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In 1915 Albert Einstein derived the fundamental laws of General Rela-
tivity, which predict the existence of gravitational radiation. While indirect
evidence is by now well established and led in 1993 to the Nobel Prize in
Physics being awarded to Hulse and Taylor, no direct detection has occurred
to date. This is because gravitational waves reaching Earth are extremely
weak. Recently, researchers have built gravitational wave detectors achiev-
ing the required sensitivities to make direct detection possible. A number
of laser interferometer experiments are devoted to this task. The currently
most sensitive one (LIGO [1]) consists of two crossed laser beams each of
which is 4 km long. Over this distance a typical gravitational wave would
change each arm’s length by ∼ 10−18 m — a fraction of the size of an atom.
Because the signal to be extracted is very small compared to the background
noise, an accurate a priori knowledge of inspiral signals that can be searched
for in the data is required.

In this chapter we discuss our CUDA and GPU implementation and re-
sults from an approximation to Einstein’s equations, the post-Newtonian one,
which allows us to thoroughly study the inspiral phase-space dynamics of the
7-dimensional parameter space of binary black holes in initial quasi-circular
orbit.

1 Introduction

With a number of gravitational wave detectors such as LIGO [1], Virgo [2],
and GEO600 [15] now measuring at design sensitivity, the prospect of direct
detection of gravitational radiation is becoming increasingly real. Due to the
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low signal-to-noise ratio encountered at these detectors, researchers need to
post-process the data, ideally searching for known signals that would indicate
a source of gravitational radiation. One of the most likely sources of detection
are stellar-mass binary black hole (BBH) systems. There is a definite need
to understand as much as possible about these configurations.

Over recent years numerical solutions of General Relativity (GR) have
reached the point were accurate and reliable calculations of the interactions
of two black holes (BHs) over many orbits can be produced by a number of
different groups (see [12, 4, 3] and references therein). These calculations
require enormous computational effort, though, and the generation of a large-
scale bank of numerical templates that could be used by gravitational wave
detectors is currently intractable. Numerical solutions to Einstein’s equa-
tions require solving a coupled set of non-linear elliptic-hyperbolic partial
differential equations in three spatial dimensions. A single right-hand-side
call to advance in time just one point on the three-dimensional spatial grid
requires around 13, 000 multiplications, 5, 400 additions, 3, 400 subtractions
and 69 divisions, excluding derviative calculations. A single simulation can
easily take more than 100, 000 CPU hours. These simulations are typically
running on more than 1024 cores simultaneously so they can complete in a
reasonable amount of time. Here we report on an approximation to GR, the
so-called post-Newtonian expansion (PN), which — as explained in the next
section — dramatically reduces the number of computational operations re-
quired. Furthermore, recent comparisons between gravitational waveforms
obtained from full numerical relativity (that is, numerical solutions of the
full Einstein equations) and PN approximations show good agreement until
just a few orbits before the two black holes merge [5, 13, 8].

Because of these reasons, performing a large number of PN simulations of
BBH systems with different initial configurations is of considerable interest,
and the focus of our work described in this chapter.

2 The Post-Newtonian Approximation

The PN approximation leads to a system of coupled ordinary differential
equations (ODEs) in time for the orbital frequency ω, the unit orbital angular
momentum vector L̂ and the individual spin vectors Si for the two BHs.
This expansion is valid as long as the two black holes are far separated and
slowly moving along a quasi-circular inspiral trajectory. In total this is a
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7-dimensional problem as there are three degrees of freedom in each of the
spin vectors and one degree of freedom in the mass ratio.

The specific PN expansion and equations that we use are those of Ref. [6]
(with Erratum [7]); namely,
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where S = S1 + S2, γE = 0.577 . . . is Euler’s constant, θ̂ = 1039/4620,
M = m1 + m2 is the total mass, η = m1m2/M

2 the symmetric mass ratio,
and the magnitude of the orbital angular momentum is |L| = ηM5/3ω−1/3.

The evolution of the individual spin vectors Si for the two BHs is described
by a precession around Ωi, Eq. (2), with
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and Ω2 obtained by the exchange 1 ↔ 2. The spin vectors Si are related
to the unit ones Ŝi via Si = χim

2
i Ŝi, with χi ∈ [0, 1] the dimensionless spin

parameter of each black hole.
Given mass and spin parameters (m1,m2, χ1, χ2), the above system of

coupled ODEs is evolved from an initial frequency ω0 to a final one ωf . We
typically choose ω0 corresponding to an initial separation of r ≈ 40M and
ωf = 0.05, which is a conservative estimate of where the PN equations still
hold [5, 13].

