the values selected in (3.14) are numer-
ically shown to satisfy the properties of a robust Gibbs complement, as displayed
in Figure 3.2. The numerical examples in §4 illustrate that the Freund polynomi-
als achieve exponential accuracy up to the discontinuities without suffering from the
Runge phenomenon or significant round-off errors. It should also be noted that unlike
Gegenbauer reconstruction, which requires function dependent parameter tuning, the
Freund parameters (3.14) are function independent.

Although the Freund reprojection basis establishes the importance of using a
robust Gibbs complement, a great deal of work remains in fully developing this idea.
The following topics will be considered in future investigations:

• Ideally, we wish to determine the optimal robust Gibbs complementary basis
in that the space P n

M that is “most orthogonal” to I −SN . If this can not be
done explicitly, it would be useful either to determine the properties of the
Freund polynomials necessary to rigorously prove the exponential convergence
of the reprojection, or possibly to select another basis which allows such a
rigorous proof. Such a result will not only further establish the Freund basis
as an alternative for Gegenbauer postprocessing, but should also allow for
the optimal selection of the weight parameters as a function of the number
of terms in the given (pseudo-)spectral projection, N .
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• It is important to ensure the near orthogonality of I − IN and Pn
M (second

requirement) even when wn approaches a weight whose space spanned by P∞
M

is not exponentially orthogonal to I−IN . In particular, we know from [15] and
subsequent papers that the Legendre polynomials, to which our polynomials
approach in limit, do not constitute a basis that satisfies this requirement.
However, by appropriate selection of M as a function of N the second Gibbs
complement property can be maintained. With a further understanding of the
particular reprojection basis, the precise behavior of M can be established.

• As proposed in [14], the most optimal Gibbs complementary basis may not
consist of polynomials. Hence it would be useful to explore the construction
a robust Gibbs complement that may not be composed of polynomials.

• The Gegenbauer reconstruction method has also been developed when the
original projection basis consists of orthogonal polynomials, specifically Leg-
endre, Chebyshev, and general Gegenbauer polynomial bases. In addition the
method has been utilized for spherical harmonics in two dimensions. Robust
Gibbs complements should similarly be developed for these commonly used
global projections in addition to the Fourier (pseudo-)spectral basis discussed
here.

• Finally, we wish to study the application of the Freund reprojection basis
to various scientific disciplines. In particular, the Gegenbauer reconstruction
method has been successfully applied in a number of areas, including medical
imaging and the post-processing of numerical hyperbolic partial differential
equations that admit solutions with shocks. Having established several sig-
nificant advantages of the Freund robust Gibbs complement, we will pursue
its effective implementation for various applications.

Appendix A. Gevrey weight functions and root exponential decay.

Below we briefly sketch an argument to show that infinitely differentiable com-
pactly supported weight functions, discussed in §3.2.2 will yield a reprojection basis
that provides root exponential accuracy. A more detailed analysis can be found in
[18, 19].

Gevrey regular functions are a class of compactly supported infinitely differen-
tiable functions, classified in terms of the growth rate of their derivatives. Specifically,
a function ψ(·) is Gevrey order alpha is equivalent to the statement

‖ψ(s)‖L∞ ≤ Const · η−s(s!)α

for some η > 0 and α ≥ 1. With this bound, it is straightforward to show that the
the Fourier coefficients of a function with Gevrey regular periodic extension decay at
the root exponential rate. We sketch the technique for this here.

Consider a Gevrey alpha regular function, ψ(x), compactly supported in [−1, 1].
We apply integration by parts s times to its Fourier coefficient (2.1) to yield

f̂k = 2−1(−iπk)−s

∫ 1

−1

ψ(s)(x) exp(−iπkx)dx.

Taking the absolute value of each side and passing it inside the integral we obtain

|f̂k| ≤ (π|k|)−s‖ψ(s)‖L∞ ,

which is valid for any s. By substituting in the Gevrey regularity bound and using
Sterling’s inequality,

s! ≤ Const ·
√
s(
s

e
)s,
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we have

|f̂k| ≤ Const · sα
2 (

sα

eαπη|k| )
s.

Since this bound is valid for all s, we can arrive at the nearly smallest bound by
minimizing the dominant term, (sα/eαπη|k|)s over s. The resulting minimum bound
is

|f̂k| ≤ Const
√

|k| exp(−α(πη|k|)1/α), sα
min = πη|k|, (A.1)

illustrating the root exponential decay. The case of true exponential decay, α = 1,
corresponds to analytic functions which necessarily can not be compactly supported.

Appendix B. The Stieltjes algorithm for computing the Freund repro-

jection basis. Below we present the Stieltjes algorithm for computing polynomial
orthogonal under the discrete quadrature

< f, g >wn :=
∑

ν

f(tν)g(tν)wn(tν) (B.1)

where tν is a finite stencil on [−1, 1]. Here we consider only the case of an even
weight wn(·), which simplifies the three term recursion relationship for the orthogonal
polynomials to

Ψn
k+1(t) = tΨn

k(t) − βn
k Ψn

k−1(t).

Applying the inner product for the orthogonal polynomials results in the formula for
the recursion coefficient,

βn
k :=

< Ψn
k ,Ψ

n
k >wn

< Ψn
k−1,Ψ

n
k−1 >wn

. (B.2)

The Stieltjes algorithm for computing a family of orthogonal polynomials on a fixed
stencil {tν}ν begins with the base polynomials Ψ−1(t) := 0 and Ψ0(t) := 1 and com-
putes the first recursion coefficient β0. This coefficient is used to compute the values
of the next orthogonal polynomial on the stencil tν , i.e., Ψ1(tν). The procedure is re-
peated inductively to compute the desired number of recursion coefficients {βk}M−1

k=0 .
A more comprehensive discussion of the Stieltjes and other algorithms for computing
orthogonal polynomials is given in [8].

When given SNf(·) (2.1), the Freund orthogonal polynomials are computed on
the mesh tν := ν

2N , where ν = −2N,−2N + 1, . . . , 2N − 1. Alternatively, when given

the equidistant sampled function values f(xj) for xj = −1 + j
2N , j = 0, · · · 2N − 1,

the Freund orthogonal polynomials are computed on the same stencil. We note again
that although the mesh is course given the N term (pseudo-)spectral information, a
very accruate approximation can be recovered due to the exponential accuracy of the
trapezoidal quadrature formula for smooth periodic functions, e.g. [4, 11]. We further
note that while the polynomials generated from the Sieltjes algorithm are orthogonal
under the discrete inner product (B.1), as N increases the recursion coefficients (B.2)
approach those of the family of polynomials which are orthogonal under the continuous
inner product. Consequently the generated orthogonal polynomials approach those
which are orthogonal under the continuous inner product, [8].
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