3 Numerical Algorithm

The ODEs are integrated in time using Dormand-Prince’s method [10].
This ODE integrator uses an adaptive time step h to keep the solution error
below a given threshold. Starting from time t, the time integrator updates
the state to t + h. It computes an approximation to the solution at six
intermediate times between t and t+h (referred to as k1 to k6 below) and then
computes 4th-order and 5th-order accurate solutions at t + h (here denoted
y4 and y5). This requires six right-hand-side calls, i.e. six evaluations of
the right-hand-sides of Eqs. (1,2,3). The difference between these solutions
is used to estimate the error of y4 and adapt h if the error is below some
specified tolerance. In our simulations we typically set the tolerance to be
5×10−7 (i.e. roughly at the level of single-precision accuracy) and start with
an adaptive time step of size h = 10M . The time step does not change during
most of the inspiral. This is crucial for our GPU implementation, because
— as discussed later in the chapter — it minimizes thread divergences when
multiple inspirals are performed in parallel.

4 GPU implementation

Each ODE integration described above cannot be easily parallelized, be-
cause the solution at each time step (even for the intermediate k1 to k6

values) depends on the previous one. However, if one wants to study an
ensemble of BBH inspiral dynamics (for example in a phase-space study)
then a trivial parallelization is available by just performing many inspirals
simultaneously.

Fig. 1 shows a CUDA pseudo-code description of our implementation.
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// compute r i g h t hand s i d e ( rhs ) o f ODE
g l o b a l void ode rhs ( s t a t e )

// i n t e g r a t e the ODEs
void i n t e g r a t e ( i n i t i a l s t a t e a n d p a r a m s ) {

a l l o c a t e g p u s t o r a g e ( . . . ) ;
while ( a l l omega>a l l o m e g a f i n a l ) {

ode rhs<<<nBlocks_rhs , nThreads > > >(. . .) ;
checkCUDAError ("first ode_rhs call" ) ;
interm 1<<<nBlocks_interm , nThreads > > >(. . .) ;

. . . // more in t e rmed ia te va lue s and rhs c a l l s
a d j u s t t i m e s t e p s ( . . . ) ;

}
t r a n s f e r f r o m g p u t o h o s t ( . . . ) ;

}

Figure 1: Pseudocode describing the parallel ODE integration. The time
integration is performed on the CPU with kernels performing the inspirals
called on the GPU as described in the text.

The right-hand side (RHS) expressions of Eqs. (1), (2) and (3) are imple-
mented in the ode rhs function on the GPU. The ODE integration is per-
formed on the CPU. First, gpu storage is allocated in allocate gpu storage.
Then the initial state data (i.e. ω, Si for the two BHs, and the unit orbital
angular momentum vector L̂) is set. In the evolution loop the RHS is called
and the different intermediate values k1 to k6 are computed in interm 1,
etc. Next, for each inspiral the timestep h is adjusted separately, i.e. h is a
vector with entries for each parallel inspiral. Finally the loop is terminated
once all ω have reached the final value ωf to a given precision. At the end
the data is copied back from the GPU to the CPU. During each timestep a
memory copy from the GPU to the CPU is needed to check if all simulations
are done. In the profiling Section 5 below we will see that no significant
amount of time is spent in this copying.

Unfortunately, BBH systems interact differently based on their initial
state, which describes their relative masses and the orientations of their spins.
In particular this will lead to thread-divergence of the different inspirals.
This could potentially be a very serious problem as time-steps are adjusted
in different manners and the load/store patterns of the different threads
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running in parallel changes. In our simulations we have found, however,
that the divergence in the threads only appears towards the very end of
the inspirals as only then are the time-steps adjusted in a dynamic manner,
typically resulting in a runtime difference of at most 10% from just running
many copies of the same inspiral. This simplifies the problem significantly,
as we do not have to handle thread divergence.

GPUs today provide the most impressive speed-ups over CPUs for single-
precision computations. By comparing single-precision and double-precision
CPU results on a number of inspiral configurations we have verified single-
precision is sufficient for our problem, yielding a maximum error of just over
5% for any final parameter after the simulation, sufficient for our studies.

5 Performance Results

We now evaluate the performance advantages GPUs deliver in our appli-
cation. We executed our code on a single core of a quad-core Intel Xeon E5410
CPU running at 2.33 GHz, which is rated at around 5 GFlops in double-
precision. Note that since the problem is embarrassingly parallel the CPU
would be able to provide excellent scaling over its 4 cores. We integrated
one of our test inspirals 100 times serially and found that we could achieve
around 0.057 inspirals per millisecond (ms) on a single core — which we will
use for our performance comparison.

For comparison, each of the four GPUs on a high-end unit (the NVIDIA
Tesla S1070) is currently rated at 1035 GFlops in single-precision, delivering a
theoretical performance advantage of about a factor 200 over the single-core
CPU. We ran our test setup on a single GPU, spawning a large number N of
simultaneous inspirals in parallel. Fig. 2(a) shows results for the performance
of the GPU card. As we increase the number of simultaneously scheduled
inspirals N the speed levels off at about 2.7 inspirals/ms. The GPU has 240
processors that work in parallel, but the runtime CUDA scheduler has to be
able to keep these 240 processors working simultaneously by switching out
threads that would pause while waiting for a memory access to complete.
This is the reason why the performance still rises even after N = 10, 000,
as the runtime has a better chance of squeezing the optimal performance
out of the card by interleaving different inspirals without having to wait for
costly memory transfers. Fig. 2(b) shows more detailed profiling informa-
tion. Listed is the time spent on different routines for one of our simulations
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Figure 2: Performance of the GPU. Fig. (a) shows scaling as we increase
the number of inspirals N simultaneously scheduled on the GPU. Fig. (b)
shows profiling results — right-hand-side (RHS) computations dominate, as
expected.
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run with N = 50, 000; note the log-scale. The right-hand-side (RHS) compu-
tations dominate, as expected from the arithmetic intensity of Eqs. (1), (2)
and (3). The next most expensive routines relate to the time update step.
The y4 and y5 are the routines performing the estimation updates from the
ODE integrator mentioned in Sec. 3, the k1 to k6 are the routines for the
intermediate computations, while D.to.H and H.to.D refer to device-to-host
and host-to-device memcopy operations. Finally, pois.float, pois.int and
init are all initialization steps, which are only run once.

We performed this study using block sizes of 256 threads. We found
similar behavior with 128-thread blocks. Based on this data, we achieve a
speed-up of about a factor 50. While this comparison is slightly unfair to the
CPU because we only use a single core and double-precision on the CPU,
there is no doubt that the performance gains are very significant. Note also
that for this test problem we integrated the exact same problem in all cases.
This means that the individual threads run in perfect lock-step, the best
possible case for the GPU. As mentioned above, we typically see differences
of about 10% in the runtime of different inspirals, and this would result in a
slight inefficiency on the GPU as some of the threads in a block may finish
before others.

6 GPU Supercomputing Clusters

To further speed our computations, we used the NCSA Lincoln cluster,
which is a cluster of 96 NVIDIA Tesla S1070 units connected to 192 8-core
Dell PowerEdge 1950 servers (each scalar unit allows access to two GPUs).
To perform these computations, we used Message Passing Interface (MPI),
designating one node as a lead node that delegates tasks to others and keeps
track of the progress of the overall job. We subdivided each large computa-
tion into a set of smaller jobs, which were completed by individual GPUs. To
limit network communication overhead, we sent only basic information about
the jobs to the nodes performing the computation, and they calculated the
parameters for each of the runs and then performed the computations. On
completion of a job, the resulting datafile (stored in a binary format to con-
serve space) was stored on tape storage provided by the cluster. Throughout
the course of the run, we would copy files from that storage to a local hard
drive so we had all the files stored locally by the end of the computation.

Several robustness measures were necessary to successfully complete the
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computation and transfer of the resulting data. Occasionally a node would
never complete a job, blocking completion of the overall computation. To
prevent this, we had the lead node reassign abnormally long-running jobs.
Further, in our real-time data transfer system, it was sometimes difficult
to determine if a file on the tape storage represented a partially or fully
transferred datafile. To ensure we only copied complete datafiles to our local
hard drive, we added an indicator file to the tape storage to mark that a
file had been fully transferred. Last, sometimes our transfers from the tape
storage to our local hard drive — using high performance enabled secure
copy (HPN SCP) — only partially completed. We validated the copies by
comparing the hash values of the datafiles on the tape storage to those on
the local hard drive.

By using a GPU supercomputing cluster, we were able to significantly
speed our investigation on the phase space of a binary black hole system.

7 Statistical Results for Black Hole Inspirals

As described in [14], we can gain significant insight into the interactions of
BBH systems through a systematic sampling and evolution of the parameter
space of initial configurations. In particular, in a recent statistical study [11],
through a principal component analysis of our simulation results we found
quantities which are nearly conserved, both in a statistical sense with respect
to parameter variation and as functions of time. Figure 3 shows the variance
σ2 with respect to changes in the initial black hole spin orientations for one
such quantity,

∆ESO
2 = V̂ 1

2 ∆
(
Ŝ1 · L̂

)
+ V̂ 2

2 ∆
(
Ŝ2 · L̂

)
. (5)

In the previous expression the superscript SO stands for spin-orbit interac-
tions, ∆ denotes the difference between final and initial quantities, and V̂ i

2

(i = 1, 2) are the components of the normalized eigenvector of the covariance

matrix associated with ∆
(
Ŝ1 · L̂

)
and ∆

(
Ŝ2 · L̂

)
. These components, as

well as the variance of ∆ESO
2 , depend on the black hole masses mi and spin

magnitudes χi (i = 1, 2). In Figure 3 we show the dependence of the variance
on these parameters. The range of σ2 ∼ 2×10−4−−10−9 gives an indication
of how narrowly peaked the probability distribution for this quantity is or,
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Figure 3: Variance of the principal component in Eq. (5) as a function of the
black holes spin magnitudes χi (i = 1, 2) and one of the black hole masses,
m1 (the total mass was set to M = m1 +m2 = 1).

in other words, how well it is conserved with respect to variations in initial
spin orientations for different masses and spin magnitudes.

8 Conclusion

In this chapter, we have shown that CUDA and GPUs are well suited
for the exploration of the binary black hole system parameter space in the
post-Newtonian approximation, enabling significant insights into the binary
black hole inspiral phase space. Looking to the future, GPU computing and
CUDA have the potential to make a significant impact in the quest for direct
measurement of gravitational radiation.
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